test.cc 25.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
24

25
DEFINE_double(acc, 1e-5, "Test accuracy threshold.");
26

T
tensor-tang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
void ExpectEQ(const T* target, const T* refer, int n) {
  if (std::is_floating_point<T>::value) {
    for (int i = 0; i < n; ++i) {
42
      EXPECT_NEAR(target[i], refer[i], FLAGS_acc);
T
tensor-tang 已提交
43 44 45 46 47 48 49 50
    }
  } else {
    for (int i = 0; i < n; ++i) {
      EXPECT_EQ(target[i], refer[i]);
    }
  }
}

T
tensor-tang 已提交
51 52
std::vector<int> TestSizes() {
  std::vector<int> s;
T
tensor-tang 已提交
53
  for (int i = 1; i < 32; ++i) {
T
tensor-tang 已提交
54 55
    s.push_back(i);
  }
T
tensor-tang 已提交
56 57 58 59
  // test some large size
  s.push_back(100);
  s.push_back(1000);
  s.push_back(2000);
T
tensor-tang 已提交
60 61 62
  return s;
}

T
tensor-tang 已提交
63
namespace jit = paddle::operators::jit;
64
using CPUPlace = paddle::platform::CPUPlace;
T
tensor-tang 已提交
65 66 67

template <typename KernelTuples, typename... Args>
struct TestFuncWithRefer {
68 69 70
  void operator()(const typename KernelTuples::func_type tgt, Args... args) {
    LOG(FATAL) << "Should specify this function.";
  }
T
tensor-tang 已提交
71 72 73 74 75 76
};

template <typename T>
struct TestFuncWithRefer<jit::XYZNTuples<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::XYZNTuples<T>::func_type tgt,
77 78
                  const std::vector<T>& x, const std::vector<T>& y,
                  const std::vector<T>& zref) {
T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(zref.size(), x.size());
    EXPECT_EQ(zref.size(), y.size());
    const T* x_data = x.data();
    const T* y_data = y.data();
    const T* zref_data = zref.data();
    const int d = zref.size();

    std::vector<T> ztgt(d);
    T* ztgt_data = ztgt.data();
    // test normal
    tgt(x_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ztgt.begin());
    tgt(ztgt_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace y
    std::copy(y.begin(), y.end(), ztgt.begin());
    tgt(x_data, ztgt_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::AXYNTuples<T>, T, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::AXYNTuples<T>::func_type tgt, const T a,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(&a, x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(&a, ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
template <typename T>
struct TestFuncWithRefer<jit::SoftmaxTuples<T>, std::vector<T>, std::vector<T>,
                         int, int> {
  void operator()(const typename jit::SoftmaxTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref, int n,
                  int bs) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    EXPECT_EQ(x.size(), static_cast<size_t>(n * bs));
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    std::vector<T> ytgt(n * bs);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(x_data, ytgt_data, n, bs);
    ExpectEQ<T>(ytgt_data, yref_data, n * bs);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(ytgt_data, ytgt_data, n, bs);
    ExpectEQ<T>(ytgt_data, yref_data, n * bs);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::XRNTuples<T>, std::vector<T>, T> {
  void operator()(const typename jit::XRNTuples<T>::func_type tgt,
                  const std::vector<T>& x, const T ref_res) {
    EXPECT_TRUE(tgt != nullptr);
    T tgt_res;
    tgt(x.data(), &tgt_res, x.size());
    ExpectEQ<T>(&tgt_res, &ref_res, 1);
  }
};

