auto_mixed_precision_pass.cc 32.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/auto_mixed_precision_pass.h"
16 17 18

#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/operator.h"
19 20 21 22 23 24
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"
25 26 27
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/backends/device_manager.h"
#endif
28 29 30 31 32 33 34

namespace paddle {
namespace framework {
namespace ir {

namespace {

35
using VarType = AutoMixedPrecisionPass::VarType;
36 37 38 39 40 41 42 43 44 45 46 47 48 49

bool PhiKernelSupportPrecision(
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  const auto& kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.count(op_type) == 0) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
static phi::Backend ConvertPlaceToBackend(const phi::Place& place) {
  switch (place.GetType()) {
    case phi::AllocationType::CPU:
      return phi::Backend::CPU;
    case phi::AllocationType::GPU:
      return phi::Backend::GPU;
    case phi::AllocationType::XPU:
      return phi::Backend::XPU;
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Cannot convert place(%d).", static_cast<int>(place.GetType())));
  }
  return phi::Backend::UNDEFINED;
}

65
bool KernelSupportPrecision(
66
    const std::string& op_type,
67
    phi::Backend backend,
68 69 70 71
    phi::DataType precision,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto phi_op_type = phi::TransToPhiKernelName(op_type);

72 73 74 75 76 77
  bool support =
      PhiKernelSupportPrecision(phi_op_type, backend, precision, layout);
  if (backend == phi::Backend::GPU) {
    support |= PhiKernelSupportPrecision(
        phi_op_type, phi::Backend::GPUDNN, precision, layout);
  }
78 79 80 81 82
  if (!support) {
    const auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (const auto& kern_pair : it->second) {
83
        if (ConvertPlaceToBackend(kern_pair.first.place_) == backend &&
84 85 86 87 88 89 90 91 92 93 94
            kern_pair.first.data_type_ ==
                framework::TransToProtoVarType(precision)) {
          support = true;
          break;
        }
      }
    }
  }
  return support;
}

95 96 97 98 99 100 101
inline bool VarNodeHasDtype(Node* var_node) {
  auto type = var_node->Var()->GetType();
  return (type == VarType::SELECTED_ROWS) || (type == VarType::LOD_TENSOR) ||
         (type == VarType::LOD_TENSOR_ARRAY) || (type == VarType::STRINGS) ||
         (type == VarType::VOCAB);
}

102
inline bool IsFP32AndFP64(VarType::Type type) {
103 104 105
  return (type == VarType::FP64) || (type == VarType::FP32);
}

106
inline bool IsFP16AndBFP16(VarType::Type type) {
107 108 109 110 111
  return (type == VarType::FP16) || (type == VarType::BF16);
}

};  // namespace

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
void DoInsertCastOp(Graph* graph,
                    Node* var_node,
                    Node* op_node,
                    VarType::Type from_type,
                    VarType::Type to_type,
                    framework::BlockDesc* block_desc,
                    int* suffix,
                    std::unordered_map<Node*, Node*>* cache) {
  if (from_type == to_type) return;

  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (cache->count(var_node) == 0) {
    // insert cast op between var_node and op_node
    std::string cast_input_name = var_node->Var()->Name();
    std::string cast_output_name =
        var_node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(var_node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*cache)[var_node] = cast_output_node;
  }
  op_node->Op()->Rename(var_node->Name(), cache->at(var_node)->Name());
  IR_NODE_LINK_TO(var_node, cache->at(var_node)->inputs[0]);
  IR_NODE_LINK_TO(cache->at(var_node), op_node);

  IR_NODE_UNLINK(var_node, op_node);
}

164 165 166 167
bool OpSupportPrecision(const std::string& op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& black_list) {
168 169
  return black_list.count(op_type) == 0 &&
         KernelSupportPrecision(op_type, backend, precision);
170 171 172 173 174
}

// The set of ops that support fp16 calculation and are considered
// numerically-dangerous, slower and whose effects may also be observed in
// downstream ops.
175
// ref to python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
176
void AutoMixedPrecisionPass::SetDefaultBlacklist() const {
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  black_list_.insert({
      // numerically-dangerous
      "exp",
      "square",
      "log",
      "mean",
      "sum",
      "cos_sim",
      "softmax_with_cross_entropy",
      "sigmoid_cross_entropy_with_logits",
      "c_softmax_with_cross_entropy",
      "cross_entropy",
      "cross_entropy2",
      // slower than fp32
      "conv2d_transpose",
      // default fp32 can avoid return inf when the sum value large than 65504
      "reduce_sum",
  });
}

