Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e9216e82
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e9216e82
编写于
12月 12, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add refer vscal, vaddbias and test and benchmark
上级
a3703888
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
216 addition
and
28 deletion
+216
-28
paddle/fluid/operators/jit/README.md
paddle/fluid/operators/jit/README.md
+5
-3
paddle/fluid/operators/jit/benchmark.cc
paddle/fluid/operators/jit/benchmark.cc
+82
-7
paddle/fluid/operators/jit/helper.cc
paddle/fluid/operators/jit/helper.cc
+4
-0
paddle/fluid/operators/jit/kernel_base.h
paddle/fluid/operators/jit/kernel_base.h
+12
-1
paddle/fluid/operators/jit/refer/CMakeLists.txt
paddle/fluid/operators/jit/refer/CMakeLists.txt
+5
-0
paddle/fluid/operators/jit/refer/refer.cc
paddle/fluid/operators/jit/refer/refer.cc
+3
-0
paddle/fluid/operators/jit/refer/refer.h
paddle/fluid/operators/jit/refer/refer.h
+12
-0
paddle/fluid/operators/jit/test.cc
paddle/fluid/operators/jit/test.cc
+93
-10
paddle/fluid/operators/math/jit_kernel_refer.h
paddle/fluid/operators/math/jit_kernel_refer.h
+0
-7
未找到文件。
paddle/fluid/operators/jit/README.md
浏览文件 @
e9216e82
...
...
@@ -37,10 +37,12 @@ PaddlePaddle/Paddle/paddle/fluid/
## 测试
-
逻辑测试
所有实现都要与refer的code对比,需要满足精度要求
所有实现都要与refer的code对比,需要满足精度要求
, 包括float和double的数据类型
-
性能测试
所有实现的性能对比,并且与最终的
`jit::Get`
方法对比,该方法拿到的性能需要是最好的。
# 如何添加新的算子
-
在
`KernelType`
中添加
`your_key`
-
实现Reference 的逻辑,每个jitkernel的Reference 实现是必须的。不要依赖任何第三方库。并在
`refer/CmakeLists.txt`
中
`USE_JITKERNEL_REFER(your_key)`
-
在
`KernelType`
中添加
`your_key`
.
-
实现Reference 的逻辑,每个jitkernel的Reference 实现是必须的。不要依赖任何第三方库。并在
`refer/CmakeLists.txt`
中
`USE_JITKERNEL_REFER(your_key)`
.
-
必要时可以添加新的
`KernelTuples`
,可以参考
`XYZNTuples`
.
paddle/fluid/operators/jit/benchmark.cc
浏览文件 @
e9216e82
...
...
@@ -53,9 +53,9 @@ std::vector<int> TestSizes() {
// return this function avg time
template
<
typename
T
,
typename
KernelTuples
>
double
Bench
Tartget
Func
(
const
typename
KernelTuples
::
func_type
tgt
,
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
y
,
std
::
vector
<
T
>&
z
)
{
// NOLINT
double
Bench
XYZN
Func
(
const
typename
KernelTuples
::
func_type
tgt
,
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
y
,
std
::
vector
<
T
>&
z
)
{
// NOLINT
const
T
*
x_data
=
x
.
data
();
const
T
*
y_data
=
y
.
data
();
const
int
d
=
z
.
size
();
...
...
@@ -83,14 +83,14 @@ void BenchXYZNKernel() {
// refer
auto
refer
=
jit
::
GetRefer
<
KT
,
jit
::
XYZNTuples
<
T
>>
();
if
(
refer
)
{
auto
res
=
Bench
Tartget
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
refer
,
x
,
y
,
z
);
auto
res
=
Bench
XYZN
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
refer
,
x
,
y
,
z
);
infos
.
push_back
(
std
::
make_pair
(
"Refer"
,
res
));
}
// test jitcode
auto
jitcode
=
jit
::
GetJitCode
<
KT
,
jit
::
XYZNTuples
<
T
>
,
PlaceType
>
(
d
);
if
(
jitcode
)
{
auto
res
=
Bench
Tartget
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
jitcode
,
x
,
y
,
z
);
auto
res
=
Bench
XYZN
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
jitcode
,
x
,
y
,
z
);
infos
.
push_back
(
std
::
make_pair
(
"JitCode"
,
res
));
}
...