T
tensor-tang 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
template <typename T>
struct TestFuncWithRefer<jit::XYNTuples<T>, std::vector<T>, std::vector<T>> {
  void operator()(const typename jit::XYNTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::LSTMTuples<T>, std::vector<T>, std::vector<T>,
182 183
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         typename jit::LSTMTuples<T>::attr_type> {
T
tensor-tang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  void operator()(const typename jit::LSTMTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& wp,
                  const std::vector<T>& ct_1, const std::vector<T>& ct_ref,
                  const std::vector<T>& ht_ref,
                  const typename jit::LSTMTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ct_ref.size(), ht_ref.size());
    EXPECT_EQ(ct_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 4 * ht_ref.size());
    EXPECT_EQ(wp.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ct(ct_ref.size()), ht(ht_ref.size());
    std::vector<T> checked(2 * d);
    std::copy(xsrc.begin(), xsrc.end(), x.begin());

    const T* ct_1_data = ct_1.data();
    const T* wp_data = wp.data();
    const T* ct_ref_data = ct_ref.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ct_data = ct.data();
    T* ht_data = ht.data();
    T* checked_data = checked.data();

210
    jit::lstm_t step;
T
tensor-tang 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    step.gates = x_data;
    step.ct_1 = ct_1_data;
    step.ct = ct_data;
    step.ht = ht_data;
    if (attr.use_peephole) {
      step.wp = wp_data;
      step.checked = checked_data;
    }

    tgt(&step, &attr);
    ExpectEQ<T>(ct_data, ct_ref_data, d);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::GRUTuples<T>, std::vector<T>, std::vector<T>,
228 229
                         std::vector<T>,
                         typename jit::GRUTuples<T>::attr_type> {
T
tensor-tang 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  void operator()(const typename jit::GRUTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& ht_1,
                  const std::vector<T>& ht_ref,
                  const typename jit::GRUTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ht_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ht(ht_ref.size());
    std::copy(xsrc.begin(), xsrc.end(), x.begin());
    const T* ht_1_data = ht_1.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ht_data = ht.data();
246
    jit::gru_t step;
T
tensor-tang 已提交
247 248 249 250 251 252 253 254
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
    tgt(&step, &attr);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

255
template <typename T>
256 257
struct TestFuncWithRefer<jit::SeqPoolTuples<T>, std::vector<T>, std::vector<T>,
                         typename jit::SeqPoolTuples<T>::attr_type> {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  void operator()(const typename jit::SeqPoolTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref,
                  const typename jit::SeqPoolTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(x.size() % yref.size(), 0);
    int w = yref.size();
    std::vector<T> y(w);
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    T* y_data = y.data();
    tgt(x_data, y_data, &attr);
    ExpectEQ<T>(y_data, yref_data, w);
  }
};

T
tensor-tang 已提交
273
template <typename T>
274
struct TestFuncWithRefer<jit::MatMulTuples<T>, std::vector<T>, std::vector<T>,
275 276
                         std::vector<T>,
                         typename jit::MatMulTuples<T>::attr_type> {
T
tensor-tang 已提交
277 278
  void operator()(const typename jit::MatMulTuples<T>::func_type tgt,
                  const std::vector<T>& a, const std::vector<T>& b,
279 280
                  const std::vector<T>& cref,
                  const typename jit::MatMulTuples<T>::attr_type& attr) {
T
tensor-tang 已提交
281
    EXPECT_TRUE(tgt != nullptr);
282 283 284
    EXPECT_EQ(a.size(), static_cast<size_t>(attr.m * attr.k));
    EXPECT_EQ(b.size(), static_cast<size_t>(attr.k * attr.n));
    EXPECT_EQ(cref.size(), static_cast<size_t>(attr.m * attr.n));
T
tensor-tang 已提交
285 286 287 288 289
    std::vector<T> c(cref.size());
    const T* a_data = a.data();
    const T* b_data = b.data();
    const T* cref_data = cref.data();
    T* c_data = c.data();
290 291
    tgt(a_data, b_data, c_data, &attr);
    ExpectEQ<T>(c_data, cref_data, attr.m * attr.n);
T
tensor-tang 已提交
292 293 294
  }
};

