fusion_gru_op.cc 21.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
16

T
tensor-tang 已提交
17
#include <cstring>  // for memcpy
T
tensor-tang 已提交
18
#include <string>
H
huangxu96 已提交
19
#include <vector>
20

21
#include "paddle/fluid/framework/op_version_registry.h"
22
#include "paddle/phi/kernels/funcs/blas/blas.h"
23
#include "paddle/phi/kernels/funcs/fc_functor.h"
24
#include "paddle/phi/kernels/funcs/jit/kernels.h"
F
Feiyu Chan 已提交
25
#include "paddle/phi/kernels/funcs/sequence2batch.h"
T
tensor-tang 已提交
26 27 28 29 30

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
31 32 33 34 35
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightX"), "Input", "WeightX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightH"), "Input", "WeightH", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("XX"), "Output", "XX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "fusion_gru");
T
tensor-tang 已提交
36
  auto x_dims = ctx->GetInputDim("X");
37
  auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1)
38
                        ? phi::flatten_to_2d(x_dims, 1)
39 40
                        : x_dims;
  PADDLE_ENFORCE_EQ(
41 42
      x_mat_dims.size(),
      2,
43 44 45 46
      platform::errors::InvalidArgument("The size of input X dims should be 2, "
                                        "or 3 with second dimension equal to "
                                        "1, but now Input X dim is:[%s] ",
                                        x_dims));
T
tensor-tang 已提交
47 48

  auto wx_dims = ctx->GetInputDim("WeightX");
49 50
  PADDLE_ENFORCE_EQ(wx_dims.size(),
                    2,
51 52 53
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightX) should be 2, but received "
                        "WeightX dim size is:%d, WeightX dim is:[%s] ",
54 55
                        wx_dims.size(),
                        wx_dims));
56
  PADDLE_ENFORCE_EQ(
57 58
      wx_dims[0],
      x_mat_dims[1],
59 60 61 62 63
      platform::errors::InvalidArgument(
          "The first dimension of flattened WeightX"
          "should equal to last dimension of flattened input X, but "
          "received fattened WeightX dimension is:%d, flattened X dimension "
          "is:%d",
64 65
          wx_dims[0],
          x_mat_dims[1]));
T
tensor-tang 已提交
66 67 68

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
69

70 71
  PADDLE_ENFORCE_EQ(wh_dims.size(),
                    2,
72 73 74
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightH) should be 2, but received "
                        "WeightH dim size is:%d, WeightH dim is:[%s]",
75 76 77 78
                        wh_dims.size(),
                        wh_dims));
  PADDLE_ENFORCE_EQ(wh_dims[0],
                    frame_size,
79 80 81 82 83
                    platform::errors::InvalidArgument(
                        "The first dimension of WeightH "
                        "should equal to frame_size, but received WeightH's "
                        "first dimension is: "
                        "%d, frame size is:%d",
84 85 86 87
                        wh_dims[0],
                        frame_size));
  PADDLE_ENFORCE_EQ(wh_dims[1],
                    3 * frame_size,
88 89 90 91
                    platform::errors::InvalidArgument(
                        "The second dimension of Input(WeightH) "
                        "should equal to 3 * frame_size, but received WeightH "
                        "is:%d, frame size is:%d",
92 93
                        wh_dims[1],
                        frame_size));
T
tensor-tang 已提交
94

95
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
96
    auto h0_dims = ctx->GetInputDim("H0");
97 98
    PADDLE_ENFORCE_EQ(h0_dims[1],
                      frame_size,
99 100 101
                      platform::errors::InvalidArgument(
                          "The width of H0 must be equal to frame_size, but "
                          "receiced the width of H0 is:%d, frame size is:%d",
102 103
                          h0_dims[1],
                          frame_size));
T
tensor-tang 已提交
104
  }
105
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
106
    auto b_dims = ctx->GetInputDim("Bias");
107 108
    PADDLE_ENFORCE_EQ(b_dims.size(),
                      2,
109 110 111
                      platform::errors::InvalidArgument(
                          "The rank of Input(Bias) should be 2, but received "
                          "Bias rank is:%d, Bias dim is:[%s]",
112 113 114 115
                          b_dims.size(),
                          b_dims));
    PADDLE_ENFORCE_EQ(b_dims[0],
                      1,
116 117 118
                      platform::errors::InvalidArgument(
                          "The first dimension of Input(Bias) should be 1, but "
                          "received Bias first dim is:%d, Bias dim is:[%s]",
119 120 121 122
                          b_dims[0],
                          b_dims));
    PADDLE_ENFORCE_EQ(b_dims[1],
                      frame_size * 3,
123 124 125
                      platform::errors::InvalidArgument(
                          "The shape of Bias must be [1, frame_size * 3], but "
                          "received bias dim is:[%s], frame size is:%d",
126 127
                          b_dims,
                          frame_size));
T
tensor-tang 已提交
128
  }
129
  framework::DDim out_dims({x_mat_dims[0], frame_size});
T
tensor-tang 已提交
130 131
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
132
  int xx_width;
T
tensor-tang 已提交
133
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
134 135
    xx_width = wx_dims[1];
  } else {
136
    xx_width = x_mat_dims[1] > wx_dims[1] ? wx_dims[1] : x_mat_dims[1];
137 138 139 140 141 142
    OP_INOUT_CHECK(
        ctx->HasOutput("ReorderedH0"), "Output", "ReorderedH0", "fusion_gru");
    OP_INOUT_CHECK(
        ctx->HasOutput("BatchedInput"), "Output", "BatchedInput", "fusion_gru");
    OP_INOUT_CHECK(
        ctx->HasOutput("BatchedOut"), "Output", "BatchedOut", "fusion_gru");
143
    ctx->SetOutputDim("BatchedInput", {x_mat_dims[0], wx_dims[1]});
T
tensor-tang 已提交
144
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
145
  }
146
  ctx->SetOutputDim("XX", {x_mat_dims[0], xx_width});
T
tensor-tang 已提交
147
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
148 149
}