...
@@ -105,7 +105,7 @@ void BenchXYZNKernel() {
impl
.
get
());
if
(
i
&&
i
->
UseMe
(
d
))
{
auto
more
=
i
->
GetFunc
();
auto
res
=
Bench
Tartget
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
more
,
x
,
y
,
z
);
auto
res
=
Bench
XYZN
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
more
,
x
,
y
,
z
);
infos
.
push_back
(
std
::
make_pair
(
"More"
,
res
));
}
}
...
...
@@ -116,7 +116,7 @@ void BenchXYZNKernel() {
if
(
!
tgt
)
{
LOG
(
ERROR
)
<<
"Target can not be empty!"
;
}
auto
res
=
Bench
Tartget
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
tgt
,
x
,
y
,
z
);
auto
res
=
Bench
XYZN
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
tgt
,
x
,
y
,
z
);
infos
.
push_back
(
std
::
make_pair
(
"Target"
,
res
));
// print
...
...
@@ -129,6 +129,78 @@ void BenchXYZNKernel() {
}
}
// return this function avg time
template
<
typename
T
,
typename
KernelTuples
>
double
BenchAXYNFunc
(
const
typename
KernelTuples
::
func_type
tgt
,
const
T
a
,
const
std
::
vector
<
T
>&
x
,
std
::
vector
<
T
>&
y
)
{
// NOLINT
const
T
*
x_data
=
x
.
data
();
T
*
y_data
=
y
.
data
();
const
int
d
=
y
.
size
();
for
(
int
i
=
0
;
i
<
FLAGS_burning
;
++
i
)
{
tgt
(
&
a
,
x_data
,
y_data
,
d
);
}
auto
start
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
FLAGS_repeat
;
++
i
)
{
tgt
(
&
a
,
x_data
,
y_data
,
d
);
}
auto
end
=
GetCurrentUS
();
return
(
end
-
start
)
/
FLAGS_repeat
;
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchAXYNKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
for
(
int
d
:
TestSizes
())
{
std
::
vector
<
std
::
pair
<
std
::
string
,
double
>>
infos
;
const
T
a
=
static_cast
<
T
>
(
3
);
std
::
vector
<
T
>
x
(
d
),
y
(
d
);
RandomVec
<
T
>
(
d
,
x
.
data
());
// test refer
auto
refer
=
jit
::
GetRefer
<
KT
,
jit
::
AXYNTuples
<
T
>>
();
if
(
refer
)
{
auto
res
=
BenchAXYNFunc
<
T
,
jit
::
AXYNTuples
<
T
>>
(
refer
,
a
,
x
,
y
);
infos
.
push_back
(
std
::
make_pair
(
"Refer"
,
res
));
}
// test jitcode
auto
jitcode
=
jit
::
GetJitCode
<
KT
,
jit
::
AXYNTuples
<
T
>
,
PlaceType
>
(
d
);
if
(
jitcode
)
{
auto
res
=
BenchAXYNFunc
<
T
,
jit
::
AXYNTuples
<
T
>>
(
jitcode
,
a
,
x
,
y
);
infos
.
push_back
(
std
::
make_pair
(
"JitCode"
,
res
));
}
// test all impls in more
jit
::
KernelKey
kkey
(
KT
,
PlaceType
());
auto
&
pool
=
jit
::
KernelPool
().
Instance
().
AllKernels
();
auto
iter
=
pool
.
find
(
kkey
);
if
(
iter
!=
pool
.
end
())
{
auto
&
impls
=
iter
->
second
;
for
(
auto
&
impl
:
impls
)
{
auto
i
=
dynamic_cast
<
const
jit
::
KernelImpl
<
jit
::
AXYNTuples
<
T
>>*>
(
impl
.
get
());
if
(
i
&&
i
->
UseMe
(
d
))
{
auto
more
=
i
->
GetFunc
();
auto
res
=
BenchAXYNFunc
<
T
,
jit
::
AXYNTuples
<
T
>>
(
more
,
a
,
x
,
y
);
infos
.
push_back
(
std
::
make_pair
(
"More"
,
res
));
}
}
}
// Test result from Get function
auto
tgt
=
jit
::
Get
<
KT
,
jit
::
AXYNTuples
<
T
>
,
PlaceType
>
(
d
);
if
(
!
tgt
)
{
LOG
(
ERROR
)
<<
"Target can not be empty!"
