auto_mixed_precision_pass.cc 33.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/auto_mixed_precision_pass.h"
16 17 18

#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/operator.h"
19 20 21 22 23 24
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"
25 26 27
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/backends/device_manager.h"
#endif
28 29 30 31 32 33 34

namespace paddle {
namespace framework {
namespace ir {

namespace {

35
using VarType = AutoMixedPrecisionPass::VarType;
36 37 38 39 40 41 42 43 44 45 46 47 48 49

bool PhiKernelSupportPrecision(
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  const auto& kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.count(op_type) == 0) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
static phi::Backend ConvertPlaceToBackend(const phi::Place& place) {
  switch (place.GetType()) {
    case phi::AllocationType::CPU:
      return phi::Backend::CPU;
    case phi::AllocationType::GPU:
      return phi::Backend::GPU;
    case phi::AllocationType::XPU:
      return phi::Backend::XPU;
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Cannot convert place(%d).", static_cast<int>(place.GetType())));
  }
  return phi::Backend::UNDEFINED;
}

65
bool KernelSupportPrecision(
66
    const std::string& op_type,
67
    phi::Backend backend,
68 69 70 71
    phi::DataType precision,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto phi_op_type = phi::TransToPhiKernelName(op_type);

72 73 74 75 76 77
  bool support =
      PhiKernelSupportPrecision(phi_op_type, backend, precision, layout);
  if (backend == phi::Backend::GPU) {
    support |= PhiKernelSupportPrecision(
        phi_op_type, phi::Backend::GPUDNN, precision, layout);
  }
78 79 80 81 82
  if (!support) {
    const auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (const auto& kern_pair : it->second) {
83
        if (ConvertPlaceToBackend(kern_pair.first.place_) == backend &&
84 85 86 87 88 89 90 91 92 93 94
            kern_pair.first.data_type_ ==
                framework::TransToProtoVarType(precision)) {
          support = true;
          break;
        }
      }
    }
  }
  return support;
}

95 96 97 98 99 100 101
inline bool VarNodeHasDtype(Node* var_node) {
  auto type = var_node->Var()->GetType();
  return (type == VarType::SELECTED_ROWS) || (type == VarType::LOD_TENSOR) ||
         (type == VarType::LOD_TENSOR_ARRAY) || (type == VarType::STRINGS) ||
         (type == VarType::VOCAB);
}

102
inline bool IsFP32AndFP64(VarType::Type type) {
103 104 105
  return (type == VarType::FP64) || (type == VarType::FP32);
}

106
inline bool IsFP16AndBFP16(VarType::Type type) {
107 108 109 110 111
  return (type == VarType::FP16) || (type == VarType::BF16);
}

};  // namespace

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
void DoInsertCastOp(Graph* graph,
                    Node* var_node,
                    Node* op_node,
                    VarType::Type from_type,
                    VarType::Type to_type,
                    framework::BlockDesc* block_desc,
                    int* suffix,
                    std::unordered_map<Node*, Node*>* cache) {
  if (from_type == to_type) return;

  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (cache->count(var_node) == 0) {
    // insert cast op between var_node and op_node
    std::string cast_input_name = var_node->Var()->Name();
    std::string cast_output_name =
        var_node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(var_node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*cache)[var_node] = cast_output_node;
  }
  op_node->Op()->Rename(var_node->Name(), cache->at(var_node)->Name());
  IR_NODE_LINK_TO(var_node, cache->at(var_node)->inputs[0]);
  IR_NODE_LINK_TO(cache->at(var_node), op_node);

  IR_NODE_UNLINK(var_node, op_node);
}

164 165 166 167
bool OpSupportPrecision(const std::string& op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& black_list) {
168 169
  return black_list.count(op_type) == 0 &&
         KernelSupportPrecision(op_type, backend, precision);
170 171 172 173 174
}

