auto_mixed_precision_pass.cc 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/auto_mixed_precision_pass.h"
16 17 18

#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/operator.h"
19 20 21 22 23 24
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"
25 26 27
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/backends/device_manager.h"
#endif
28 29 30 31 32 33 34

namespace paddle {
namespace framework {
namespace ir {

namespace {

35
using VarType = AutoMixedPrecisionPass::VarType;
36 37 38 39 40 41 42 43 44 45 46 47 48 49

bool PhiKernelSupportPrecision(
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  const auto& kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.count(op_type) == 0) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

50
bool KernelSupportPrecision(
51
    const std::string& op_type,
52
    phi::Backend backend,
53 54 55 56
    phi::DataType precision,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto phi_op_type = phi::TransToPhiKernelName(op_type);

57 58 59 60 61 62
  bool support =
      PhiKernelSupportPrecision(phi_op_type, backend, precision, layout);
  if (backend == phi::Backend::GPU) {
    support |= PhiKernelSupportPrecision(
        phi_op_type, phi::Backend::GPUDNN, precision, layout);
  }
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  if (!support) {
    const auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (const auto& kern_pair : it->second) {
        if (platform::is_gpu_place(kern_pair.first.place_) &&
            kern_pair.first.data_type_ ==
                framework::TransToProtoVarType(precision)) {
          support = true;
          break;
        }
      }
    }
  }
  return support;
}

80 81 82 83 84 85 86
inline bool VarNodeHasDtype(Node* var_node) {
  auto type = var_node->Var()->GetType();
  return (type == VarType::SELECTED_ROWS) || (type == VarType::LOD_TENSOR) ||
         (type == VarType::LOD_TENSOR_ARRAY) || (type == VarType::STRINGS) ||
         (type == VarType::VOCAB);
}

87
inline bool IsFP32AndFP64(VarType::Type type) {
88 89 90
  return (type == VarType::FP64) || (type == VarType::FP32);
}

91
inline bool IsFP16AndBFP16(VarType::Type type) {
92 93 94 95 96
  return (type == VarType::FP16) || (type == VarType::BF16);
}

};  // namespace

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
void DoInsertCastOp(Graph* graph,
                    Node* var_node,
                    Node* op_node,
                    VarType::Type from_type,
                    VarType::Type to_type,
                    framework::BlockDesc* block_desc,
                    int* suffix,
                    std::unordered_map<Node*, Node*>* cache) {
  if (from_type == to_type) return;

  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (cache->count(var_node) == 0) {
    // insert cast op between var_node and op_node
    std::string cast_input_name = var_node->Var()->Name();
    std::string cast_output_name =
        var_node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(var_node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*cache)[var_node] = cast_output_node;
  }
  op_node->Op()->Rename(var_node->Name(), cache->at(var_node)->Name());
  IR_NODE_LINK_TO(var_node, cache->at(var_node)->inputs[0]);
  IR_NODE_LINK_TO(cache->at(var_node), op_node);

  IR_NODE_UNLINK(var_node, op_node);
}

149 150 151 152 153 154
bool OpSupportPrecision(const std::string& op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& black_list) {
  bool support = false;
  if (black_list.count(op_type) == 0) {
155 156 157 158 159 160
    // Actual custom backend will be added after the NUM_BACKENDS.
    // We use this feature to determine whether backend is custom device.
    if (backend == phi::Backend::GPU ||
        static_cast<size_t>(backend) >
            static_cast<size_t>(phi::Backend::NUM_BACKENDS)) {
      support = KernelSupportPrecision(op_type, backend, precision);
161 162
    } else {
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
163
          "Now, only support backend of GPU and Custom Device ."));
164 165 166
    }
  }
  return support;
167 168 169 170 171
}

// The set of ops that support fp16 calculation and are considered
// numerically-dangerous, slower and whose effects may also be observed in
// downstream ops.
172
// ref to python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
173
void AutoMixedPrecisionPass::SetDefaultBlacklist() const {
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  black_list_.insert({
      // numerically-dangerous
      "exp",
      "square",
      "log",
      "mean",
      "sum",
      "cos_sim",
      "softmax_with_cross_entropy",
      "sigmoid_cross_entropy_with_logits",
      "c_softmax_with_cross_entropy",
      "cross_entropy",
      "cross_entropy2",
      // slower than fp32
      "conv2d_transpose",
      // default fp32 can avoid return inf when the sum value large than 65504
      "reduce_sum",
  });
}