295 296
template <jit::KernelType KT, typename KernelTuples, typename PlaceType,
          typename... Args>
T
tensor-tang 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
void TestAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
  TestFuncWithRefer<KernelTuples, Args...> test;
  // test jitcode
  auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
  if (jitcode) {
    VLOG(10) << "Test Jitcode Kernel ";
    test(jitcode, args...);
  }
  // test all impls in more
  jit::KernelKey kkey(KT, PlaceType());
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
T
tensor-tang 已提交
312
      auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
313 314
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
315
        VLOG(10) << "Test More Kernel : " << i->ImplType();
T
tensor-tang 已提交
316 317 318 319 320
        test(more, args...);
      }
    }
  }
  // test result from Get function
T
tensor-tang 已提交
321
  // VLOG(10) << "Test Get function ";
T
tensor-tang 已提交
322 323
  auto tgt = jit::Get<KT, KernelTuples, PlaceType>(attr);
  test(tgt, args...);
T
tensor-tang 已提交
324 325
}

326
template <jit::KernelType KT, typename T, typename PlaceType>
327
void TestXYZNKernel() {
328
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
T
tensor-tang 已提交
329
  for (int d : TestSizes()) {
330
    auto ref = jit::GetRefer<KT, jit::XYZNTuples<T>>();
T
tensor-tang 已提交
331 332
    EXPECT_TRUE(ref != nullptr);

T
tensor-tang 已提交
333
    std::vector<T> x(d), y(d), zref(d);
T
tensor-tang 已提交
334 335 336
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());

T
tensor-tang 已提交
337 338 339 340 341 342 343 344 345 346 347
    std::vector<T> xinp(d), yinp(d);  // inplace test
    std::copy(x.begin(), x.end(), xinp.begin());
    std::copy(y.begin(), y.end(), yinp.begin());

    const T* x_data = x.data();
    const T* y_data = y.data();
    T* zref_data = zref.data();
    T* xinp_data = xinp.data();
    T* yinp_data = yinp.data();

    // test refer code inplace
T
tensor-tang 已提交
348
    ref(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
349 350 351 352 353
    ref(x_data, yinp_data, yinp_data, d);
    ref(xinp_data, y_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, zref_data, d);
    ExpectEQ<T>(yinp_data, zref_data, d);

T
tensor-tang 已提交
354 355
    TestAllImpls<KT, jit::XYZNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>, std::vector<T>>(d, x, y, zref);
T
tensor-tang 已提交
356 357
  }
}
T
tensor-tang 已提交
358

359
template <jit::KernelType KT, typename T, typename PlaceType>
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
void TestAXYNKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::AXYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    const T a = static_cast<T>(3);
    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
    RandomVec<T>(d, x.data());
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(&a, x_data, yref_data, d);
    ref(&a, xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
380 381
    TestAllImpls<KT, jit::AXYNTuples<T>, PlaceType, T, std::vector<T>,
                 std::vector<T>>(d, a, x, yref);
382 383 384
  }
}

385 386 387
template <jit::KernelType KT, typename T, typename PlaceType>
void TestXRNKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
388 389
  auto last_acc = FLAGS_acc;
  FLAGS_acc = 1e-4;
390 391 392 393
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::XRNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);
    std::vector<T> x(d);
T
tensor-tang 已提交
394
    RandomVec<T>(d, x.data(), -2.f, 2.f);
395 396 397 398 399
    T ref_res;
    ref(x.data(), &ref_res, d);
    TestAllImpls<KT, jit::XRNTuples<T>, PlaceType, std::vector<T>, T>(d, x,
                                                                      ref_res);
  }
400
  FLAGS_acc = last_acc;
401 402 403
}

template <jit::KernelType KT, typename T, typename PlaceType>
404 405 406 407 408 409 410 411
void TestXYNKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::XYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
412
    RandomVec<T>(d, x.data(), -2.f, 2.f);
413 414 415 416 417 418 419 420 421 422
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(x_data, yref_data, d);
    ref(xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
423 424
    TestAllImpls<KT, jit::XYNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>>(d, x, yref);
425 426 427
  }
}