197
void AutoMixedPrecisionPass::Init(Graph* graph) const {
198
  if (Has("enable_gpu_mixed") && Get<bool>("enable_gpu_mixed")) {
199
    backend_ = phi::Backend::GPU;
200 201 202 203 204
  } else if (Has("enable_xpu_mixed") && Get<bool>("enable_xpu_mixed")) {
    backend_ = phi::Backend::XPU;
  } else if (Has("enable_custom_device_mixed") &&
             Get<bool>("enable_custom_device_mixed")) {
    // transform Backend::CUSTOM to actual backend.
205 206 207 208 209 210 211 212 213 214 215 216
// Here, we only consider one custom backend.
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto device_type = phi::DeviceManager::GetAllCustomDeviceTypes()[0];
    backend_ = static_cast<phi::Backend>(
        static_cast<size_t>(phi::Backend::NUM_BACKENDS) +
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(device_type));
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Paddle is not compiled with CustomDevice. "
        "Cannot enable custom_device_mixed."));
#endif
217
  }
218
  skip_pass_ = backend_ == phi::Backend::UNDEFINED;
219 220 221

  low_precision_ = static_cast<phi::DataType>(Get<int>("mixed_precision_mode"));

222 223
  black_list_ = Get<std::unordered_set<std::string>>("mixed_black_list");
  SetDefaultBlacklist();
224 225 226 227 228 229 230 231
  VLOG(4) << "black_list has ";
  for (const auto& name : black_list_) {
    VLOG(4) << " - " << name;
  }

  if (Has("keep_io_types")) {
    keep_io_types_ = Get<bool>("keep_io_types");
  }
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

  auto graph_size = graph->SubGraphsSize();
  VLOG(4) << "graph size: " << graph_size;
  subgraphes_.resize(graph_size);
  all_op_nodes_.resize(graph_size);

  for (size_t i = 0; i < graph_size; i++) {
    subgraphes_[i] = graph->GetSubGraph(i);
    all_op_nodes_[i] = TopologySortOperations(*subgraphes_[i]);
    VLOG(4) << "subgraph " << i << " has " << all_op_nodes_[i].size()
            << "op nodes";
    for (auto* var_node : subgraphes_[i]->Nodes()) {
      if (!var_node->IsVar()) continue;

      auto var_name = var_node->Var()->Name();
      if (real_vars_.count(var_name) == 0) {
        real_vars_[var_name] = var_node;
        VLOG(4) << var_name << " is in graph " << i;
      }
    }
  }
}

255 256 257 258 259 260 261 262 263 264
void AutoMixedPrecisionPass::ApplyImpl(Graph* graph) const {
  PADDLE_ENFORCE_NOT_NULL(graph,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the graph "
                              "should not be nullptr."));
  PADDLE_ENFORCE_EQ(graph->IsMainGraph(),
                    true,
                    platform::errors::PreconditionNotMet(
                        "During the auto_mixed_precision_pass, the graph "
                        "should be main graph."));
265

266
  FusePassBase::Init("auto_mixed_precision", graph);
267 268 269

  Init(graph);
  VLOG(4) << "Init done";
270 271 272 273 274 275

  if (skip_pass_) {
    VLOG(3) << "Skip auto_mixed_precision_pass.";
    return;
  }

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
  SetOpUniqueType();
  VLOG(4) << "SetOpUniqueType done";
  GetOpPrecision();
  VLOG(4) << "GetOpPrecision done";
  UpdateOpPrecision();
  VLOG(4) << "UpdateOpPrecision done";
  SetVarPrecision();
  VLOG(4) << "SetVarPrecision done";
  ConvertWeightsData();
  VLOG(4) << "ConvertWeightsData done";
  ProcessOpWithDtypeAttr();
  VLOG(4) << "ProcessOpWithDtypeAttr done";
  InsertCastOp();
  VLOG(4) << "InsertCastOp done";
  RestoreOpOriginType();
  VLOG(4) << "RestoreOpOriginType done";
292 293 294
  LOG(INFO) << "The number of ops run at low precision ["
            << op_run_low_precision_.size() << "/" << op_original_type_.size()
            << "]";
295 296
}

