auto_mixed_precision_pass.cc 34.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/auto_mixed_precision_pass.h"
16 17 18

#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/operator.h"
19 20 21 22 23 24
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"
25 26 27
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/backends/device_manager.h"
#endif
28 29 30 31 32 33 34

namespace paddle {
namespace framework {
namespace ir {

namespace {

35
using VarType = AutoMixedPrecisionPass::VarType;
36 37 38 39 40 41 42 43 44 45 46 47 48 49

bool PhiKernelSupportPrecision(
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  const auto& kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.count(op_type) == 0) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
static phi::Backend ConvertPlaceToBackend(const phi::Place& place) {
  switch (place.GetType()) {
    case phi::AllocationType::CPU:
      return phi::Backend::CPU;
    case phi::AllocationType::GPU:
      return phi::Backend::GPU;
    case phi::AllocationType::XPU:
      return phi::Backend::XPU;
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Cannot convert place(%d).", static_cast<int>(place.GetType())));
  }
  return phi::Backend::UNDEFINED;
}

65
bool KernelSupportPrecision(
66
    const std::string& op_type,
67
    phi::Backend backend,
68 69 70 71
    phi::DataType precision,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto phi_op_type = phi::TransToPhiKernelName(op_type);

72 73 74 75 76 77
  bool support =
      PhiKernelSupportPrecision(phi_op_type, backend, precision, layout);
  if (backend == phi::Backend::GPU) {
    support |= PhiKernelSupportPrecision(
        phi_op_type, phi::Backend::GPUDNN, precision, layout);
  }
78 79 80 81 82
  if (!support) {
    const auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (const auto& kern_pair : it->second) {
83
        if (ConvertPlaceToBackend(kern_pair.first.place_) == backend &&
84 85 86 87 88 89 90 91 92 93 94
            kern_pair.first.data_type_ ==
                framework::TransToProtoVarType(precision)) {
          support = true;
          break;
        }
      }
    }
  }
  return support;
}

95 96 97 98 99 100 101
inline bool VarNodeHasDtype(Node* var_node) {
  auto type = var_node->Var()->GetType();
  return (type == VarType::SELECTED_ROWS) || (type == VarType::LOD_TENSOR) ||
         (type == VarType::LOD_TENSOR_ARRAY) || (type == VarType::STRINGS) ||
         (type == VarType::VOCAB);
}

102
inline bool IsFP32AndFP64(VarType::Type type) {
103 104 105
  return (type == VarType::FP64) || (type == VarType::FP32);
}

106
inline bool IsFP16AndBFP16(VarType::Type type) {
107 108 109 110 111
  return (type == VarType::FP16) || (type == VarType::BF16);
}

};  // namespace

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
void DoInsertCastOp(Graph* graph,
                    Node* var_node,
                    Node* op_node,
                    VarType::Type from_type,
                    VarType::Type to_type,
                    framework::BlockDesc* block_desc,
                    int* suffix,
                    std::unordered_map<Node*, Node*>* cache) {
  if (from_type == to_type) return;

  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (cache->count(var_node) == 0) {
    // insert cast op between var_node and op_node
    std::string cast_input_name = var_node->Var()->Name();
140 141 142
    std::string cast_output_name = var_node->Var()->Name() +
                                   "_cast_auto_mixed.tmp_" +
                                   std::to_string((*suffix)++);
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(var_node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*cache)[var_node] = cast_output_node;
  }
  op_node->Op()->Rename(var_node->Name(), cache->at(var_node)->Name());
  IR_NODE_LINK_TO(var_node, cache->at(var_node)->inputs[0]);
  IR_NODE_LINK_TO(cache->at(var_node), op_node);

  IR_NODE_UNLINK(var_node, op_node);
}

165 166 167 168
bool OpSupportPrecision(const std::string& op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& black_list) {
169 170
  return black_list.count(op_type) == 0 &&
         KernelSupportPrecision(op_type, backend, precision);
171 172 173 174 175
}