428
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
void TestLSTMKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
  for (int d : TestSizes()) {
    for (bool use_peephole : {true, false}) {
      for (auto& act_gate : all_acts) {
        for (auto& act_cand : all_acts) {
          for (auto& act_cell : all_acts) {
            const jit::lstm_attr_t attr(
                d, jit::to_kerneltype(act_gate), jit::to_kerneltype(act_cand),
                jit::to_kerneltype(act_cell), use_peephole);
            auto ref = jit::GetRefer<KT, jit::LSTMTuples<T>>();
            EXPECT_TRUE(ref != nullptr);
            std::vector<T> xsrc(4 * d), wp(3 * d), ct_1(d);
            std::vector<T> ct_ref(d), ht_ref(d), checked(2 * d);
            RandomVec<T>(4 * d, xsrc.data(), -2.f, 2.f);
445 446
            RandomVec<T>(3 * d, wp.data(), -1.f, 1.f);
            RandomVec<T>(d, ct_1.data(), -1.f, 1.f);
T
tensor-tang 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
            // x could be changed after compute, so copy to save src
            std::vector<T> x(xsrc.size());
            std::copy(xsrc.begin(), xsrc.end(), x.begin());
            const T* ct_1_data = ct_1.data();
            const T* wp_data = wp.data();
            T* x_data = x.data();
            T* checked_data = checked.data();
            T* ct_ref_data = ct_ref.data();
            T* ht_ref_data = ht_ref.data();
            jit::lstm_t step;
            step.gates = x_data;
            step.ct_1 = ct_1_data;
            step.ct = ct_ref_data;
            step.ht = ht_ref_data;
            if (use_peephole) {
              step.wp = wp_data;
              step.checked = checked_data;
            }
            ref(&step, &attr);
T
tensor-tang 已提交
466
            VLOG(10) << attr;
T
tensor-tang 已提交
467 468 469 470
            TestAllImpls<KT, jit::LSTMTuples<T>, PlaceType, std::vector<T>,
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>>(attr, xsrc, wp, ct_1, ct_ref, ht_ref,
                                         attr);
T
tensor-tang 已提交
471 472 473 474 475 476 477
          }
        }
      }
    }
  }
}

478
template <jit::KernelType KT, typename T, typename PlaceType>
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
void TestGRUKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
  for (int d : TestSizes()) {
    for (auto& act_gate : all_acts) {
      for (auto& act_cand : all_acts) {
        const jit::gru_attr_t attr(d, jit::to_kerneltype(act_gate),
                                   jit::to_kerneltype(act_cand));
        auto ref = jit::GetRefer<KT, jit::GRUTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> xsrc(3 * d), ht_1(d), ht_ref(d);
        RandomVec<T>(3 * d, xsrc.data(), -2.f, 2.f);
        RandomVec<T>(d, ht_1.data(), -2.f, 2.f);
        // x could be changed after compute, so copy to save src
        std::vector<T> x(xsrc.size());
        std::copy(xsrc.begin(), xsrc.end(), x.begin());
        const T* ht_1_data = ht_1.data();
        T* x_data = x.data();
        T* ht_ref_data = ht_ref.data();
        jit::gru_t step;
        step.gates = x_data;
        step.ht_1 = ht_1_data;
        step.ht = ht_ref_data;
        ref(&step, &attr);
T
tensor-tang 已提交
503
        VLOG(10) << attr;
T
tensor-tang 已提交
504 505 506
        TestAllImpls<KT, jit::GRUTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>, std::vector<T>>(attr, xsrc, ht_1, ht_ref,
                                                     attr);
507 508 509 510 511
      }
    }
  }
}

