test_hsigmoid_op.py 26.0 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yancey1989 已提交
15 16
import unittest
import numpy as np
L
Leo Chen 已提交
17
import paddle
J
JiabinYang 已提交
18
import paddle.fluid as fluid
19
import paddle.nn.functional as F
20
from paddle.fluid import Program, program_guard
21
import paddle.fluid.initializer as I
Y
Yancey1989 已提交
22
import math
23
from op_test import OpTest, skip_check_grad_ci
Y
Yancey1989 已提交
24

25
paddle.enable_static()
D
dzhwinter 已提交
26 27
np.random.seed(100)

Y
Yancey1989 已提交
28 29 30 31 32

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


33
class CodeTable:
Y
Yancey1989 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


47
class CodeTableWithCustomTree:
48 49 50
    def __init__(self, path_table, path_code, index):
        self.ptable_ = path_table
        self.pcode_ = path_code
51 52 53 54 55 56 57
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
58
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
59 60 61 62 63 64 65 66 67 68
            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
69
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
70 71 72
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
73 74 75
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
W
weixing02 已提交
76
    for i in range(batch_size):
W
weixing02 已提交
77
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
78
        length = code_table.get_length()
W
weixing02 已提交
79
        for j in range(length):
Y
Yancey1989 已提交
80
            idx = code_table.cal_index(j)
J
JiabinYang 已提交
81
            pre_output[i][j] += bias[idx][0]
82 83
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
84
        length = code_table.get_length()
85 86 87
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
88
    # clip[-40.0, 40.0]
W
weixing02 已提交
89
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
90
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
91
    for i in range(batch_size):
W
weixing02 已提交
92
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
93 94
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
95
        for j in range(length):
Y
Yancey1989 已提交
96 97 98 99 100 101 102
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
103
    return pre_output, out
Y
Yancey1989 已提交
104 105


106 107
def hsigmoid_grad(x, w, label, bias, num_classes):
    batch_size = x.shape[0]
108 109 110
    dx = np.zeros(x.shape).astype('float64')
    dw = np.zeros(w.shape).astype('float64')
    db = np.zeros(bias.shape).astype('float64')
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx])))
            dx[i] = dx[i] + t * w[idx]
            dw[idx] += t * x[i]
            db[idx] += t
            if code_table.cal_bit(j):
                dx[i] = dx[i] - w[idx]
                dw[idx] -= x[i]
                db[idx] -= 1
    dx /= batch_size
    dw /= batch_size
    db /= batch_size
    return [dx, dw, db]


130 131 132
def hsigmoidWithCustomTree(
    x, w, path_table, path_code, label, bias, num_classes
):
133
    batch_size = x.shape[0]
134
    code_length = len(path_table[0])
135
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
136
    # init pre_out with shape [N, code_length]
137 138 139
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
140 141
    if isinstance(bias, np.ndarray):
        for i in range(batch_size):
142
            code_table = CodeTableWithCustomTree(path_table, path_code, i)
143 144 145 146
            length = code_table.get_length()
            for j in range(length):
                idx = code_table.cal_index(j)
                pre_output[i][j] += bias[idx][0]
147
    for i in range(batch_size):
148
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
149 150 151 152 153 154 155 156
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
157
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
158 159 160 161 162 163 164 165 166 167 168 169 170
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


171 172 173
def python_api(
    input,
    label,
174 175
    weight,
    bias=None,
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    path_table=None,
    path_code=None,
    num_classes=-1,
    is_sparse=False,
    remote_prefetch=False,
):
    return paddle.nn.functional.hsigmoid_loss(
        input,
        label,
        num_classes,
        weight,
        bias,
        path_table,
        path_code,
        is_sparse,
    )
192 193 194 195 196


python_out_sig = ["Out"]