// The set of ops that support fp16 calculation and are considered
// numerically-dangerous, slower and whose effects may also be observed in
// downstream ops.
176
// ref to python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
177
void AutoMixedPrecisionPass::SetDefaultBlacklist() const {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  black_list_.insert({
      // numerically-dangerous
      "exp",
      "square",
      "log",
      "mean",
      "sum",
      "cos_sim",
      "softmax_with_cross_entropy",
      "sigmoid_cross_entropy_with_logits",
      "c_softmax_with_cross_entropy",
      "cross_entropy",
      "cross_entropy2",
      // slower than fp32
      "conv2d_transpose",
      // default fp32 can avoid return inf when the sum value large than 65504
      "reduce_sum",
  });
}

198
void AutoMixedPrecisionPass::Init(Graph* graph) const {
199
  if (Has("enable_gpu_mixed") && Get<bool>("enable_gpu_mixed")) {
200
    backend_ = phi::Backend::GPU;
201 202 203 204 205
  } else if (Has("enable_xpu_mixed") && Get<bool>("enable_xpu_mixed")) {
    backend_ = phi::Backend::XPU;
  } else if (Has("enable_custom_device_mixed") &&
             Get<bool>("enable_custom_device_mixed")) {
    // transform Backend::CUSTOM to actual backend.
206 207 208 209 210 211 212 213 214 215 216 217
// Here, we only consider one custom backend.
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto device_type = phi::DeviceManager::GetAllCustomDeviceTypes()[0];
    backend_ = static_cast<phi::Backend>(
        static_cast<size_t>(phi::Backend::NUM_BACKENDS) +
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(device_type));
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Paddle is not compiled with CustomDevice. "
        "Cannot enable custom_device_mixed."));
#endif
218 219
  }

220 221 222 223 224 225 226 227 228
  if (Has("mixed_precision_mode")) {
    low_precision_ =
        static_cast<phi::DataType>(Get<int>("mixed_precision_mode"));
  }

  skip_pass_ = (backend_ == phi::Backend::UNDEFINED) ||
               (low_precision_ == phi::DataType::UNDEFINED);

  if (skip_pass_) return;
229

230 231
  black_list_ = Get<std::unordered_set<std::string>>("mixed_black_list");
  SetDefaultBlacklist();
232 233 234 235 236
  VLOG(4) << "black_list has ";
  for (const auto& name : black_list_) {
    VLOG(4) << " - " << name;
  }

237 238
  if (Has("enable_low_precision_io")) {
    enable_low_precision_io_ = Get<bool>("enable_low_precision_io");
239
  }
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

  auto graph_size = graph->SubGraphsSize();
  VLOG(4) << "graph size: " << graph_size;
  subgraphes_.resize(graph_size);
  all_op_nodes_.resize(graph_size);

  for (size_t i = 0; i < graph_size; i++) {
    subgraphes_[i] = graph->GetSubGraph(i);
    all_op_nodes_[i] = TopologySortOperations(*subgraphes_[i]);
    VLOG(4) << "subgraph " << i << " has " << all_op_nodes_[i].size()
            << "op nodes";
    for (auto* var_node : subgraphes_[i]->Nodes()) {
      if (!var_node->IsVar()) continue;

      auto var_name = var_node->Var()->Name();
      if (real_vars_.count(var_name) == 0) {
        real_vars_[var_name] = var_node;
        VLOG(4) << var_name << " is in graph " << i;
      }
    }
  }
}

263 264 265 266 267 268 269 270 271 272
void AutoMixedPrecisionPass::ApplyImpl(Graph* graph) const {
  PADDLE_ENFORCE_NOT_NULL(graph,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the graph "
                              "should not be nullptr."));
  PADDLE_ENFORCE_EQ(graph->IsMainGraph(),
                    true,
                    platform::errors::PreconditionNotMet(
                        "During the auto_mixed_precision_pass, the graph "
                        "should be main graph."));
273