;
}
auto
res
=
BenchAXYNFunc
<
T
,
jit
::
AXYNTuples
<
T
>>
(
tgt
,
a
,
x
,
y
);
infos
.
push_back
(
std
::
make_pair
(
"Target"
,
res
));
// print
std
::
ostringstream
loginfos
;
loginfos
<<
"Kernel Type: "
<<
jit
::
to_string
(
KT
)
<<
", size "
<<
d
<<
": "
;
for
(
auto
pair
:
infos
)
{
loginfos
<<
pair
.
first
<<
" takes "
<<
pair
.
second
<<
" us; "
;
}
LOG
(
INFO
)
<<
loginfos
.
str
();
}
}
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
...
...
@@ -147,4 +219,7 @@ int main(int argc, char* argv[]) {
BenchXYZNKernel
<
jit
::
vadd
,
T
,
PlaceType
>
();
BenchXYZNKernel
<
jit
::
vaddrelu
,
T
,
PlaceType
>
();
BenchXYZNKernel
<
jit
::
vsub
,
T
,
PlaceType
>
();
BenchAXYNKernel
<
jit
::
vscal
,
T
,
PlaceType
>
();
BenchAXYNKernel
<
jit
::
vaddbias
,
T
,
PlaceType
>
();
}
paddle/fluid/operators/jit/helper.cc
浏览文件 @
e9216e82
...
...
@@ -13,6 +13,7 @@
* limitations under the License. */
#include "paddle/fluid/operators/jit/helper.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -32,7 +33,10 @@ const char* to_string(KernelType kt) {
return
"vscal"
;
case
vexp
:
return
"vexp"
;
case
vaddbias
:
return
"vaddbias"
;
default:
PADDLE_THROW
(
"Not support type: %d"
,
kt
);
return
"NOT JITKernel"
;
}
return
nullptr
;
...
...
paddle/fluid/operators/jit/kernel_base.h
浏览文件 @
e9216e82
...
...
@@ -19,7 +19,15 @@ namespace paddle {
namespace
operators
{
namespace
jit
{
typedef
enum
{
vmul
=
0
,
vadd
=
1
,
vaddrelu
,
vsub
,
vscal
,
vexp
}
KernelType
;
typedef
enum
{
vmul
=
0
,
vadd
=
1
,
vaddrelu
,
vsub
,
vscal
,
vaddbias
,
vexp
}
KernelType
;
template
<
typename
T
>
struct
XYZNTuples
{
...
...
@@ -28,6 +36,9 @@ struct XYZNTuples {
typedef
void
(
*
func_type
)(
const
T
*
,
const
T
*
,
T
*
,
int
);
};
template
<
typename
T
>
struct
AXYNTuples
:
public
XYZNTuples
<
T
>
{};
// Just for adding to kernel pool without template
class
Kernel
{
public:
...
...
paddle/fluid/operators/jit/refer/CMakeLists.txt
浏览文件 @
e9216e82
...
...
@@ -8,3 +8,8 @@ endfunction()
# use refer kernel by name
USE_JITKERNEL_REFER
(
vmul
)
USE_JITKERNEL_REFER
(
vadd
)
USE_JITKERNEL_REFER
(
vaddrelu
)
USE_JITKERNEL_REFER
(
vsub
)
USE_JITKERNEL_REFER
(
vscal
)
USE_JITKERNEL_REFER
(
vaddbias
)
paddle/fluid/operators/jit/refer/refer.cc
浏览文件 @
e9216e82
...
...
@@ -26,4 +26,7 @@ REGISTER_REFER_KERNEL(vadd, VAdd);
REGISTER_REFER_KERNEL
(
vaddrelu
,
VAddRelu
);
REGISTER_REFER_KERNEL
(
vsub
,
VSub
);
REGISTER_REFER_KERNEL
(
vscal
,
VScal
);
REGISTER_REFER_KERNEL
(
vaddbias
,
VAddBias
);
#undef REGISTER_REFER_KERNEL
paddle/fluid/operators/jit/refer/refer.h
浏览文件 @
e9216e82
...
...