512
template <jit::KernelType KT, typename T, typename PlaceType>
513 514
void TestSeqPoolKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
515 516
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
517
  for (auto type : pool_types) {
T
tensor-tang 已提交
518 519 520 521
    for (int w : TestSizes()) {
      jit::seq_pool_attr_t attr(w, type);
      for (int h : TestSizes()) {
        attr.h = h;
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
        auto ref = jit::GetRefer<KT, jit::SeqPoolTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> x(h * w), yref(w);
        RandomVec<T>(h * w, x.data(), -2.f, 2.f);
        const T* x_data = x.data();
        T* yref_data = yref.data();
        ref(x_data, yref_data, &attr);
        VLOG(10) << attr;
        TestAllImpls<KT, jit::SeqPoolTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>>(attr, x, yref, attr);
      }
    }
  }
}

537
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
538 539
void TestMatMulKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
540 541 542 543
  auto last_acc = FLAGS_acc;
  // TODO(intel): fix MKL acc issue
  // https://github.com/PaddlePaddle/Paddle/issues/15447
  FLAGS_acc = 1e-3;
T
tensor-tang 已提交
544 545 546 547 548 549
  for (int m : {1, 2, 3, 4}) {
    for (int n : {1, 2, 3, 4}) {
      for (int k : TestSizes()) {
        auto ref = jit::GetRefer<KT, jit::MatMulTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> a(m * k), b(k * n), c(m * n);
550 551
        RandomVec<T>(m * k, a.data(), -2.f, 2.f);
        RandomVec<T>(k * n, b.data(), -2.f, 2.f);
T
tensor-tang 已提交
552 553 554
        const T* a_data = a.data();
        const T* b_data = b.data();
        T* c_data = c.data();
555 556
        const jit::matmul_attr_t attr{m, n, k};
        ref(a_data, b_data, c_data, &attr);
T
tensor-tang 已提交
557
        TestAllImpls<KT, jit::MatMulTuples<T>, PlaceType, std::vector<T>,
558
                     std::vector<T>, std::vector<T>>(attr, a, b, c, attr);
T
tensor-tang 已提交
559 560 561
      }
    }
  }
562
  FLAGS_acc = last_acc;
T
tensor-tang 已提交
563 564
}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
template <jit::KernelType KT, typename T, typename PlaceType>
void TestSoftmaxKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
      auto ref = jit::GetRefer<KT, jit::SoftmaxTuples<T>>();
      EXPECT_TRUE(ref != nullptr);
      std::vector<T> x(bs * n), y(bs * n);
      RandomVec<T>(bs * n, x.data(), -2.f, 2.f);
      const T* x_data = x.data();
      T* y_data = y.data();

      std::vector<T> xinp(x.size());  // inplace test
      std::copy(x.begin(), x.end(), xinp.begin());
      ref(x_data, y_data, n, bs);
      T* xinp_data = xinp.data();
      ref(xinp_data, xinp_data, n, bs);
      ExpectEQ<T>(xinp_data, y_data, n * bs);

      TestAllImpls<KT, jit::SoftmaxTuples<T>, PlaceType, std::vector<T>,
                   std::vector<T>>(n, x, y, n, bs);
    }
  }
}

template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
void TestNCHW16CMulNCKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  const int n = 3, c = 16 * 4, h = 10, w = 10;
  auto ref = jit::GetRefer<KT, jit::NCHW16CMulNCTuples<T>>();
  EXPECT_TRUE(ref != nullptr);
  int sz = n * c * h * w;
  std::vector<T> x(sz), y(n * c), zref(sz);
  std::vector<T> ztgt(sz), zjit(sz);
  RandomVec<T>(sz, x.data(), -2.f, 2.f);
  RandomVec<T>(n * c, y.data(), -2.f, 2.f);

  const T* x_data = x.data();
  const T* y_data = y.data();
  T* zref_data = zref.data();
  T* ztgt_data = ztgt.data();
  T* zjit_data = zjit.data();
  constexpr int simd_width = ZMM_FLOAT_BLOCK;
  int C = c / simd_width;
  auto tgt = jit::Get<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
  auto jitcode = jit::GetJitCode<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
  EXPECT_TRUE(tgt != nullptr);