194 195
void AutoMixedPrecisionPass::Init(Graph* graph) const {
  bool enable_gpu_mixed = Get<bool>("enable_gpu_mixed");
196 197 198 199
  bool enable_custom_device_mixed = false;
  if (Has("enable_custom_device_mixed")) {
    enable_custom_device_mixed = Get<bool>("enable_custom_device_mixed");
  }
200 201
  if (enable_gpu_mixed) {
    backend_ = phi::Backend::GPU;
202 203 204 205 206 207 208 209 210 211 212 213 214 215
  } else if (enable_custom_device_mixed) {
// transform Backend::CUSTOM to actual backend.
// Here, we only consider one custom backend.
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto device_type = phi::DeviceManager::GetAllCustomDeviceTypes()[0];
    backend_ = static_cast<phi::Backend>(
        static_cast<size_t>(phi::Backend::NUM_BACKENDS) +
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(device_type));
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Paddle is not compiled with CustomDevice. "
        "Cannot enable custom_device_mixed."));
#endif
216
  }
217
  skip_pass_ = !enable_gpu_mixed && !enable_custom_device_mixed;
218 219 220

  low_precision_ = static_cast<phi::DataType>(Get<int>("mixed_precision_mode"));

221 222
  black_list_ = Get<std::unordered_set<std::string>>("mixed_black_list");
  SetDefaultBlacklist();
223 224 225 226 227 228 229 230 231
  VLOG(4) << "black_list has ";
  for (const auto& name : black_list_) {
    VLOG(4) << " - " << name;
  }

  keep_io_types_ = true;
  if (Has("keep_io_types")) {
    keep_io_types_ = Get<bool>("keep_io_types");
  }
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

  auto graph_size = graph->SubGraphsSize();
  VLOG(4) << "graph size: " << graph_size;
  subgraphes_.resize(graph_size);
  all_op_nodes_.resize(graph_size);

  for (size_t i = 0; i < graph_size; i++) {
    subgraphes_[i] = graph->GetSubGraph(i);
    all_op_nodes_[i] = TopologySortOperations(*subgraphes_[i]);
    VLOG(4) << "subgraph " << i << " has " << all_op_nodes_[i].size()
            << "op nodes";
    for (auto* var_node : subgraphes_[i]->Nodes()) {
      if (!var_node->IsVar()) continue;

      auto var_name = var_node->Var()->Name();
      if (real_vars_.count(var_name) == 0) {
        real_vars_[var_name] = var_node;
        VLOG(4) << var_name << " is in graph " << i;
      }
    }
  }
}

255 256 257 258 259 260 261 262 263 264
void AutoMixedPrecisionPass::ApplyImpl(Graph* graph) const {
  PADDLE_ENFORCE_NOT_NULL(graph,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the graph "
                              "should not be nullptr."));
  PADDLE_ENFORCE_EQ(graph->IsMainGraph(),
                    true,
                    platform::errors::PreconditionNotMet(
                        "During the auto_mixed_precision_pass, the graph "
                        "should be main graph."));
265

266
  FusePassBase::Init("auto_mixed_precision", graph);
267 268 269

  Init(graph);
  VLOG(4) << "Init done";
270 271 272 273 274 275

  if (skip_pass_) {
    VLOG(3) << "Skip auto_mixed_precision_pass.";
    return;
  }

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
  SetOpUniqueType();
  VLOG(4) << "SetOpUniqueType done";
  GetOpPrecision();
  VLOG(4) << "GetOpPrecision done";
  UpdateOpPrecision();
  VLOG(4) << "UpdateOpPrecision done";
  SetVarPrecision();
  VLOG(4) << "SetVarPrecision done";
  ConvertWeightsData();
  VLOG(4) << "ConvertWeightsData done";
  ProcessOpWithDtypeAttr();
  VLOG(4) << "ProcessOpWithDtypeAttr done";
  InsertCastOp();
  VLOG(4) << "InsertCastOp done";
  RestoreOpOriginType();
  VLOG(4) << "RestoreOpOriginType done";
292 293 294
  LOG(INFO) << "The number of ops run at low precision ["
            << op_run_low_precision_.size() << "/" << op_original_type_.size()
            << "]";
295 296
}