274
  FusePassBase::Init("auto_mixed_precision", graph);
275 276 277

  Init(graph);
  VLOG(4) << "Init done";
278 279 280 281 282 283

  if (skip_pass_) {
    VLOG(3) << "Skip auto_mixed_precision_pass.";
    return;
  }

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
  SetOpUniqueType();
  VLOG(4) << "SetOpUniqueType done";
  GetOpPrecision();
  VLOG(4) << "GetOpPrecision done";
  UpdateOpPrecision();
  VLOG(4) << "UpdateOpPrecision done";
  SetVarPrecision();
  VLOG(4) << "SetVarPrecision done";
  ConvertWeightsData();
  VLOG(4) << "ConvertWeightsData done";
  ProcessOpWithDtypeAttr();
  VLOG(4) << "ProcessOpWithDtypeAttr done";
  InsertCastOp();
  VLOG(4) << "InsertCastOp done";
  RestoreOpOriginType();
  VLOG(4) << "RestoreOpOriginType done";
300
  LOG(INFO) << "The number of ops run at low precision ["
301 302
            << op_run_low_precision_.size() << "/"
            << op_original_type_.size() + 2 << "]";
303 304
}

305
void AutoMixedPrecisionPass::SetOpUniqueType() const {
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  int suffix = 0;
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();

      if (op_type == "feed" || op_type == "fetch") continue;

      std::string unique_type = op_type + "_" + std::to_string(suffix++);
      op_original_type_[unique_type] = op_type;
      op_node->Op()->SetType(unique_type);
      op_node->Op()->Flush();
      VLOG(4) << "change op type: " << op_type << " ---> " << unique_type;
    }
  }
}

322
void AutoMixedPrecisionPass::RestoreOpOriginType() const {
323 324 325 326 327 328 329 330 331 332 333
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
      op_node->Op()->SetType(GetOpOriginalType(op_type));
      op_node->Op()->Flush();
      VLOG(4) << "restore op type: " << op_type << " ---> "
              << op_node->Op()->Type();
    }
  }
}

334
inline std::string AutoMixedPrecisionPass::GetOpOriginalType(
335 336 337 338 339 340 341
    const std::string& op_type) const {
  if (op_original_type_.count(op_type)) {
    return op_original_type_.at(op_type);
  }
  return op_type;
}

342
void AutoMixedPrecisionPass::ProcessOpWithDtypeAttr() const {
343 344 345
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

      if (op_node->Op()->HasAttr("in_dtype")) {
        auto* var_node = op_node->inputs[0];
        auto* real_var_node = real_vars_[var_node->Var()->Name()];
        if (IsFP16AndBFP16(real_var_node->Var()->GetDataType())) {
          op_node->Op()->SetAttr(
              "in_dtype",
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
          op_node->Op()->Flush();
          VLOG(4) << "process op with in_dtype attr: " << op_type << " ( "
                  << static_cast<int>(real_var_node->Var()->GetDataType())
                  << " --->" << static_cast<int>(low_precision_) << " )";
        }
      }

361
      if (op_run_low_precision_.count(op_type) == 0) continue;
362 363 364

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
365
        if (IsFP32AndFP64(static_cast<VarType::Type>(dtype))) {
366 367
          op_node->Op()->SetAttr(
              "dtype",
368
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
369 370
          op_node->Op()->Flush();
          VLOG(4) << "process op with dtype attr: " << op_type << " ( " << dtype
371
                  << " --->" << static_cast<int>(low_precision_) << " )";
372
        }
373
      } else if (op_node->Op()->HasAttr("out_dtype")) {
374
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
375
        if (IsFP32AndFP64(static_cast<VarType::Type>(out_dtype))) {
376 377
          op_node->Op()->SetAttr(
              "out_dtype",
378
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
379 380
          op_node->Op()->Flush();
          VLOG(4) << "process op with out_dtype attr: " << op_type << " ( "
381
                  << out_dtype << " --->" << static_cast<int>(low_precision_)
382 383 384 385 386 387 388
                  << " )";
        }
      }
    }
  }
}