  if (std::is_same<T, float>::value &&
      paddle::platform::MayIUse(paddle::platform::avx512f)) {
    EXPECT_TRUE(jitcode != nullptr);
  }
  for (int ni = 0; ni < n; ni++) {
    for (int ci = 0; ci < C; ci++) {
      auto ptr_x =
          x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
      auto ptr_zref =
          zref_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_ztgt =
          ztgt_data + ni * C * h * w * simd_width + ci * h * w * simd_width;

      ref(ptr_x, ptr_y, ptr_zref, h, w);
      tgt(ptr_x, ptr_y, ptr_ztgt, h, w);

      if (jitcode) {
        auto ptr_zjit =
            zjit_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
        jitcode(ptr_x, ptr_y, ptr_zjit, h, w);
      }
    }
  }
  ExpectEQ<T>(ztgt_data, zref_data, sz);
  if (jitcode) {
    ExpectEQ<T>(zjit_data, zref_data, sz);
  }
}

T
tensor-tang 已提交
643
// XYZNTuple
T
tensor-tang 已提交
644
TEST(JITKernel, kVMul) {
645 646
  TestXYZNKernel<jit::kVMul, float, CPUPlace>();
  TestXYZNKernel<jit::kVMul, double, CPUPlace>();
T
tensor-tang 已提交
647 648
}

T
tensor-tang 已提交
649
TEST(JITKernel, kVAdd) {
650 651
  TestXYZNKernel<jit::kVAdd, float, CPUPlace>();
  TestXYZNKernel<jit::kVAdd, double, CPUPlace>();
T
tensor-tang 已提交
652 653
}

T
tensor-tang 已提交
654
TEST(JITKernel, kVAddRelu) {
655 656
  TestXYZNKernel<jit::kVAddRelu, float, CPUPlace>();
  TestXYZNKernel<jit::kVAddRelu, double, CPUPlace>();
T
tensor-tang 已提交
657 658
}

T
tensor-tang 已提交
659
TEST(JITKernel, kVSub) {
660 661
  TestXYZNKernel<jit::kVSub, float, CPUPlace>();
  TestXYZNKernel<jit::kVSub, double, CPUPlace>();
T
tensor-tang 已提交
662 663 664
}

// AXYNTuples
T
tensor-tang 已提交
665
TEST(JITKernel, kVScal) {
666 667
  TestAXYNKernel<jit::kVScal, float, CPUPlace>();
  TestAXYNKernel<jit::kVScal, double, CPUPlace>();
T
tensor-tang 已提交
668 669
}

T
tensor-tang 已提交
670
TEST(JITKernel, kVAddBias) {
671 672 673 674 675 676 677 678 679 680 681 682 683
  TestAXYNKernel<jit::kVAddBias, float, CPUPlace>();
  TestAXYNKernel<jit::kVAddBias, double, CPUPlace>();
}

// XRNTuples
TEST(JITKernel, kHMax) {
  TestXRNKernel<jit::kHMax, float, CPUPlace>();
  TestXRNKernel<jit::kHMax, double, CPUPlace>();
}

TEST(JITKernel, kHSum) {
  TestXRNKernel<jit::kHSum, float, CPUPlace>();
  TestXRNKernel<jit::kHSum, double, CPUPlace>();
T
tensor-tang 已提交
684 685 686
}

// XYNTuples
T
tensor-tang 已提交
687
TEST(JITKernel, kVRelu) {
688 689
  TestXYNKernel<jit::kVRelu, float, CPUPlace>();
  TestXYNKernel<jit::kVRelu, double, CPUPlace>();
T
tensor-tang 已提交
690 691
}

T
tensor-tang 已提交
692
TEST(JITKernel, kVIdentity) {
693 694
  TestXYNKernel<jit::kVIdentity, float, CPUPlace>();
  TestXYNKernel<jit::kVIdentity, double, CPUPlace>();
T
tensor-tang 已提交
695 696
}