297
void AutoMixedPrecisionPass::SetOpUniqueType() const {
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  int suffix = 0;
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();

      if (op_type == "feed" || op_type == "fetch") continue;

      std::string unique_type = op_type + "_" + std::to_string(suffix++);
      op_original_type_[unique_type] = op_type;
      op_node->Op()->SetType(unique_type);
      op_node->Op()->Flush();
      VLOG(4) << "change op type: " << op_type << " ---> " << unique_type;
    }
  }
}

314
void AutoMixedPrecisionPass::RestoreOpOriginType() const {
315 316 317 318 319 320 321 322 323 324 325
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
      op_node->Op()->SetType(GetOpOriginalType(op_type));
      op_node->Op()->Flush();
      VLOG(4) << "restore op type: " << op_type << " ---> "
              << op_node->Op()->Type();
    }
  }
}

326
inline std::string AutoMixedPrecisionPass::GetOpOriginalType(
327 328 329 330 331 332 333
    const std::string& op_type) const {
  if (op_original_type_.count(op_type)) {
    return op_original_type_.at(op_type);
  }
  return op_type;
}

334
void AutoMixedPrecisionPass::ProcessOpWithDtypeAttr() const {
335 336 337
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

      if (op_node->Op()->HasAttr("in_dtype")) {
        auto* var_node = op_node->inputs[0];
        auto* real_var_node = real_vars_[var_node->Var()->Name()];
        if (IsFP16AndBFP16(real_var_node->Var()->GetDataType())) {
          op_node->Op()->SetAttr(
              "in_dtype",
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
          op_node->Op()->Flush();
          VLOG(4) << "process op with in_dtype attr: " << op_type << " ( "
                  << static_cast<int>(real_var_node->Var()->GetDataType())
                  << " --->" << static_cast<int>(low_precision_) << " )";
        }
      }

353
      if (op_run_low_precision_.count(op_type) == 0) continue;
354 355 356

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
357
        if (IsFP32AndFP64(static_cast<VarType::Type>(dtype))) {
358 359
          op_node->Op()->SetAttr(
              "dtype",
360
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
361 362
          op_node->Op()->Flush();
          VLOG(4) << "process op with dtype attr: " << op_type << " ( " << dtype
363
                  << " --->" << static_cast<int>(low_precision_) << " )";
364
        }
365
      } else if (op_node->Op()->HasAttr("out_dtype")) {
366
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
367
        if (IsFP32AndFP64(static_cast<VarType::Type>(out_dtype))) {
368 369
          op_node->Op()->SetAttr(
              "out_dtype",
370
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
371 372
          op_node->Op()->Flush();
          VLOG(4) << "process op with out_dtype attr: " << op_type << " ( "
373
                  << out_dtype << " --->" << static_cast<int>(low_precision_)
374 375 376 377 378 379 380
                  << " )";
        }
      }
    }
  }
}

381
void AutoMixedPrecisionPass::GetOpPrecision() const {
382 383 384
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
385
      bool support_low_precision = true;
386 387
      if (GetOpOriginalType(op_type) == "feed" ||
          GetOpOriginalType(op_type) == "fetch") {
388
        support_low_precision = !keep_io_types_;
389
      } else {
390 391
        support_low_precision = OpSupportPrecision(
            GetOpOriginalType(op_type), backend_, low_precision_, black_list_);
392 393 394 395
      }

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
396 397 398
        support_low_precision =
            support_low_precision &&
            IsFP32AndFP64(static_cast<VarType::Type>(dtype));
399 400
      } else if (op_node->Op()->HasAttr("out_dtype")) {
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
401 402
        support_low_precision =
            support_low_precision &&
403 404
            IsFP32AndFP64(static_cast<VarType::Type>(out_dtype));
      }
405