389
void AutoMixedPrecisionPass::GetOpPrecision() const {
390 391 392
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
393
      bool support_low_precision = true;
394 395
      if (GetOpOriginalType(op_type) == "feed" ||
          GetOpOriginalType(op_type) == "fetch") {
396 397 398 399 400 401 402
        support_low_precision = enable_low_precision_io_;
      } else if (GetOpOriginalType(op_type) == "tensorrt_engine") {
        auto enable_fp16 = op_node->Op()->GetAttrIfExists<bool>("enable_fp16");
        auto enable_int8 = op_node->Op()->GetAttrIfExists<bool>("enable_int8");
        auto low_precision_io =
            op_node->Op()->GetAttrIfExists<bool>("enable_low_precision_io");
        support_low_precision = enable_fp16 && !enable_int8 && low_precision_io;
403
      } else {
404 405
        support_low_precision = OpSupportPrecision(
            GetOpOriginalType(op_type), backend_, low_precision_, black_list_);
406

407 408
        if (op_node->Op()->HasAttr("dtype")) {
          auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
409 410
          support_low_precision =
              support_low_precision &&
411 412 413
              IsFP32AndFP64(static_cast<VarType::Type>(dtype));
        } else if (op_node->Op()->HasAttr("out_dtype")) {
          auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
414 415
          support_low_precision =
              support_low_precision &&
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
              IsFP32AndFP64(static_cast<VarType::Type>(out_dtype));
        }

        // If scale op's "scale" and "bias" attr value exceed the range of fp16
        // and bf16, it cannot run at low precision.
        if (GetOpOriginalType(op_node->Op()->Type()) == "scale") {
          auto scale = op_node->Op()->GetAttrIfExists<float>("scale");
          auto bias = op_node->Op()->GetAttrIfExists<float>("bias");
          if (low_precision_ == phi::DataType::FLOAT16) {
            support_low_precision =
                support_low_precision &&
                phi::dtype::isfinite(static_cast<phi::dtype::float16>(scale)) &&
                phi::dtype::isfinite(static_cast<phi::dtype::float16>(bias));
          } else if (low_precision_ == phi::DataType::BFLOAT16) {
            support_low_precision =
                support_low_precision &&
                phi::dtype::isfinite(
                    static_cast<phi::dtype::bfloat16>(scale)) &&
                phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(bias));
          }
436 437
        }

438 439 440 441 442 443
        // if op's input var and output var is not dense tensor, the op should
        // not run at low precision.
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);
          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          if (real_in_var_node->Var()->Persistable()) continue;
444

445 446 447 448 449 450 451 452 453 454 455 456 457
          support_low_precision =
              support_low_precision &&
              (real_in_var_node->Var()->GetType() == VarType::LOD_TENSOR);
        }
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

          support_low_precision =
              support_low_precision &&
              (real_out_var_node->Var()->GetType() == VarType::LOD_TENSOR);
        }
458 459
      }

460 461 462
      if (support_low_precision) {
        op_run_low_precision_.insert(op_type);
        VLOG(4) << "support precision: " << op_type << " run at low precision";
463
      } else {
464 465
        VLOG(4) << "support precision: " << op_type
                << " not run at low precision";
466 467 468 469 470
      }
    }
  }
}

471 472
void AutoMixedPrecisionPass::UpdateOpPrecision() const {
  std::unordered_set<std::string> vars_should_not_low_precision;
473 474 475 476 477 478 479 480 481 482