297
void AutoMixedPrecisionPass::SetOpUniqueType() const {
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  int suffix = 0;
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();

      if (op_type == "feed" || op_type == "fetch") continue;

      std::string unique_type = op_type + "_" + std::to_string(suffix++);
      op_original_type_[unique_type] = op_type;
      op_node->Op()->SetType(unique_type);
      op_node->Op()->Flush();
      VLOG(4) << "change op type: " << op_type << " ---> " << unique_type;
    }
  }
}

314
void AutoMixedPrecisionPass::RestoreOpOriginType() const {
315 316 317 318 319 320 321 322 323 324 325
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
      op_node->Op()->SetType(GetOpOriginalType(op_type));
      op_node->Op()->Flush();
      VLOG(4) << "restore op type: " << op_type << " ---> "
              << op_node->Op()->Type();
    }
  }
}

326
inline std::string AutoMixedPrecisionPass::GetOpOriginalType(
327 328 329 330 331 332 333
    const std::string& op_type) const {
  if (op_original_type_.count(op_type)) {
    return op_original_type_.at(op_type);
  }
  return op_type;
}

334
void AutoMixedPrecisionPass::ProcessOpWithDtypeAttr() const {
335 336 337
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

      if (op_node->Op()->HasAttr("in_dtype")) {
        auto* var_node = op_node->inputs[0];
        auto* real_var_node = real_vars_[var_node->Var()->Name()];
        if (IsFP16AndBFP16(real_var_node->Var()->GetDataType())) {
          op_node->Op()->SetAttr(
              "in_dtype",
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
          op_node->Op()->Flush();
          VLOG(4) << "process op with in_dtype attr: " << op_type << " ( "
                  << static_cast<int>(real_var_node->Var()->GetDataType())
                  << " --->" << static_cast<int>(low_precision_) << " )";
        }
      }

353
      if (op_run_low_precision_.count(op_type) == 0) continue;
354 355 356

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
357
        if (IsFP32AndFP64(static_cast<VarType::Type>(dtype))) {
358 359
          op_node->Op()->SetAttr(
              "dtype",
360
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
361 362
          op_node->Op()->Flush();
          VLOG(4) << "process op with dtype attr: " << op_type << " ( " << dtype
363
                  << " --->" << static_cast<int>(low_precision_) << " )";
364
        }
365
      } else if (op_node->Op()->HasAttr("out_dtype")) {
366
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
367
        if (IsFP32AndFP64(static_cast<VarType::Type>(out_dtype))) {
368 369
          op_node->Op()->SetAttr(
              "out_dtype",
370
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
371 372
          op_node->Op()->Flush();
          VLOG(4) << "process op with out_dtype attr: " << op_type << " ( "
373
                  << out_dtype << " --->" << static_cast<int>(low_precision_)
374 375 376 377 378 379 380
                  << " )";
        }
      }
    }
  }
}

381
void AutoMixedPrecisionPass::GetOpPrecision() const {
382 383 384
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
385
      bool support_low_precision = true;
386 387
      if (GetOpOriginalType(op_type) == "feed" ||
          GetOpOriginalType(op_type) == "fetch") {
388
        support_low_precision = !keep_io_types_;
389
      } else {
390 391
        support_low_precision = OpSupportPrecision(
            GetOpOriginalType(op_type), backend_, low_precision_, black_list_);
392 393 394 395
      }

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
396 397 398
        support_low_precision =
            support_low_precision &&
            IsFP32AndFP64(static_cast<VarType::Type>(dtype));
399 400
      } else if (op_node->Op()->HasAttr("out_dtype")) {
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
401 402
        support_low_precision =
            support_low_precision &&
403 404
            IsFP32AndFP64(static_cast<VarType::Type>(out_dtype));
      }
405