J
JiabinYang 已提交
197 198 199
class TestHSigmoidOp(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
200 201
        self.python_api = python_api
        self.python_out_sig = python_out_sig
202 203 204
        num_classes = 101
        feature_size = 5
        batch_size = 20
205 206 207 208 209 210 211 212 213
        x = np.random.uniform(-1, 1, (batch_size, feature_size)).astype(
            'float64'
        )
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)).astype(
            'float64'
        )
        label = np.random.randint(0, num_classes, (batch_size, 1)).astype(
            'int64'
        )
214
        bias = np.random.uniform(-1, 1, (num_classes - 1, 1)).astype('float64')
J
JiabinYang 已提交
215 216 217 218
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
        pre_output, out = hsigmoid(x, w, label, bias, num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}
219
        self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes)
J
JiabinYang 已提交
220 221

    def test_check_output(self):
222
        self.check_output(check_eager=True)
J
JiabinYang 已提交
223 224

    def test_check_grad(self):
225 226 227 228 229 230
        self.check_grad(
            ['X', 'W', 'Bias'],
            ['Out'],
            user_defined_grads=self.user_grads,
            check_eager=True,
        )
J
JiabinYang 已提交
231 232


233
@skip_check_grad_ci(
234
    reason="For 'TestHSigmoidOpSparse', check_grad is separately calculated by 'TestHSigmoidOpWithSparseGrad'."
235
)
J
JiabinYang 已提交
236 237 238
class TestHSigmoidOpSparse(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
239 240
        self.python_api = python_api
        self.python_out_sig = python_out_sig
241
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
242 243
        feature_size = 8
        batch_size = 4
244 245
        x = np.random.random((batch_size, feature_size))
        w = np.random.random((num_classes - 1, feature_size))
246
        label = np.array([0, 1, 4, 5]).astype('int64')
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
267
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
268 269 270 271
        self.attrs = {'num_classes': num_classes, 'is_sparse': True}
        self.inputs = {
            'X': x,
            'W': w,
272
            'PathTable': path_table,
273
            'PathCode': path_code,
J
JiabinYang 已提交
274
            'Label': label,
275
            'Bias': bias,
J
JiabinYang 已提交
276
        }
277 278 279
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
280 281 282
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
283
        self.check_output(check_eager=True)
J
JiabinYang 已提交
284 285 286 287 288


class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
    def hs_net_conf(self, is_sparse):
        input_word = fluid.layers.data(name="x", shape=[1], dtype='int64')
289 290 291 292 293 294
        path_table = fluid.layers.data(
            name='path_table', shape=[3], dtype='int64'
        )
        path_code = fluid.layers.data(
            name='path_code', shape=[3], dtype='int64'
        )
J
JiabinYang 已提交
295
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
J
JiabinYang 已提交
296

297
        data_list = [input_word, path_table, path_code, label]
J
JiabinYang 已提交
298 299 300

        emb = fluid.layers.embedding(
            input=input_word,
J
JiabinYang 已提交
301
            is_sparse=is_sparse,
J
JiabinYang 已提交
302
            size=[3, 3],
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Normal(scale=1 / math.sqrt(3))
            ),
        )

        cost = fluid.layers.hsigmoid(
            input=emb,
            label=label,
            bias_attr=True,
            num_classes=3,
            path_table=path_table,
            path_code=path_code,
            is_custom=True,
            is_sparse=is_sparse,
        )
J
JiabinYang 已提交
318 319 320 321 322

        avg_cost = fluid.layers.reduce_mean(cost)

        return avg_cost, data_list

J
JiabinYang 已提交
323 324
    def training_test(self, is_sparse):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
C
cnn 已提交
325
            paddle.seed(1)
J
JiabinYang 已提交
326 327
            start_up = fluid.default_startup_program()
            x = np.arange(6).reshape(6)
328 329 330
            path_table = np.array([(1, 2, -1), (1, 2, -1)]).astype('int64')
            path_code = np.array([(1, 0, -1), (0, 0, -1)]).astype('int64')
            label = np.array([1, 4]).astype('int64')
J
JiabinYang 已提交
331 332 333 334 335 336 337 338 339 340 341 342