// The set of ops that support fp16 calculation and are considered
// numerically-dangerous, slower and whose effects may also be observed in
// downstream ops.
175
// ref to python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
176
void AutoMixedPrecisionPass::SetDefaultBlacklist() const {
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  black_list_.insert({
      // numerically-dangerous
      "exp",
      "square",
      "log",
      "mean",
      "sum",
      "cos_sim",
      "softmax_with_cross_entropy",
      "sigmoid_cross_entropy_with_logits",
      "c_softmax_with_cross_entropy",
      "cross_entropy",
      "cross_entropy2",
      // slower than fp32
      "conv2d_transpose",
      // default fp32 can avoid return inf when the sum value large than 65504
      "reduce_sum",
  });
}

197
void AutoMixedPrecisionPass::Init(Graph* graph) const {
198
  if (Has("enable_gpu_mixed") && Get<bool>("enable_gpu_mixed")) {
199
    backend_ = phi::Backend::GPU;
200 201 202 203 204
  } else if (Has("enable_xpu_mixed") && Get<bool>("enable_xpu_mixed")) {
    backend_ = phi::Backend::XPU;
  } else if (Has("enable_custom_device_mixed") &&
             Get<bool>("enable_custom_device_mixed")) {
    // transform Backend::CUSTOM to actual backend.
205 206 207 208 209 210 211 212 213 214 215 216
// Here, we only consider one custom backend.
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto device_type = phi::DeviceManager::GetAllCustomDeviceTypes()[0];
    backend_ = static_cast<phi::Backend>(
        static_cast<size_t>(phi::Backend::NUM_BACKENDS) +
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(device_type));
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Paddle is not compiled with CustomDevice. "
        "Cannot enable custom_device_mixed."));
#endif
217 218
  }

219 220 221 222 223 224 225 226 227
  if (Has("mixed_precision_mode")) {
    low_precision_ =
        static_cast<phi::DataType>(Get<int>("mixed_precision_mode"));
  }

  skip_pass_ = (backend_ == phi::Backend::UNDEFINED) ||
               (low_precision_ == phi::DataType::UNDEFINED);

  if (skip_pass_) return;
228

229 230
  black_list_ = Get<std::unordered_set<std::string>>("mixed_black_list");
  SetDefaultBlacklist();
231 232 233 234 235
  VLOG(4) << "black_list has ";
  for (const auto& name : black_list_) {
    VLOG(4) << " - " << name;
  }

236 237
  if (Has("enable_low_precision_io")) {
    enable_low_precision_io_ = Get<bool>("enable_low_precision_io");
238
  }
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

  auto graph_size = graph->SubGraphsSize();
  VLOG(4) << "graph size: " << graph_size;
  subgraphes_.resize(graph_size);
  all_op_nodes_.resize(graph_size);

  for (size_t i = 0; i < graph_size; i++) {
    subgraphes_[i] = graph->GetSubGraph(i);
    all_op_nodes_[i] = TopologySortOperations(*subgraphes_[i]);
    VLOG(4) << "subgraph " << i << " has " << all_op_nodes_[i].size()
            << "op nodes";
    for (auto* var_node : subgraphes_[i]->Nodes()) {
      if (!var_node->IsVar()) continue;

      auto var_name = var_node->Var()->Name();
      if (real_vars_.count(var_name) == 0) {
        real_vars_[var_name] = var_node;
        VLOG(4) << var_name << " is in graph " << i;
      }
    }
  }
}

262 263 264 265 266 267 268 269 270 271
void AutoMixedPrecisionPass::ApplyImpl(Graph* graph) const {
  PADDLE_ENFORCE_NOT_NULL(graph,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the graph "
                              "should not be nullptr."));
  PADDLE_ENFORCE_EQ(graph->IsMainGraph(),
                    true,
                    platform::errors::PreconditionNotMet(
                        "During the auto_mixed_precision_pass, the graph "
                        "should be main graph."));
272