406 407 408 409 410 411
      // If scale op's "scale" and "bias" attr value exceed the range of fp16
      // and bf16, it cannot run at low precision.
      if (GetOpOriginalType(op_node->Op()->Type()) == "scale") {
        auto scale = op_node->Op()->GetAttrIfExists<float>("scale");
        auto bias = op_node->Op()->GetAttrIfExists<float>("bias");
        if (low_precision_ == phi::DataType::FLOAT16) {
412 413
          support_low_precision =
              support_low_precision &&
414 415 416
              phi::dtype::isfinite(static_cast<phi::dtype::float16>(scale)) &&
              phi::dtype::isfinite(static_cast<phi::dtype::float16>(bias));
        } else if (low_precision_ == phi::DataType::BFLOAT16) {
417 418
          support_low_precision =
              support_low_precision &&
419 420
              phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(scale)) &&
              phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(bias));
421 422 423
        }
      }

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
      // if op's input var and output var is not dense tensor, the op should
      // not run at low precision.
      for (auto* in_var_node : op_node->inputs) {
        CHECK_EQ(in_var_node->IsVar(), true);
        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
        if (real_in_var_node->Var()->Persistable()) continue;

        support_low_precision =
            support_low_precision &&
            (real_in_var_node->Var()->GetType() == VarType::LOD_TENSOR);
      }
      for (auto* out_var_node : op_node->outputs) {
        CHECK_EQ(out_var_node->IsVar(), true);
        auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
        if (real_out_var_node->Var()->Persistable()) continue;

        support_low_precision =
            support_low_precision &&
            (real_out_var_node->Var()->GetType() == VarType::LOD_TENSOR);
      }

445 446 447
      if (support_low_precision) {
        op_run_low_precision_.insert(op_type);
        VLOG(4) << "support precision: " << op_type << " run at low precision";
448
      } else {
449 450
        VLOG(4) << "support precision: " << op_type
                << " not run at low precision";
451 452 453 454 455
      }
    }
  }
}

456 457
void AutoMixedPrecisionPass::UpdateOpPrecision() const {
  std::unordered_set<std::string> vars_should_not_low_precision;
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

  // var -> the var's all input op
  std::unordered_map<std::string, std::vector<Node*>> var_input_ops;

  auto GetVarInputOps = [&] {
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
        auto op_type = op_node->Op()->Type();

        if (GetOpOriginalType(op_type) == "fetch") continue;
        if (op_node->Op()->HasAttr("sub_block")) continue;

        for (auto* var_node : op_node->outputs) {
          CHECK_EQ(var_node->IsVar(), true);
          if (var_node->Var()->Persistable()) continue;
          if (!VarNodeHasDtype(var_node)) continue;

          var_input_ops[var_node->Var()->Name()].push_back(op_node);
          VLOG(4) << "var input ops: " << var_node->Var()->Name()
                  << " is output of " << op_type;
        }

480 481 482
        // the select_input op's input var should not convert to low precision.
        // when op's output var is select_input op's input var, the op should
        // not run at low precision.
483 484 485 486 487 488
        if (GetOpOriginalType(op_node->Op()->Type()) == "select_input") {
          for (auto* in_var_node : op_node->inputs) {
            CHECK_EQ(in_var_node->IsVar(), true);
            if (in_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(in_var_node)) continue;

489
            vars_should_not_low_precision.insert(in_var_node->Var()->Name());
490 491
          }
        }
492 493

        // when op_1 only support cpu kernel. if op_2's intput var is op_1's
494
        // output var, then op_2 should not run at low precision.
495
        if (GetOpOriginalType(op_type) != "feed" &&
496 497
            !KernelSupportPrecision(
                GetOpOriginalType(op_type), backend_, phi::DataType::FLOAT32)) {
498 499 500 501 502 503 504 505
          for (auto* out_var_node : op_node->outputs) {
            CHECK_EQ(out_var_node->IsVar(), true);
            if (out_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(out_var_node)) continue;

            vars_should_not_low_precision.insert(out_var_node->Var()->Name());
          }
        }
506 507 508 509 510 511 512 513 514 515
      }
    }
  };
  GetVarInputOps();

  bool precision_updated = false;
  do {
    precision_updated = false;
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
516
        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;
517

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);
          if (!VarNodeHasDtype(in_var_node)) continue;

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          if (real_in_var_node->Var()->Persistable()) continue;

          if (vars_should_not_low_precision.count(
                  real_in_var_node->Var()->Name())) {
            op_run_low_precision_.erase(op_node->Op()->Type());
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
                    << " should not run at low precision.";
            break;
          }
        }