  // var -> the var's all input op
  std::unordered_map<std::string, std::vector<Node*>> var_input_ops;

  auto GetVarInputOps = [&] {
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
        auto op_type = op_node->Op()->Type();

        if (GetOpOriginalType(op_type) == "fetch") continue;
483 484 485
        if (op_node->Op()->HasAttr("sub_block") &&
            GetOpOriginalType(op_type) != "tensorrt_engine")
          continue;
486 487 488 489 490 491 492 493 494 495 496

        for (auto* var_node : op_node->outputs) {
          CHECK_EQ(var_node->IsVar(), true);
          if (var_node->Var()->Persistable()) continue;
          if (!VarNodeHasDtype(var_node)) continue;

          var_input_ops[var_node->Var()->Name()].push_back(op_node);
          VLOG(4) << "var input ops: " << var_node->Var()->Name()
                  << " is output of " << op_type;
        }

497 498 499
        // the select_input op's input var should not convert to low precision.
        // when op's output var is select_input op's input var, the op should
        // not run at low precision.
500 501 502 503 504 505
        if (GetOpOriginalType(op_node->Op()->Type()) == "select_input") {
          for (auto* in_var_node : op_node->inputs) {
            CHECK_EQ(in_var_node->IsVar(), true);
            if (in_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(in_var_node)) continue;

506
            vars_should_not_low_precision.insert(in_var_node->Var()->Name());
507 508
          }
        }
509 510

        // when op_1 only support cpu kernel. if op_2's intput var is op_1's
511
        // output var, then op_2 should not run at low precision.
512
        if (GetOpOriginalType(op_type) != "feed" &&
Y
Yuanle Liu 已提交
513
            GetOpOriginalType(op_type) != "tensorrt_engine" &&
514 515
            !KernelSupportPrecision(
                GetOpOriginalType(op_type), backend_, phi::DataType::FLOAT32)) {
516 517 518 519 520 521 522 523
          for (auto* out_var_node : op_node->outputs) {
            CHECK_EQ(out_var_node->IsVar(), true);
            if (out_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(out_var_node)) continue;

            vars_should_not_low_precision.insert(out_var_node->Var()->Name());
          }
        }
524 525 526 527 528 529 530 531 532 533
      }
    }
  };
  GetVarInputOps();

  bool precision_updated = false;
  do {
    precision_updated = false;
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
534
        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);
          if (!VarNodeHasDtype(in_var_node)) continue;

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          if (real_in_var_node->Var()->Persistable()) continue;

          if (vars_should_not_low_precision.count(
                  real_in_var_node->Var()->Name())) {
            op_run_low_precision_.erase(op_node->Op()->Type());
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
                    << " should not run at low precision.";
            break;
          }
        }

        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;

555 556 557 558 559 560 561
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          if (!VarNodeHasDtype(out_var_node)) continue;

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

562
          bool not_run_low_precision = false;
563 564
          const auto& input_op_nodes =
              var_input_ops[real_out_var_node->Var()->Name()];
565 566 567
          if (vars_should_not_low_precision.count(
                  real_out_var_node->Var()->Name())) {
            not_run_low_precision = true;
568 569
          } else {
            for (auto* node : input_op_nodes) {
570 571
              if (op_run_low_precision_.count(node->Op()->Type()) == 0) {
                not_run_low_precision = true;
572 573 574 575
                break;
              }
            }
          }
576 577
          if (not_run_low_precision) {
            op_run_low_precision_.erase(op_node->Op()->Type());
578 579
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
580
                    << " should not run at low precision.";
581 582 583 584 585 586 587 588 589
            break;
          }
        }
      }
    }
  } while (precision_updated);
}