273
  FusePassBase::Init("auto_mixed_precision", graph);
274 275 276

  Init(graph);
  VLOG(4) << "Init done";
277 278 279 280 281 282

  if (skip_pass_) {
    VLOG(3) << "Skip auto_mixed_precision_pass.";
    return;
  }

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
  SetOpUniqueType();
  VLOG(4) << "SetOpUniqueType done";
  GetOpPrecision();
  VLOG(4) << "GetOpPrecision done";
  UpdateOpPrecision();
  VLOG(4) << "UpdateOpPrecision done";
  SetVarPrecision();
  VLOG(4) << "SetVarPrecision done";
  ConvertWeightsData();
  VLOG(4) << "ConvertWeightsData done";
  ProcessOpWithDtypeAttr();
  VLOG(4) << "ProcessOpWithDtypeAttr done";
  InsertCastOp();
  VLOG(4) << "InsertCastOp done";
  RestoreOpOriginType();
  VLOG(4) << "RestoreOpOriginType done";
299
  LOG(INFO) << "The number of ops run at low precision ["
300 301
            << op_run_low_precision_.size() << "/"
            << op_original_type_.size() + 2 << "]";
302 303
}

304
void AutoMixedPrecisionPass::SetOpUniqueType() const {
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
  int suffix = 0;
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();

      if (op_type == "feed" || op_type == "fetch") continue;

      std::string unique_type = op_type + "_" + std::to_string(suffix++);
      op_original_type_[unique_type] = op_type;
      op_node->Op()->SetType(unique_type);
      op_node->Op()->Flush();
      VLOG(4) << "change op type: " << op_type << " ---> " << unique_type;
    }
  }
}

321
void AutoMixedPrecisionPass::RestoreOpOriginType() const {
322 323 324 325 326 327 328 329 330 331 332
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
      op_node->Op()->SetType(GetOpOriginalType(op_type));
      op_node->Op()->Flush();
      VLOG(4) << "restore op type: " << op_type << " ---> "
              << op_node->Op()->Type();
    }
  }
}

333
inline std::string AutoMixedPrecisionPass::GetOpOriginalType(
334 335 336 337 338 339 340
    const std::string& op_type) const {
  if (op_original_type_.count(op_type)) {
    return op_original_type_.at(op_type);
  }
  return op_type;
}

341
void AutoMixedPrecisionPass::ProcessOpWithDtypeAttr() const {
342 343 344
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

      if (op_node->Op()->HasAttr("in_dtype")) {
        auto* var_node = op_node->inputs[0];
        auto* real_var_node = real_vars_[var_node->Var()->Name()];
        if (IsFP16AndBFP16(real_var_node->Var()->GetDataType())) {
          op_node->Op()->SetAttr(
              "in_dtype",
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
          op_node->Op()->Flush();
          VLOG(4) << "process op with in_dtype attr: " << op_type << " ( "
                  << static_cast<int>(real_var_node->Var()->GetDataType())
                  << " --->" << static_cast<int>(low_precision_) << " )";
        }
      }

360
      if (op_run_low_precision_.count(op_type) == 0) continue;
361 362 363

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
364
        if (IsFP32AndFP64(static_cast<VarType::Type>(dtype))) {
365 366
          op_node->Op()->SetAttr(
              "dtype",
367
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
368 369
          op_node->Op()->Flush();
          VLOG(4) << "process op with dtype attr: " << op_type << " ( " << dtype
370
                  << " --->" << static_cast<int>(low_precision_) << " )";
371
        }
372
      } else if (op_node->Op()->HasAttr("out_dtype")) {
373
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
374
        if (IsFP32AndFP64(static_cast<VarType::Type>(out_dtype))) {
375 376
          op_node->Op()->SetAttr(
              "out_dtype",
377
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
378 379
          op_node->Op()->Flush();
          VLOG(4) << "process op with out_dtype attr: " << op_type << " ( "
380
                  << out_dtype << " --->" << static_cast<int>(low_precision_)
381 382 383 384 385 386 387
                  << " )";
        }
      }
    }
  }
}