T
tensor-tang 已提交
697
TEST(JITKernel, kVSquare) {
698 699
  TestXYNKernel<jit::kVSquare, float, CPUPlace>();
  TestXYNKernel<jit::kVSquare, double, CPUPlace>();
T
tensor-tang 已提交
700 701
}

T
tensor-tang 已提交
702
TEST(JITKernel, kVExp) {
703 704
  TestXYNKernel<jit::kVExp, float, CPUPlace>();
  TestXYNKernel<jit::kVExp, double, CPUPlace>();
T
tensor-tang 已提交
705 706
}

T
tensor-tang 已提交
707
TEST(JITKernel, kVSigmoid) {
708 709
  TestXYNKernel<jit::kVSigmoid, float, CPUPlace>();
  TestXYNKernel<jit::kVSigmoid, double, CPUPlace>();
T
tensor-tang 已提交
710 711
}

T
tensor-tang 已提交
712
TEST(JITKernel, kVTanh) {
713 714
  TestXYNKernel<jit::kVTanh, float, CPUPlace>();
  TestXYNKernel<jit::kVTanh, double, CPUPlace>();
T
tensor-tang 已提交
715 716 717
}

// LSTM
T
tensor-tang 已提交
718
TEST(JITKernel, kLSTMCtHt) {
719 720
  TestLSTMKernel<jit::kLSTMCtHt, float, CPUPlace>();
  TestLSTMKernel<jit::kLSTMCtHt, double, CPUPlace>();
T
tensor-tang 已提交
721 722
}

T
tensor-tang 已提交
723
TEST(JITKernel, kLSTMC1H1) {
724 725
  TestLSTMKernel<jit::kLSTMC1H1, float, CPUPlace>();
  TestLSTMKernel<jit::kLSTMC1H1, double, CPUPlace>();
T
tensor-tang 已提交
726 727 728
}

// GRU
T
tensor-tang 已提交
729
TEST(JITKernel, kGRUH1) {
730 731
  TestGRUKernel<jit::kGRUH1, float, CPUPlace>();
  TestGRUKernel<jit::kGRUH1, double, CPUPlace>();
732 733
}

T
tensor-tang 已提交
734
TEST(JITKernel, kGRUHtPart1) {
735 736
  TestGRUKernel<jit::kGRUHtPart1, float, CPUPlace>();
  TestGRUKernel<jit::kGRUHtPart1, double, CPUPlace>();
737 738
}

T
tensor-tang 已提交
739
TEST(JITKernel, kGRUHtPart2) {
740 741
  TestGRUKernel<jit::kGRUHtPart2, float, CPUPlace>();
  TestGRUKernel<jit::kGRUHtPart2, double, CPUPlace>();
742 743
}

744
TEST(JITKernel, kSeqPool) {
745 746
  TestSeqPoolKernel<jit::kSeqPool, float, CPUPlace>();
  TestSeqPoolKernel<jit::kSeqPool, double, CPUPlace>();
747 748
}

T
tensor-tang 已提交
749
TEST(JITKernel, kMatMul) {
750 751 752 753 754 755 756
  TestMatMulKernel<jit::kMatMul, float, CPUPlace>();
  TestMatMulKernel<jit::kMatMul, double, CPUPlace>();
}

TEST(JITKernel, kSoftmax) {
  TestSoftmaxKernel<jit::kSoftmax, float, CPUPlace>();
  TestSoftmaxKernel<jit::kSoftmax, double, CPUPlace>();
T
tensor-tang 已提交
757 758
}

T
tensor-tang 已提交
759
TEST(JITKernel, kNCHW16CMulNC) {
760 761
  TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, float, CPUPlace>();
  TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, double, CPUPlace>();
T
tensor-tang 已提交
762 763
}

764
// TODO(yihua/TJ): add crf decoding and layer norm unit tests
T
tensor-tang 已提交
765

766 767 768
TEST(JITKernel, pool) {
  // TODO(TJ): add some test
}