406 407 408 409 410 411
      // If scale op's "scale" and "bias" attr value exceed the range of fp16
      // and bf16, it cannot run at low precision.
      if (GetOpOriginalType(op_node->Op()->Type()) == "scale") {
        auto scale = op_node->Op()->GetAttrIfExists<float>("scale");
        auto bias = op_node->Op()->GetAttrIfExists<float>("bias");
        if (low_precision_ == phi::DataType::FLOAT16) {
412 413
          support_low_precision =
              support_low_precision &&
414 415 416
              phi::dtype::isfinite(static_cast<phi::dtype::float16>(scale)) &&
              phi::dtype::isfinite(static_cast<phi::dtype::float16>(bias));
        } else if (low_precision_ == phi::DataType::BFLOAT16) {
417 418
          support_low_precision =
              support_low_precision &&
419 420
              phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(scale)) &&
              phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(bias));
421 422 423
        }
      }

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
      // if op's input var and output var is not dense tensor, the op should
      // not run at low precision.
      for (auto* in_var_node : op_node->inputs) {
        CHECK_EQ(in_var_node->IsVar(), true);
        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
        if (real_in_var_node->Var()->Persistable()) continue;

        support_low_precision =
            support_low_precision &&
            (real_in_var_node->Var()->GetType() == VarType::LOD_TENSOR);
      }
      for (auto* out_var_node : op_node->outputs) {
        CHECK_EQ(out_var_node->IsVar(), true);
        auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
        if (real_out_var_node->Var()->Persistable()) continue;

        support_low_precision =
            support_low_precision &&
            (real_out_var_node->Var()->GetType() == VarType::LOD_TENSOR);
      }

445 446 447
      if (support_low_precision) {
        op_run_low_precision_.insert(op_type);
        VLOG(4) << "support precision: " << op_type << " run at low precision";
448
      } else {
449 450
        VLOG(4) << "support precision: " << op_type
                << " not run at low precision";
451 452 453 454 455
      }
    }
  }
}

456 457
void AutoMixedPrecisionPass::UpdateOpPrecision() const {
  std::unordered_set<std::string> vars_should_not_low_precision;
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

  // var -> the var's all input op
  std::unordered_map<std::string, std::vector<Node*>> var_input_ops;

  auto GetVarInputOps = [&] {
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
        auto op_type = op_node->Op()->Type();

        if (GetOpOriginalType(op_type) == "fetch") continue;
        if (op_node->Op()->HasAttr("sub_block")) continue;

        for (auto* var_node : op_node->outputs) {
          CHECK_EQ(var_node->IsVar(), true);
          if (var_node->Var()->Persistable()) continue;
          if (!VarNodeHasDtype(var_node)) continue;

          var_input_ops[var_node->Var()->Name()].push_back(op_node);
          VLOG(4) << "var input ops: " << var_node->Var()->Name()
                  << " is output of " << op_type;
        }

480 481 482
        // the select_input op's input var should not convert to low precision.
        // when op's output var is select_input op's input var, the op should
        // not run at low precision.
483 484 485 486 487 488
        if (GetOpOriginalType(op_node->Op()->Type()) == "select_input") {
          for (auto* in_var_node : op_node->inputs) {
            CHECK_EQ(in_var_node->IsVar(), true);
            if (in_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(in_var_node)) continue;

489
            vars_should_not_low_precision.insert(in_var_node->Var()->Name());
490 491
          }
        }
492 493

        // when op_1 only support cpu kernel. if op_2's intput var is op_1's
494
        // output var, then op_2 should not run at low precision.
495
        if (GetOpOriginalType(op_type) != "feed" &&
496 497
            !KernelSupportPrecision(
                GetOpOriginalType(op_type), backend_, phi::DataType::FLOAT32)) {
498 499 500 501 502 503 504 505
          for (auto* out_var_node : op_node->outputs) {
            CHECK_EQ(out_var_node->IsVar(), true);
            if (out_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(out_var_node)) continue;

            vars_should_not_low_precision.insert(out_var_node->Var()->Name());
          }
        }
506 507 508 509 510 511 512 513 514 515
      }
    }
  };
  GetVarInputOps();

  bool precision_updated = false;
  do {
    precision_updated = false;
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
516
        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;
517