388
void AutoMixedPrecisionPass::GetOpPrecision() const {
389 390 391
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
392
      bool support_low_precision = true;
393 394
      if (GetOpOriginalType(op_type) == "feed" ||
          GetOpOriginalType(op_type) == "fetch") {
395 396 397 398 399 400 401
        support_low_precision = enable_low_precision_io_;
      } else if (GetOpOriginalType(op_type) == "tensorrt_engine") {
        auto enable_fp16 = op_node->Op()->GetAttrIfExists<bool>("enable_fp16");
        auto enable_int8 = op_node->Op()->GetAttrIfExists<bool>("enable_int8");
        auto low_precision_io =
            op_node->Op()->GetAttrIfExists<bool>("enable_low_precision_io");
        support_low_precision = enable_fp16 && !enable_int8 && low_precision_io;
402
      } else {
403 404
        support_low_precision = OpSupportPrecision(
            GetOpOriginalType(op_type), backend_, low_precision_, black_list_);
405

406 407
        if (op_node->Op()->HasAttr("dtype")) {
          auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
408 409
          support_low_precision =
              support_low_precision &&
410 411 412
              IsFP32AndFP64(static_cast<VarType::Type>(dtype));
        } else if (op_node->Op()->HasAttr("out_dtype")) {
          auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
413 414
          support_low_precision =
              support_low_precision &&
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
              IsFP32AndFP64(static_cast<VarType::Type>(out_dtype));
        }

        // If scale op's "scale" and "bias" attr value exceed the range of fp16
        // and bf16, it cannot run at low precision.
        if (GetOpOriginalType(op_node->Op()->Type()) == "scale") {
          auto scale = op_node->Op()->GetAttrIfExists<float>("scale");
          auto bias = op_node->Op()->GetAttrIfExists<float>("bias");
          if (low_precision_ == phi::DataType::FLOAT16) {
            support_low_precision =
                support_low_precision &&
                phi::dtype::isfinite(static_cast<phi::dtype::float16>(scale)) &&
                phi::dtype::isfinite(static_cast<phi::dtype::float16>(bias));
          } else if (low_precision_ == phi::DataType::BFLOAT16) {
            support_low_precision =
                support_low_precision &&
                phi::dtype::isfinite(
                    static_cast<phi::dtype::bfloat16>(scale)) &&
                phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(bias));
          }
435 436
        }

437 438 439 440 441 442
        // if op's input var and output var is not dense tensor, the op should
        // not run at low precision.
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);
          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          if (real_in_var_node->Var()->Persistable()) continue;
443

444 445 446 447 448 449 450 451 452 453 454 455 456
          support_low_precision =
              support_low_precision &&
              (real_in_var_node->Var()->GetType() == VarType::LOD_TENSOR);
        }
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

          support_low_precision =
              support_low_precision &&
              (real_out_var_node->Var()->GetType() == VarType::LOD_TENSOR);
        }
457 458
      }

459 460 461
      if (support_low_precision) {
        op_run_low_precision_.insert(op_type);
        VLOG(4) << "support precision: " << op_type << " run at low precision";
462
      } else {
463 464
        VLOG(4) << "support precision: " << op_type
                << " not run at low precision";
465 466 467 468 469
      }
    }
  }
}

470 471
void AutoMixedPrecisionPass::UpdateOpPrecision() const {
  std::unordered_set<std::string> vars_should_not_low_precision;
472 473 474 475 476 477 478 479 480 481