        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;

537 538 539 540 541 542 543
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          if (!VarNodeHasDtype(out_var_node)) continue;

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

544
          bool not_run_low_precision = false;
545 546
          const auto& input_op_nodes =
              var_input_ops[real_out_var_node->Var()->Name()];
547 548 549
          if (vars_should_not_low_precision.count(
                  real_out_var_node->Var()->Name())) {
            not_run_low_precision = true;
550 551
          } else {
            for (auto* node : input_op_nodes) {
552 553
              if (op_run_low_precision_.count(node->Op()->Type()) == 0) {
                not_run_low_precision = true;
554 555 556 557
                break;
              }
            }
          }
558 559
          if (not_run_low_precision) {
            op_run_low_precision_.erase(op_node->Op()->Type());
560 561
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
562
                    << " should not run at low precision.";
563 564 565 566 567 568 569 570 571
            break;
          }
        }
      }
    }
  } while (precision_updated);
}

// special ops, its weights should not be low precision.
572 573
bool AutoMixedPrecisionPass::InputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
  auto* op_desc = op_node->Op();
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Input("Bias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Mean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Scale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Variance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  } else if (GetOpOriginalType(op_desc->Type()) == "fused_multi_transformer") {
    auto vecs = op_desc->Input("LnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("LnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
610 611 612 613 614 615 616 617 618 619 620

  if (backend_ == phi::Backend::XPU) {
    if (GetOpOriginalType(op_desc->Type()) == "layer_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
621 622 623 624 625 626 627 628 629
    } else if (GetOpOriginalType(op_desc->Type()) == "instance_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
630 631 632
    }
  }

633 634 635
  return false;
}

636 637
bool AutoMixedPrecisionPass::OutputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
  auto* op_desc = op_node->Op();
  // batch_norm's input and output (variance and mean) are the same.
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
658 659 660 661 662 663 664 665 666 667 668 669 670 671

  if (backend_ == phi::Backend::XPU) {
    if (GetOpOriginalType(op_desc->Type()) == "layer_norm") {
      auto vecs = op_desc->Output("Mean");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Output("Variance");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
    }
  }

672 673 674
  return false;
}

675
void AutoMixedPrecisionPass::SetVarPrecision() const {
676 677
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
678 679 680 681 682
      if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) {
        continue;
      }

      if (GetOpOriginalType(op_node->Op()->Type()) != "feed") {
683 684 685 686 687 688
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          auto in_var_name = real_in_var_node->Var()->Name();

689
          if (!IsFP32AndFP64(real_in_var_node->Var()->GetDataType())) continue;
690 691 692 693 694
          if (!VarNodeHasDtype(real_in_var_node)) continue;
          if (InputVarsNotConvert(op_node, in_var_name)) continue;

          if (real_in_var_node->Var()->Persistable()) {
            real_in_var_node->Var()->SetDataType(
695 696
                framework::TransToProtoVarType(low_precision_));
            vars_convert_to_low_precision_.insert(in_var_name);
697 698
          }
        }
699
      }
700

701
      if (GetOpOriginalType(op_node->Op()->Type()) != "fetch") {
702 703 704 705 706 707
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          auto out_var_name = real_out_var_node->Var()->Name();

708
          if (!IsFP32AndFP64(real_out_var_node->Var()->GetDataType())) continue;
709 710 711 712
          if (!VarNodeHasDtype(real_out_var_node)) continue;
          if (OutputVarsNotConvert(op_node, out_var_name)) continue;

          real_out_var_node->Var()->SetDataType(
713
              framework::TransToProtoVarType(low_precision_));
714
          if (real_out_var_node->Var()->Persistable()) {
715
            vars_convert_to_low_precision_.insert(out_var_name);
716 717 718 719 720 721 722 723 724 725 726 727 728 729
          }
        }
      }
    }
  }

  // This code used to precess vars with the same name. Vars with the same
  // name should have the same data type.
  for (auto* subgraph : subgraphes_) {
    for (auto* var_node : subgraph->Nodes()) {
      if (!var_node->IsVar() || !var_node->Var()->Persistable()) continue;
      if (!VarNodeHasDtype(var_node)) continue;

      auto var_name = var_node->Var()->Name();
730
      if (vars_convert_to_low_precision_.count(var_name)) {
731
        var_node->Var()->SetDataType(
732
            framework::TransToProtoVarType(low_precision_));
733 734 735 736 737
      }
    }
  }
}