            loss, data_list = self.hs_net_conf(is_sparse)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=data_list, place=place)
            exe = fluid.Executor(place)

            exe.run(start_up)
            result = list()
J
JiabinYang 已提交
343
            for i in range(10):
344 345 346 347 348 349 350 351 352 353 354 355
                data = [
                    (
                        [[x[i % 2]]],
                        [list(path_table[i % 2])],
                        [list(path_code[i % 2])],
                        [label[i % 2]],
                    )
                ]

                loss_val = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[loss]
                )
J
JiabinYang 已提交
356 357 358 359 360 361
                result.append(loss_val)
        return result

    def test_hs_grad_with_sparse(self):
        dense_result = self.training_test(is_sparse=False)
        sparse_result = self.training_test(is_sparse=True)
362
        assert dense_result == sparse_result
J
JiabinYang 已提交
363 364


365
@skip_check_grad_ci(
366
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
367
)
J
JiabinYang 已提交
368 369 370
class TestHSigmoidOpWithCostumTree(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
371 372
        self.python_api = python_api
        self.python_out_sig = python_out_sig
373
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
374 375
        feature_size = 8
        batch_size = 4
376 377
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
378
        label = np.array([0, 1, 4, 5]).astype('int64')
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
399
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
400 401 402 403
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
404
            'PathTable': path_table,
405
            'PathCode': path_code,
J
JiabinYang 已提交
406
            'Label': label,
407
            'Bias': bias,
J
JiabinYang 已提交
408
        }
409 410 411
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
412 413 414
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
415
        self.check_output(check_eager=True)
J
JiabinYang 已提交
416 417

    def test_check_grad(self):
418 419 420 421 422 423
        self.check_grad(
            ['Bias', 'X', 'W'],
            ['Out'],
            no_grad_set=set('Label'),
            check_eager=True,
        )
J
JiabinYang 已提交
424

Y
Yancey1989 已提交
425

426
@skip_check_grad_ci(
427
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
428
)
429 430 431
class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
432 433
        self.python_api = python_api
        self.python_out_sig = python_out_sig
434
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
435 436
        feature_size = 8
        batch_size = 4
437 438
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
439
        label = np.array([0, 1, 4, 5]).astype('int64')
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
460 461 462 463 464
        # bias = np.random.random((num_classes - 1, 1)).astype("float32")
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
465
            'PathTable': path_table,
466
            'PathCode': path_code,
467 468
            'Label': label,
        }
469 470 471 472 473 474 475 476 477
        pre_output, out = hsigmoidWithCustomTree(
            x=x,
            w=w,
            path_table=path_table,
            path_code=path_code,
            label=label,
            bias=None,
            num_classes=num_classes,
        )
478 479 480
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
481
        self.check_output(check_eager=True)
482 483

    def test_check_grad(self):
484 485 486
        self.check_grad(
            ['X', 'W'], ['Out'], no_grad_set=set('Label'), check_eager=True
        )
487 488


489 490 491 492 493 494 495 496 497 498 499 500 501
class TestHSigmoidLossAPI(unittest.TestCase):
    # test paddle.nn.functional.hsigmoid_loss, paddle.nn.HSigmoidLoss
    def setUp(self):
        self.dtype = 'float32'
        self.batch_size = 4
        self.feature_size = 6
        self.num_classes = 8
        self.is_custom = False
        self.place = paddle.CPUPlace()

        paddle.set_default_dtype(self.dtype)