@@ -59,6 +59,13 @@ void VScal(const T* a, const T* x, T* y, int n) {
}
}
template
<
typename
T
>
void
VAddBias
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
a
[
0
]
+
x
[
i
];
}
}
#define DECLARE_REFER_KERNEL(name, tuples) \
template <typename T> \
class name##Kernel : public ReferKernel<tuples<T>> { \
...
...
@@ -66,11 +73,16 @@ void VScal(const T* a, const T* x, T* y, int n) {
name##Kernel() { this->func = name<T>; } \
}
// const T* x, const T* y, T* z, int n
DECLARE_REFER_KERNEL
(
VMul
,
XYZNTuples
);
DECLARE_REFER_KERNEL
(
VAdd
,
XYZNTuples
);
DECLARE_REFER_KERNEL
(
VAddRelu
,
XYZNTuples
);
DECLARE_REFER_KERNEL
(
VSub
,
XYZNTuples
);
// const T* a, const T* x, T* y, int n
DECLARE_REFER_KERNEL
(
VScal
,
AXYNTuples
);
DECLARE_REFER_KERNEL
(
VAddBias
,
AXYNTuples
);
#undef DECLARE_REFER_KERNEL
}
// namespace refer
...
...
paddle/fluid/operators/jit/test.cc
浏览文件 @
e9216e82
...
...
@@ -12,7 +12,6 @@
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <cstring> // for memcpy
#include <random>
#include <string>
#include <vector>
...
...
@@ -59,9 +58,9 @@ std::vector<int> TestSizes() {
}
template
<
typename
T
,
typename
KernelTuples
>
void
Test
Tartget
Func
(
const
typename
KernelTuples
::
func_type
tgt
,
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
y
,
const
std
::
vector
<
T
>&
zref
)
{
void
Test
XYZN
Func
(
const
typename
KernelTuples
::
func_type
tgt
,
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
y
,
const
std
::
vector
<
T
>&
zref
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
EXPECT_EQ
(
zref
.
size
(),
x
.
size
());
EXPECT_EQ
(
zref
.
size
(),
y
.
size
());
...
...
@@ -88,9 +87,8 @@ void TestTartgetFunc(const typename KernelTuples::func_type tgt,
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestXYZNKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
for
(
int
d
:
TestSizes
())
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
)
<<
", size: "
<<
d
;
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
XYZNTuples
<
T
>>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
...
...
@@ -119,7 +117,7 @@ void TestXYZNKernel() {
auto
jitcode
=
jit
::
GetJitCode
<
KT
,
jit
::
XYZNTuples
<
T
>
,
PlaceType
>
(
d
);
if
(
jitcode
)
{
VLOG
(
10
)
<<
"Test Jitcode Kernel, size: "
<<
d
;
Test
Tartget
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
jitcode
,
x
,
y
,
zref
);
Test
XYZN
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
jitcode
,
x
,
y
,
zref
);
}
// test all impls in more
...
...
@@ -134,14 +132,14 @@ void TestXYZNKernel() {
if
(
i
&&
i
->
UseMe
(
d
))
{
auto
more
=
i
->
GetFunc
();
VLOG
(
10
)
<<
"Test More Kernel, size: "
<<
d
;
Test
Tartget
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
more
,
x
,
y
,
zref
);
Test
XYZN
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
more
,
x
,
y
,
zref
);
}
}
}
// Test result from Get function
VLOG
(
10
)
<<
"Test Get function, size: "
<<
d
;
auto
tgt
=
jit
::
Get
<
KT
,
jit
::
XYZNTuples
<
T
>
,
PlaceType
>
(
d
);
Test
Tartget
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
tgt
,
x
,
y
,
zref
);
Test
XYZN
Func
<
T
,
jit
::
XYZNTuples
<
T
>>
(
tgt
,
x
,
y
,
zref
);
}
}
...
...