// special ops, its weights should not be low precision.
590 591
bool AutoMixedPrecisionPass::InputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
592
  auto* op_desc = op_node->Op();
593 594 595 596 597 598
  if (GetOpOriginalType(op_desc->Type()) == "tensorrt_engine") {
    auto vecs = op_desc->Input("Xs");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  } else if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    auto vecs = op_desc->Input("Bias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Mean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Scale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Variance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
615 616 617 618 619 620 621 622 623
  } else if (GetOpOriginalType(op_desc->Type()) == "instance_norm") {
    auto vecs = op_desc->Input("Bias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Scale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
  } else if (GetOpOriginalType(op_desc->Type()) == "fused_multi_transformer") {
    auto vecs = op_desc->Input("LnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("LnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
641 642 643 644 645 646 647 648 649 650
  } else if (GetOpOriginalType(op_desc->Type()) ==
             "fused_bias_dropout_residual_layer_norm") {
    auto vecs = op_desc->Input("LnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("LnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
651
  }
652 653 654 655 656 657 658 659 660 661 662

  if (backend_ == phi::Backend::XPU) {
    if (GetOpOriginalType(op_desc->Type()) == "layer_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
663 664 665 666 667 668 669 670 671
    } else if (GetOpOriginalType(op_desc->Type()) == "instance_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
672 673 674
    }
  }

675 676 677
  return false;
}

678 679
bool AutoMixedPrecisionPass::OutputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  auto* op_desc = op_node->Op();
  // batch_norm's input and output (variance and mean) are the same.
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
700 701 702 703 704 705 706 707 708 709 710 711 712 713

  if (backend_ == phi::Backend::XPU) {
    if (GetOpOriginalType(op_desc->Type()) == "layer_norm") {
      auto vecs = op_desc->Output("Mean");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Output("Variance");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
    }
  }

714 715 716
  return false;
}

717
void AutoMixedPrecisionPass::SetVarPrecision() const {
718 719
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
720 721 722 723 724
      if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) {
        continue;
      }

      if (GetOpOriginalType(op_node->Op()->Type()) != "feed") {
725 726 727 728 729 730
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          auto in_var_name = real_in_var_node->Var()->Name();

731
          if (!IsFP32AndFP64(real_in_var_node->Var()->GetDataType())) continue;
732 733 734 735 736
          if (!VarNodeHasDtype(real_in_var_node)) continue;
          if (InputVarsNotConvert(op_node, in_var_name)) continue;

          if (real_in_var_node->Var()->Persistable()) {
            real_in_var_node->Var()->SetDataType(
737 738
                framework::TransToProtoVarType(low_precision_));
            vars_convert_to_low_precision_.insert(in_var_name);
739 740
          }
        }
741
      }
742

743
      if (GetOpOriginalType(op_node->Op()->Type()) != "fetch") {
744 745 746 747 748 749
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          auto out_var_name = real_out_var_node->Var()->Name();

750
          if (!IsFP32AndFP64(real_out_var_node->Var()->GetDataType())) continue;
751 752 753 754
          if (!VarNodeHasDtype(real_out_var_node)) continue;
          if (OutputVarsNotConvert(op_node, out_var_name)) continue;

          real_out_var_node->Var()->SetDataType(
755
              framework::TransToProtoVarType(low_precision_));
756
          if (real_out_var_node->Var()->Persistable()) {
757
            vars_convert_to_low_precision_.insert(out_var_name);
758 759 760 761 762 763 764 765 766 767 768 769 770 771
          }
        }
      }
    }
  }

  // This code used to precess vars with the same name. Vars with the same
  // name should have the same data type.
  for (auto* subgraph : subgraphes_) {
    for (auto* var_node : subgraph->Nodes()) {
      if (!var_node->IsVar() || !var_node->Var()->Persistable()) continue;
      if (!VarNodeHasDtype(var_node)) continue;

      auto var_name = var_node->Var()->Name();
772
      if (vars_convert_to_low_precision_.count(var_name)) {
773
        var_node->Var()->SetDataType(
774
            framework::TransToProtoVarType(low_precision_));
775 776 777 778 779
      }
    }
  }
}