        self.x_np = np.random.uniform(
502 503 504 505 506
            -1, 1, [self.batch_size, self.feature_size]
        ).astype(self.dtype)
        self.labels_np = np.random.randint(
            self.num_classes, size=(self.batch_size, 1), dtype='int64'
        )
507
        self.weight_np = np.random.uniform(
508 509 510 511 512
            -1, 1, [self.num_classes - 1, self.feature_size]
        ).astype(self.dtype)
        self.bias_np = np.random.uniform(-1, 1, (self.num_classes - 1,)).astype(
            self.dtype
        )
513 514
        self.path_table_np = None
        self.path_code_np = None
515 516 517 518 519 520 521
        _, self.out_np = hsigmoid(
            self.x_np,
            self.weight_np,
            self.labels_np,
            self.bias_np,
            self.num_classes,
        )
522 523 524
        self.set_attrs()

        if self.is_custom:
525 526 527 528 529 530 531 532 533
            _, self.out_np = hsigmoidWithCustomTree(
                self.x_np,
                self.weight_np,
                self.path_table_np,
                self.path_code_np,
                self.labels_np,
                self.bias_np.reshape(-1, 1),
                self.num_classes,
            )
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

    def set_attrs(self):
        pass

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        labels = paddle.to_tensor(self.labels_np)
        weight = paddle.to_tensor(self.weight_np)
        bias = paddle.to_tensor(self.bias_np)
        path_table = None
        path_code = None
        if self.is_custom:
            path_table = paddle.to_tensor(self.path_table_np)
            path_code = paddle.to_tensor(self.path_code_np)
549 550 551
        out1 = F.hsigmoid_loss(
            x, labels, self.num_classes, weight, bias, path_table, path_code
        )
552 553 554

        weight_attr = I.NumpyArrayInitializer(self.weight_np)
        bias_attr = I.NumpyArrayInitializer(self.bias_np)
555 556 557 558 559 560 561
        m = paddle.nn.HSigmoidLoss(
            self.feature_size,
            self.num_classes,
            weight_attr,
            bias_attr,
            self.is_custom,
        )
562 563 564
        out2 = m(x, labels, path_table, path_code)

        for out in [out1, out2]:
565
            np.testing.assert_allclose(self.out_np, out.numpy(), rtol=1e-05)
566 567 568 569 570 571 572 573 574
        paddle.enable_static()

    def test_static_api(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
            x = paddle.static.data('x', [-1, self.feature_size])
            labels = paddle.static.data('labels', [-1, 1], 'int64')
            weight = paddle.static.data('weight', [-1, self.feature_size])
575 576 577 578 579 580
            bias = paddle.static.data(
                'bias',
                [
                    -1,
                ],
            )
581 582 583 584 585
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = paddle.static.data('path_table', [-1, -1], 'int64')
                path_code = paddle.static.data('path_code', [-1, -1], 'int64')
586 587 588
            out1 = F.hsigmoid_loss(
                x, labels, self.num_classes, weight, bias, path_table, path_code
            )
589 590

            weight_attr = paddle.framework.ParamAttr(
591 592
                initializer=I.NumpyArrayInitializer(self.weight_np)
            )
593
            bias_attr = paddle.framework.ParamAttr(
594 595 596 597 598 599 600 601 602
                initializer=I.NumpyArrayInitializer(self.bias_np)
            )
            m = paddle.nn.HSigmoidLoss(
                self.feature_size,
                self.num_classes,
                weight_attr,
                bias_attr,
                self.is_custom,
            )
603 604 605 606 607 608 609 610
            out2 = m(x, labels, path_table, path_code)

            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {
                'x': self.x_np,
                'labels': self.labels_np,
                'weight': self.weight_np,
611
                'bias': self.bias_np,
612 613 614 615
            }
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
616 617 618
            ret1, ret2 = exe.run(
                train_program, feed=feed_dict, fetch_list=[out1, out2]
            )
619 620

            for ret in [ret1, ret2]:
621
                np.testing.assert_allclose(self.out_np, ret, rtol=1e-05)
622 623 624 625 626 627 628 629 630 631 632 633 634 635