  // var -> the var's all input op
  std::unordered_map<std::string, std::vector<Node*>> var_input_ops;

  auto GetVarInputOps = [&] {
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
        auto op_type = op_node->Op()->Type();

        if (GetOpOriginalType(op_type) == "fetch") continue;
482 483 484
        if (op_node->Op()->HasAttr("sub_block") &&
            GetOpOriginalType(op_type) != "tensorrt_engine")
          continue;
485 486 487 488 489 490 491 492 493 494 495

        for (auto* var_node : op_node->outputs) {
          CHECK_EQ(var_node->IsVar(), true);
          if (var_node->Var()->Persistable()) continue;
          if (!VarNodeHasDtype(var_node)) continue;

          var_input_ops[var_node->Var()->Name()].push_back(op_node);
          VLOG(4) << "var input ops: " << var_node->Var()->Name()
                  << " is output of " << op_type;
        }

496 497 498
        // the select_input op's input var should not convert to low precision.
        // when op's output var is select_input op's input var, the op should
        // not run at low precision.
499 500 501 502 503 504
        if (GetOpOriginalType(op_node->Op()->Type()) == "select_input") {
          for (auto* in_var_node : op_node->inputs) {
            CHECK_EQ(in_var_node->IsVar(), true);
            if (in_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(in_var_node)) continue;

505
            vars_should_not_low_precision.insert(in_var_node->Var()->Name());
506 507
          }
        }
508 509

        // when op_1 only support cpu kernel. if op_2's intput var is op_1's
510
        // output var, then op_2 should not run at low precision.
511
        if (GetOpOriginalType(op_type) != "feed" &&
Y
Yuanle Liu 已提交
512
            GetOpOriginalType(op_type) != "tensorrt_engine" &&
513 514
            !KernelSupportPrecision(
                GetOpOriginalType(op_type), backend_, phi::DataType::FLOAT32)) {
515 516 517 518 519 520 521 522
          for (auto* out_var_node : op_node->outputs) {
            CHECK_EQ(out_var_node->IsVar(), true);
            if (out_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(out_var_node)) continue;

            vars_should_not_low_precision.insert(out_var_node->Var()->Name());
          }
        }
523 524 525 526 527 528 529 530 531 532
      }
    }
  };
  GetVarInputOps();

  bool precision_updated = false;
  do {
    precision_updated = false;
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
533
        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;
534

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);
          if (!VarNodeHasDtype(in_var_node)) continue;

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          if (real_in_var_node->Var()->Persistable()) continue;

          if (vars_should_not_low_precision.count(
                  real_in_var_node->Var()->Name())) {
            op_run_low_precision_.erase(op_node->Op()->Type());
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
                    << " should not run at low precision.";
            break;
          }
        }

        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;

554 555 556 557 558 559 560
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          if (!VarNodeHasDtype(out_var_node)) continue;

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

561
          bool not_run_low_precision = false;
562 563
          const auto& input_op_nodes =
              var_input_ops[real_out_var_node->Var()->Name()];
564 565 566
          if (vars_should_not_low_precision.count(
                  real_out_var_node->Var()->Name())) {
            not_run_low_precision = true;
567 568
          } else {
            for (auto* node : input_op_nodes) {
569 570
              if (op_run_low_precision_.count(node->Op()->Type()) == 0) {
                not_run_low_precision = true;
571 572 573 574
                break;
              }
            }
          }
575 576
          if (not_run_low_precision) {
            op_run_low_precision_.erase(op_node->Op()->Type());
577 578
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
579
                    << " should not run at low precision.";
580 581 582 583 584 585 586 587 588
            break;
          }
        }
      }
    }
  } while (precision_updated);
}