780
void AutoMixedPrecisionPass::ConvertWeightsData() const {
781
  auto* scope = param_scope();
782 783 784 785
  PADDLE_ENFORCE_NOT_NULL(scope,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the scope "
                              "should not be null."));
786 787 788

  auto var_names = scope->LocalVarNames();
  for (const auto& var_name : var_names) {
789
    if (vars_convert_to_low_precision_.count(var_name)) {
790
      VLOG(4) << var_name << "'s data type was convert to low precision";
791 792

      auto* var = scope->FindLocalVar(var_name);
793 794 795 796
      CHECK_EQ(var->IsType<phi::DenseTensor>(), true);

      auto* origin_tensor = var->GetMutable<phi::DenseTensor>();

797 798 799
      phi::DenseTensor low_precision_tensor;
      low_precision_tensor.Resize(origin_tensor->dims());
      low_precision_tensor.set_type(low_precision_);
800

801 802 803 804
      if (low_precision_ == phi::DataType::FLOAT16) {
        auto* low_precision_data =
            low_precision_tensor.mutable_data<phi::dtype::float16>(
                phi::CPUPlace{});
805 806 807
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
808 809
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
810 811
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
812 813
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
814 815
          }
        }
816
      } else if (low_precision_ == phi::DataType::BFLOAT16) {
817
        auto* low_precision_data =
818 819
            low_precision_tensor.mutable_data<phi::dtype::bfloat16>(
                phi::CPUPlace{});
820 821 822
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
823 824
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
825 826
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
827 828
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
829
          }
830 831
        }
      }
832 833
      origin_tensor->clear();
      paddle::framework::TensorCopySync(
834
          low_precision_tensor, phi::CPUPlace{}, origin_tensor);
835 836 837 838
    }
  }
}

839
void AutoMixedPrecisionPass::InsertCastOp() const {
840 841 842 843 844 845 846 847 848 849
  int suffix = 0;
  std::unordered_map<Node*, Node*> cache;

  for (size_t i = 0; i < all_op_nodes_.size(); i++) {
    auto* block_desc = all_op_nodes_[i][0]->Op()->Block();
    CHECK_NOTNULL(block_desc);
    for (auto* op_node : all_op_nodes_[i]) {
      auto op_type = op_node->Op()->Type();

      if (GetOpOriginalType(op_type) == "feed") continue;
850 851 852
      if (op_node->Op()->HasAttr("sub_block") &&
          GetOpOriginalType(op_type) != "tensorrt_engine")
        continue;
853 854

      VLOG(4) << "process op: " << op_type
855
              << " run low precision: " << op_run_low_precision_.count(op_type);
856 857 858 859 860 861 862 863 864 865 866 867 868 869

      auto inputs = op_node->inputs;
      for (auto* in_var_node : inputs) {
        if (!in_var_node->IsVar()) continue;
        if (!VarNodeHasDtype(in_var_node)) continue;
        if (in_var_node->Var()->Persistable()) continue;

        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];

        auto in_var_type = real_in_var_node->Var()->GetDataType();

        VLOG(4) << "process var: " << real_in_var_node->Var()->Name()
                << " with type " << in_var_type;

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
        if (IsFP32AndFP64(in_var_type) &&
            op_run_low_precision_.count(op_type)) {
          auto to_type = framework::TransToProtoVarType(low_precision_);
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
        } else if (IsFP16AndBFP16(in_var_type) &&
890
                   op_run_low_precision_.count(op_type) == 0) {
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
          auto to_type = VarType::FP32;
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
        }
      }

      // Special op.
      // fused_multi_transformer's input(CacheKV) and output(CacheKVOut) vars
      // have same name.
      if (GetOpOriginalType(op_type) == "fused_multi_transformer") {
        auto cache_kv_inputs = op_node->Op()->Input("CacheKV");
        auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut");
        CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
        for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
          op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
        }
      }
    }
  }
  VLOG(4) << "insert number of cast op: " << cache.size();
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

931 932
REGISTER_PASS(auto_mixed_precision_pass,
              paddle::framework::ir::AutoMixedPrecisionPass);