@@ -169,4 +167,89 @@ TEST(JITKernel, vsub) {
TestXYZNKernel
<
jit
::
vsub
,
double
,
paddle
::
platform
::
CPUPlace
>
();
}
TEST
(
JITKernel
,
pool
)
{}
template
<
typename
T
,
typename
KernelTuples
>
void
TestAXYNFunc
(
const
typename
KernelTuples
::
func_type
tgt
,
const
T
a
,
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
yref
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
EXPECT_EQ
(
yref
.
size
(),
x
.
size
());
const
T
*
x_data
=
x
.
data
();
const
T
*
yref_data
=
yref
.
data
();
const
int
d
=
yref
.
size
();
std
::
vector
<
T
>
ytgt
(
d
);
T
*
ytgt_data
=
ytgt
.
data
();
// test normal
tgt
(
&
a
,
x_data
,
ytgt_data
,
d
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
d
);
// test inplace x
std
::
copy
(
x
.
begin
(),
x
.
end
(),
ytgt
.
begin
());
tgt
(
&
a
,
ytgt_data
,
ytgt_data
,
d
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
d
);
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestAXYNKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
AXYNTuples
<
T
>>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
const
T
a
=
static_cast
<
T
>
(
3
);
std
::
vector
<
T
>
x
(
d
),
yref
(
d
);
std
::
vector
<
T
>
xinp
(
d
);
// inplace test
RandomVec
<
T
>
(
d
,
x
.
data
());
std
::
copy
(
x
.
begin
(),
x
.
end
(),
xinp
.
begin
());
const
T
*
x_data
=
x
.
data
();
T
*
yref_data
=
yref
.
data
();
T
*
xinp_data
=
xinp
.
data
();
// test refer code inplace
ref
(
&
a
,
x_data
,
yref_data
,
d
);
ref
(
&
a
,
xinp_data
,
xinp_data
,
d
);
ExpectEQ
<
T
>
(
xinp_data
,
yref_data
,
d
);
// test jitcode
auto
jitcode
=
jit
::
GetJitCode
<
KT
,
jit
::
AXYNTuples
<
T
>
,
PlaceType
>
(
d
);
if
(
jitcode
)
{
VLOG
(
10
)
<<
"Test Jitcode Kernel, size: "
<<
d
;
TestAXYNFunc
<
T
,
jit
::
AXYNTuples
<
T
>>
(
jitcode
,
a
,
x
,
yref
);
}
// test all impls in more
jit
::
KernelKey
kkey
(
KT
,
PlaceType
());
auto
&
pool
=
jit
::
KernelPool
().
Instance
().
AllKernels
();
auto
iter
=
pool
.
find
(
kkey
);
if
(
iter
!=
pool
.
end
())
{
auto
&
impls
=
iter
->
second
;
for
(
auto
&
impl
:
impls
)
{
auto
i
=
dynamic_cast
<
const
jit
::
KernelImpl
<
jit
::
AXYNTuples
<
T
>>*>
(
impl
.
get
());
if
(
i
&&
i
->
UseMe
(
d
))
{
auto
more
=
i
->
GetFunc
();
VLOG
(
10
)
<<
"Test More Kernel, size: "
<<
d
;
TestAXYNFunc
<
T
,
jit
::
AXYNTuples
<
T
>>
(
more
,
a
,
x
,
yref
);
}
}
}
// Test result from Get function
VLOG
(
10
)
<<
"Test Get function, size: "
<<
d
;
auto
tgt
=
jit
::
Get
<
KT
,
jit
::
AXYNTuples
<
T
>
,
PlaceType
>
(
d
);
TestAXYNFunc
<
T
,
jit
::
AXYNTuples
<
T
>>
(
tgt
,
a
,
x
,
yref
);
}
}
TEST
(
JITKernel
,
vscal
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestAXYNKernel
<
jit
::
vscal
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestAXYNKernel
<
jit
::
vscal
,
double
,
paddle
::
platform
::
CPUPlace
>
();
}
TEST
(
JITKernel
,
vaddbias
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestAXYNKernel
<
jit
::
vaddbias
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestAXYNKernel
<
jit
::
vaddbias
,
double
,
paddle
::
platform
::
CPUPlace
>
();
}
TEST
(
JITKernel
,
pool
)
{
// TODO(TJ): add some test
}
paddle/fluid/operators/math/jit_kernel_refer.h
浏览文件 @
e9216e82
...
...
@@ -24,13 +24,6 @@ namespace math {
namespace
jitkernel
{
namespace
refer
{
template
<
typename
T
>
void
VAddBias
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
a
[
0
]
+
x
[
i
];
}
}
template
<
typename
T
>
void
VRelu
(
const
T
*
x
,
T
*
y
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录