// special ops, its weights should not be low precision.
589 590
bool AutoMixedPrecisionPass::InputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
591
  auto* op_desc = op_node->Op();
592 593 594 595 596 597
  if (GetOpOriginalType(op_desc->Type()) == "tensorrt_engine") {
    auto vecs = op_desc->Input("Xs");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  } else if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
    auto vecs = op_desc->Input("Bias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Mean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Scale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Variance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
614 615 616 617 618 619 620 621 622
  } else if (GetOpOriginalType(op_desc->Type()) == "instance_norm") {
    auto vecs = op_desc->Input("Bias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Scale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
  } else if (GetOpOriginalType(op_desc->Type()) == "fused_multi_transformer") {
    auto vecs = op_desc->Input("LnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("LnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
640 641 642 643 644 645 646 647 648 649
  } else if (GetOpOriginalType(op_desc->Type()) ==
             "fused_bias_dropout_residual_layer_norm") {
    auto vecs = op_desc->Input("LnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("LnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
650
  }
651 652 653 654 655 656 657 658 659 660 661

  if (backend_ == phi::Backend::XPU) {
    if (GetOpOriginalType(op_desc->Type()) == "layer_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
662 663 664 665 666 667 668 669 670
    } else if (GetOpOriginalType(op_desc->Type()) == "instance_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
671 672 673
    }
  }

674 675 676
  return false;
}

677 678
bool AutoMixedPrecisionPass::OutputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
  auto* op_desc = op_node->Op();
  // batch_norm's input and output (variance and mean) are the same.
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
699 700 701 702 703 704 705 706 707 708 709 710 711 712

  if (backend_ == phi::Backend::XPU) {
    if (GetOpOriginalType(op_desc->Type()) == "layer_norm") {
      auto vecs = op_desc->Output("Mean");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Output("Variance");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
    }
  }

713 714 715
  return false;
}

716
void AutoMixedPrecisionPass::SetVarPrecision() const {
717 718
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
719 720 721 722 723
      if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) {
        continue;
      }

      if (GetOpOriginalType(op_node->Op()->Type()) != "feed") {
724 725 726 727 728 729
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          auto in_var_name = real_in_var_node->Var()->Name();

730
          if (!IsFP32AndFP64(real_in_var_node->Var()->GetDataType())) continue;
731 732 733 734 735
          if (!VarNodeHasDtype(real_in_var_node)) continue;
          if (InputVarsNotConvert(op_node, in_var_name)) continue;

          if (real_in_var_node->Var()->Persistable()) {
            real_in_var_node->Var()->SetDataType(
736 737
                framework::TransToProtoVarType(low_precision_));
            vars_convert_to_low_precision_.insert(in_var_name);
738 739
          }
        }
740
      }
741

742
      if (GetOpOriginalType(op_node->Op()->Type()) != "fetch") {
743 744 745 746 747 748
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          auto out_var_name = real_out_var_node->Var()->Name();

749
          if (!IsFP32AndFP64(real_out_var_node->Var()->GetDataType())) continue;
750 751 752 753
          if (!VarNodeHasDtype(real_out_var_node)) continue;
          if (OutputVarsNotConvert(op_node, out_var_name)) continue;

          real_out_var_node->Var()->SetDataType(
754
              framework::TransToProtoVarType(low_precision_));
755
          if (real_out_var_node->Var()->Persistable()) {
756
            vars_convert_to_low_precision_.insert(out_var_name);
757 758 759 760 761 762 763 764 765 766 767 768 769 770
          }
        }
      }
    }
  }

  // This code used to precess vars with the same name. Vars with the same
  // name should have the same data type.
  for (auto* subgraph : subgraphes_) {
    for (auto* var_node : subgraph->Nodes()) {
      if (!var_node->IsVar() || !var_node->Var()->Persistable()) continue;
      if (!VarNodeHasDtype(var_node)) continue;

      auto var_name = var_node->Var()->Name();
771
      if (vars_convert_to_low_precision_.count(var_name)) {
772
        var_node->Var()->SetDataType(
773
            framework::TransToProtoVarType(low_precision_));
774 775 776 777 778
      }
    }
  }
}