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);
          if (!VarNodeHasDtype(in_var_node)) continue;

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          if (real_in_var_node->Var()->Persistable()) continue;

          if (vars_should_not_low_precision.count(
                  real_in_var_node->Var()->Name())) {
            op_run_low_precision_.erase(op_node->Op()->Type());
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
                    << " should not run at low precision.";
            break;
          }
        }

        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;

537 538 539 540 541 542 543
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          if (!VarNodeHasDtype(out_var_node)) continue;

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

544
          bool not_run_low_precision = false;
545 546
          const auto& input_op_nodes =
              var_input_ops[real_out_var_node->Var()->Name()];
547 548 549
          if (vars_should_not_low_precision.count(
                  real_out_var_node->Var()->Name())) {
            not_run_low_precision = true;
550 551
          } else {
            for (auto* node : input_op_nodes) {
552 553
              if (op_run_low_precision_.count(node->Op()->Type()) == 0) {
                not_run_low_precision = true;
554 555 556 557
                break;
              }
            }
          }
558 559
          if (not_run_low_precision) {
            op_run_low_precision_.erase(op_node->Op()->Type());
560 561
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
562
                    << " should not run at low precision.";
563 564 565 566 567 568 569 570 571
            break;
          }
        }
      }
    }
  } while (precision_updated);
}

// special ops, its weights should not be low precision.
572 573
bool AutoMixedPrecisionPass::InputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
  auto* op_desc = op_node->Op();
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Input("Bias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Mean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Scale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Variance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  } else if (GetOpOriginalType(op_desc->Type()) == "fused_multi_transformer") {
    auto vecs = op_desc->Input("LnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("LnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
  return false;
}

613 614
bool AutoMixedPrecisionPass::OutputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
  auto* op_desc = op_node->Op();
  // batch_norm's input and output (variance and mean) are the same.
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
  return false;
}

638
void AutoMixedPrecisionPass::SetVarPrecision() const {
639 640
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
641 642 643 644 645
      if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) {
        continue;
      }

      if (GetOpOriginalType(op_node->Op()->Type()) != "feed") {
646 647 648 649 650 651
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          auto in_var_name = real_in_var_node->Var()->Name();

652
          if (!IsFP32AndFP64(real_in_var_node->Var()->GetDataType())) continue;
653 654 655 656 657
          if (!VarNodeHasDtype(real_in_var_node)) continue;
          if (InputVarsNotConvert(op_node, in_var_name)) continue;

          if (real_in_var_node->Var()->Persistable()) {
            real_in_var_node->Var()->SetDataType(
658 659
                framework::TransToProtoVarType(low_precision_));
            vars_convert_to_low_precision_.insert(in_var_name);
660 661
          }
        }
662
      }
663

664
      if (GetOpOriginalType(op_node->Op()->Type()) != "fetch") {
665 666 667 668 669 670
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          auto out_var_name = real_out_var_node->Var()->Name();

671
          if (!IsFP32AndFP64(real_out_var_node->Var()->GetDataType())) continue;
672 673 674 675
          if (!VarNodeHasDtype(real_out_var_node)) continue;
          if (OutputVarsNotConvert(op_node, out_var_name)) continue;

          real_out_var_node->Var()->SetDataType(
676
              framework::TransToProtoVarType(low_precision_));
677
          if (real_out_var_node->Var()->Persistable()) {
678
            vars_convert_to_low_precision_.insert(out_var_name);
679 680 681 682 683 684 685 686 687 688 689 690 691 692
          }
        }
      }
    }
  }

  // This code used to precess vars with the same name. Vars with the same
  // name should have the same data type.
  for (auto* subgraph : subgraphes_) {
    for (auto* var_node : subgraph->Nodes()) {
      if (!var_node->IsVar() || !var_node->Var()->Persistable()) continue;
      if (!VarNodeHasDtype(var_node)) continue;

      auto var_name = var_node->Var()->Name();
693
      if (vars_convert_to_low_precision_.count(var_name)) {
694
        var_node->Var()->SetDataType(
695
            framework::TransToProtoVarType(low_precision_));
696 697 698 699 700
      }
    }
  }
}