    def test_fluid_api(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', [-1, self.feature_size])
            labels = fluid.data('labels', [-1, 1], 'int64')
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = fluid.data('path_table', [-1, -1], 'int64')
                path_code = fluid.data('path_code', [-1, -1], 'int64')
            weight_attr = I.NumpyArrayInitializer(self.weight_np)
            bias_attr = I.NumpyArrayInitializer(self.bias_np)
636 637 638 639 640 641 642 643 644 645 646
            out = fluid.layers.hsigmoid(
                x,
                labels,
                self.num_classes,
                weight_attr,
                bias_attr,
                'out',
                path_table,
                path_code,
                self.is_custom,
            )
647 648 649 650 651 652 653

            exe = fluid.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {'x': self.x_np, 'labels': self.labels_np}
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
654
            (ret,) = exe.run(train_program, feed=feed_dict, fetch_list=[out])
655

656
            np.testing.assert_allclose(ret, self.out_np, rtol=1e-05)
657

658
    def test_errors(self):
659 660 661
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
662 663 664 665 666 667 668 669 670 671
            # test paddle.nn.HSigmoidLoss
            self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, 6, 1)

            # test paddle.nn.functional.hsigmoid_loss
            x = paddle.static.data('x', [4, 6])
            label = paddle.static.data('label', [4, 1], 'int64')
            weight = paddle.static.data('weight', [7, 6])
            bias = paddle.static.data('bias', [7])

            x_int32 = paddle.static.data('x_int32', [4, 6], 'int32')
672 673 674
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x_int32, label, 8, weight
            )
675

676 677 678 679 680 681
            label_float32 = paddle.static.data(
                'label_float32', [4, 1], 'float32'
            )
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label_float32, 8, weight
            )
682 683

            weight_int32 = paddle.static.data('weight_int32', [7, 6], 'int32')
684 685 686
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight_int32
            )
687 688

            bias_int32 = paddle.static.data('bias_int32', [7], 'int32')
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight, bias=bias_int32
            )

            path_table_int32 = paddle.static.data(
                'path_table_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_table=path_table_int32,
            )

            path_code_int32 = paddle.static.data(
                'path_code_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_code=path_code_int32,
            )
718

L
Linjie Chen 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732
        # test paddle.nn.HSigmoidLoss
        paddle.disable_static(self.place)
        x_arr = np.array([], dtype=np.float32)
        x = paddle.to_tensor(np.reshape(x_arr, (100000, 0)))
        label = paddle.to_tensor(0, dtype='int64')
        self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, x, label)

        # test paddle.nn.functional.hsigmoid_loss
        x = paddle.to_tensor(np.reshape(x_arr, (10, 0)), dtype='float32')
        label = paddle.to_tensor([], dtype='int64')
        weight = paddle.to_tensor([], dtype='float32')
        self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 0, weight)
        paddle.enable_static()

733
        # test paddle.fluid.layers.hsigmoid
734 735 736 737 738 739
        with program_guard(Program()):
            label = fluid.data('label', [4, 1], 'int64')
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, 1, label, 2)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[4, 3], dtype='int32')
740 741 742
            self.assertRaises(
                TypeError, fluid.layers.hsigmoid, x_int32, label, 2
            )
743 744 745 746 747 748 749 750
            # support the input dtype is float32
            x_fp32 = fluid.data(name='x_fp32', shape=[4, 3], dtype='float32')
            fluid.layers.hsigmoid(x_fp32, label, 2)

            # The label type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_fp32, 1, 2)
            # The label dtype must be int64.
            label_int32 = fluid.data('label_int32', [4, 1], 'int32')
751 752 753
            self.assertRaises(
                TypeError, fluid.layers.hsigmoid, x_fp32, label_int32, 2
            )
754 755


756 757 758
class TestHSigmoidLossAPICustom(TestHSigmoidLossAPI):
    def set_attrs(self):
        self.is_custom = True
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
        self.path_table_np = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(np.int64)
        self.path_code_np = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(np.int64)
775 776 777 778 779

    def test_errors(self):
        pass


Y
Yancey1989 已提交
780 781
if __name__ == '__main__':
    unittest.main()