779
void AutoMixedPrecisionPass::ConvertWeightsData() const {
780
  auto* scope = param_scope();
781 782 783 784
  PADDLE_ENFORCE_NOT_NULL(scope,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the scope "
                              "should not be null."));
785 786 787

  auto var_names = scope->LocalVarNames();
  for (const auto& var_name : var_names) {
788
    if (vars_convert_to_low_precision_.count(var_name)) {
789
      VLOG(4) << var_name << "'s data type was convert to low precision";
790 791

      auto* var = scope->FindLocalVar(var_name);
792 793 794 795
      CHECK_EQ(var->IsType<phi::DenseTensor>(), true);

      auto* origin_tensor = var->GetMutable<phi::DenseTensor>();

796 797 798
      phi::DenseTensor low_precision_tensor;
      low_precision_tensor.Resize(origin_tensor->dims());
      low_precision_tensor.set_type(low_precision_);
799

800 801 802 803
      if (low_precision_ == phi::DataType::FLOAT16) {
        auto* low_precision_data =
            low_precision_tensor.mutable_data<phi::dtype::float16>(
                phi::CPUPlace{});
804 805 806
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
807 808
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
809 810
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
811 812
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
813 814
          }
        }
815
      } else if (low_precision_ == phi::DataType::BFLOAT16) {
816
        auto* low_precision_data =
817 818
            low_precision_tensor.mutable_data<phi::dtype::bfloat16>(
                phi::CPUPlace{});
819 820 821
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
822 823
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
824 825
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
826 827
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
828
          }
829 830
        }
      }
831 832
      origin_tensor->clear();
      paddle::framework::TensorCopySync(
833
          low_precision_tensor, phi::CPUPlace{}, origin_tensor);
834 835 836 837
    }
  }
}

838
void AutoMixedPrecisionPass::InsertCastOp() const {
839 840 841 842 843 844 845 846 847 848
  int suffix = 0;
  std::unordered_map<Node*, Node*> cache;

  for (size_t i = 0; i < all_op_nodes_.size(); i++) {
    auto* block_desc = all_op_nodes_[i][0]->Op()->Block();
    CHECK_NOTNULL(block_desc);
    for (auto* op_node : all_op_nodes_[i]) {
      auto op_type = op_node->Op()->Type();

      if (GetOpOriginalType(op_type) == "feed") continue;
849 850 851
      if (op_node->Op()->HasAttr("sub_block") &&
          GetOpOriginalType(op_type) != "tensorrt_engine")
        continue;
852 853

      VLOG(4) << "process op: " << op_type
854
              << " run low precision: " << op_run_low_precision_.count(op_type);
855 856 857 858 859 860 861 862 863 864 865 866 867 868

      auto inputs = op_node->inputs;
      for (auto* in_var_node : inputs) {
        if (!in_var_node->IsVar()) continue;
        if (!VarNodeHasDtype(in_var_node)) continue;
        if (in_var_node->Var()->Persistable()) continue;

        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];

        auto in_var_type = real_in_var_node->Var()->GetDataType();

        VLOG(4) << "process var: " << real_in_var_node->Var()->Name()
                << " with type " << in_var_type;

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
        if (IsFP32AndFP64(in_var_type) &&
            op_run_low_precision_.count(op_type)) {
          auto to_type = framework::TransToProtoVarType(low_precision_);
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
        } else if (IsFP16AndBFP16(in_var_type) &&
889
                   op_run_low_precision_.count(op_type) == 0) {
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
          auto to_type = VarType::FP32;
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
        }
      }

      // Special op.
      // fused_multi_transformer's input(CacheKV) and output(CacheKVOut) vars
      // have same name.
      if (GetOpOriginalType(op_type) == "fused_multi_transformer") {
        auto cache_kv_inputs = op_node->Op()->Input("CacheKV");
        auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut");
        CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
        for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
          op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
        }
      }
    }
  }
  VLOG(4) << "insert number of cast op: " << cache.size();
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

930 931
REGISTER_PASS(auto_mixed_precision_pass,
              paddle::framework::ir::AutoMixedPrecisionPass);