738
void AutoMixedPrecisionPass::ConvertWeightsData() const {
739
  auto* scope = param_scope();
740 741 742 743
  PADDLE_ENFORCE_NOT_NULL(scope,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the scope "
                              "should not be null."));
744 745 746

  auto var_names = scope->LocalVarNames();
  for (const auto& var_name : var_names) {
747
    if (vars_convert_to_low_precision_.count(var_name)) {
748
      VLOG(4) << var_name << "'s data type was convert to low precision";
749 750

      auto* var = scope->FindLocalVar(var_name);
751 752 753 754
      CHECK_EQ(var->IsType<phi::DenseTensor>(), true);

      auto* origin_tensor = var->GetMutable<phi::DenseTensor>();

755 756 757
      phi::DenseTensor low_precision_tensor;
      low_precision_tensor.Resize(origin_tensor->dims());
      low_precision_tensor.set_type(low_precision_);
758

759 760 761 762
      if (low_precision_ == phi::DataType::FLOAT16) {
        auto* low_precision_data =
            low_precision_tensor.mutable_data<phi::dtype::float16>(
                phi::CPUPlace{});
763 764 765
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
766 767
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
768 769
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
770 771
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
772 773
          }
        }
774
      } else if (low_precision_ == phi::DataType::BFLOAT16) {
775
        auto* low_precision_data =
776 777
            low_precision_tensor.mutable_data<phi::dtype::bfloat16>(
                phi::CPUPlace{});
778 779 780
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
781 782
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
783 784
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
785 786
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
787
          }
788 789
        }
      }
790 791
      origin_tensor->clear();
      paddle::framework::TensorCopySync(
792
          low_precision_tensor, phi::CPUPlace{}, origin_tensor);
793 794 795 796
    }
  }
}

797
void AutoMixedPrecisionPass::InsertCastOp() const {
798 799 800 801 802 803 804 805 806 807 808 809 810
  int suffix = 0;
  std::unordered_map<Node*, Node*> cache;

  for (size_t i = 0; i < all_op_nodes_.size(); i++) {
    auto* block_desc = all_op_nodes_[i][0]->Op()->Block();
    CHECK_NOTNULL(block_desc);
    for (auto* op_node : all_op_nodes_[i]) {
      auto op_type = op_node->Op()->Type();

      if (GetOpOriginalType(op_type) == "feed") continue;
      if (op_node->Op()->HasAttr("sub_block")) continue;

      VLOG(4) << "process op: " << op_type
811
              << " run low precision: " << op_run_low_precision_.count(op_type);
812 813 814 815 816 817 818 819 820 821 822 823 824 825

      auto inputs = op_node->inputs;
      for (auto* in_var_node : inputs) {
        if (!in_var_node->IsVar()) continue;
        if (!VarNodeHasDtype(in_var_node)) continue;
        if (in_var_node->Var()->Persistable()) continue;

        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];

        auto in_var_type = real_in_var_node->Var()->GetDataType();

        VLOG(4) << "process var: " << real_in_var_node->Var()->Name()
                << " with type " << in_var_type;

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
        if (IsFP32AndFP64(in_var_type) &&
            op_run_low_precision_.count(op_type)) {
          auto to_type = framework::TransToProtoVarType(low_precision_);
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
        } else if (IsFP16AndBFP16(in_var_type) &&
846
                   op_run_low_precision_.count(op_type) == 0) {
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
          auto to_type = VarType::FP32;
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        }
      }

      // Special op.
      // fused_multi_transformer's input(CacheKV) and output(CacheKVOut) vars
      // have same name.
      if (GetOpOriginalType(op_type) == "fused_multi_transformer") {
        auto cache_kv_inputs = op_node->Op()->Input("CacheKV");
        auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut");
        CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
        for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
          op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
        }
      }
    }
  }
  VLOG(4) << "insert number of cast op: " << cache.size();
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

887 888
REGISTER_PASS(auto_mixed_precision_pass,
              paddle::framework::ir::AutoMixedPrecisionPass);