701
void AutoMixedPrecisionPass::ConvertWeightsData() const {
702
  auto* scope = param_scope();
703 704 705 706
  PADDLE_ENFORCE_NOT_NULL(scope,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the scope "
                              "should not be null."));
707 708 709

  auto var_names = scope->LocalVarNames();
  for (const auto& var_name : var_names) {
710
    if (vars_convert_to_low_precision_.count(var_name)) {
711
      VLOG(4) << var_name << "'s data type was convert to low precision";
712 713

      auto* var = scope->FindLocalVar(var_name);
714 715 716 717
      CHECK_EQ(var->IsType<phi::DenseTensor>(), true);

      auto* origin_tensor = var->GetMutable<phi::DenseTensor>();

718 719 720
      phi::DenseTensor low_precision_tensor;
      low_precision_tensor.Resize(origin_tensor->dims());
      low_precision_tensor.set_type(low_precision_);
721

722 723 724 725
      if (low_precision_ == phi::DataType::FLOAT16) {
        auto* low_precision_data =
            low_precision_tensor.mutable_data<phi::dtype::float16>(
                phi::CPUPlace{});
726 727 728
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
729 730
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
731 732
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
733 734
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
735 736
          }
        }
737
      } else if (low_precision_ == phi::DataType::BFLOAT16) {
738
        auto* low_precision_data =
739 740
            low_precision_tensor.mutable_data<phi::dtype::bfloat16>(
                phi::CPUPlace{});
741 742 743
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
744 745
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
746 747
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
748 749
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
750
          }
751 752
        }
      }
753 754
      origin_tensor->clear();
      paddle::framework::TensorCopySync(
755
          low_precision_tensor, phi::CPUPlace{}, origin_tensor);
756 757 758 759
    }
  }
}

760
void AutoMixedPrecisionPass::InsertCastOp() const {
761 762 763 764 765 766 767 768 769 770 771 772 773
  int suffix = 0;
  std::unordered_map<Node*, Node*> cache;

  for (size_t i = 0; i < all_op_nodes_.size(); i++) {
    auto* block_desc = all_op_nodes_[i][0]->Op()->Block();
    CHECK_NOTNULL(block_desc);
    for (auto* op_node : all_op_nodes_[i]) {
      auto op_type = op_node->Op()->Type();

      if (GetOpOriginalType(op_type) == "feed") continue;
      if (op_node->Op()->HasAttr("sub_block")) continue;

      VLOG(4) << "process op: " << op_type
774
              << " run low precision: " << op_run_low_precision_.count(op_type);
775 776 777 778 779 780 781 782 783 784 785 786 787 788

      auto inputs = op_node->inputs;
      for (auto* in_var_node : inputs) {
        if (!in_var_node->IsVar()) continue;
        if (!VarNodeHasDtype(in_var_node)) continue;
        if (in_var_node->Var()->Persistable()) continue;

        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];

        auto in_var_type = real_in_var_node->Var()->GetDataType();

        VLOG(4) << "process var: " << real_in_var_node->Var()->Name()
                << " with type " << in_var_type;

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
        if (IsFP32AndFP64(in_var_type) &&
            op_run_low_precision_.count(op_type)) {
          auto to_type = framework::TransToProtoVarType(low_precision_);
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
        } else if (IsFP16AndBFP16(in_var_type) &&
809
                   op_run_low_precision_.count(op_type) == 0) {
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
          auto to_type = VarType::FP32;
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
        }
      }

      // Special op.
      // fused_multi_transformer's input(CacheKV) and output(CacheKVOut) vars
      // have same name.
      if (GetOpOriginalType(op_type) == "fused_multi_transformer") {
        auto cache_kv_inputs = op_node->Op()->Input("CacheKV");
        auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut");
        CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
        for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
          op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
        }
      }
    }
  }
  VLOG(4) << "insert number of cast op: " << cache.size();
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

850 851
REGISTER_PASS(auto_mixed_precision_pass,
              paddle::framework::ir::AutoMixedPrecisionPass);