150
phi::KernelKey FusionGRUOp::GetExpectedKernelType(
T
tensor-tang 已提交
151
    const framework::ExecutionContext& ctx) const {
152
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
153
  return phi::KernelKey(data_type, ctx.GetPlace());
T
tensor-tang 已提交
154 155 156
}

void FusionGRUOpMaker::Make() {
157 158 159 160 161 162
  AddInput(
      "X",
      "(phi::DenseTensor) the input is a LodTensor, which support "
      "variable-time length input sequence. The underlying tensor in "
      "this phi::DenseTensor is a matrix with shape (T X M), where T is the "
      "total time steps in this mini-batch, M is the dim size of x.");
163 164 165 166 167
  AddInput(
      "H0",
      "(phi::DenseTensor, optional) The initial hidden state is an optional "
      "input. This is a tensor with shape (N x D), where N is the "
      "batch size, D is the hidden size.")
T
tensor-tang 已提交
168
      .AsDispensable();
T
tensor-tang 已提交
169
  AddInput("WeightX",
170
           "(phi::DenseTensor) The FC weight with shape (M x 3D),"
T
tensor-tang 已提交
171
           "where M is the dim size of x, D is the hidden size. ");
172 173 174 175 176 177 178
  AddInput(
      "WeightH",
      "(phi::DenseTensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
      "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
      "Acutally they are D x 2D and D x D two part weights."
      "{W_update, W_reset; W_state}"
      "{D x (D + D); D x D}");
T
tensor-tang 已提交
179
  AddInput("Bias",
180
           "(phi::DenseTensor, optional) (1 x 3D)."
T
tensor-tang 已提交
181 182
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
183
      .AsDispensable();
184 185
  AddOutput("ReorderedH0",
            "(phi::DenseTensor) (N x D), which N is the min-batch size.")
T
tensor-tang 已提交
186
      .AsIntermediate();
T
tensor-tang 已提交
187
  AddOutput("XX",
188
            "(phi::DenseTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
189 190 191
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
192
      .AsIntermediate();
T
tensor-tang 已提交
193
  AddOutput("BatchedInput",
194
            "(phi::DenseTensor) This is the batched result of input X"
T
tensor-tang 已提交
195 196
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
197
  AddOutput("BatchedOut", "(phi::DenseTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
198
      .AsIntermediate();
199
  AddOutput("Hidden", "(phi::DenseTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
200 201 202 203 204 205 206 207 208 209
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
翟飞跃 已提交
210
                "(bool, default: False) "
T
tensor-tang 已提交
211 212
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
213
  AddAttr<bool>("use_seq",
翟飞跃 已提交
214
                "(bool, default: True) "
T
tensor-tang 已提交
215 216
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
A
Adam 已提交
217 218 219 220
  AddAttr<bool>("origin_mode",
                "bool"
                "use origin mode in article https://arxiv.org/abs/1412.3555")
      .SetDefault(false);
A
Adam 已提交
221 222 223
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
A
Adam 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
  AddAttr<float>("Scale_data",
                 "Scale to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Shift_data",
                 "Shift to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(0.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
T
tensor-tang 已提交
245 246
  AddComment(R"DOC(
The Fusion complete GRU Operator.
247
This operator fuse the fully-connected operator into GRU,
T
tensor-tang 已提交
248 249 250 251
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
252
template <typename T>
T
tensor-tang 已提交
253 254
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
255
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
256
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
257 258 259 260 261 262
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

263
#define INIT_BASE_DEFINES                                  \
264
  auto* x = ctx.Input<phi::DenseTensor>("X");              \
265
  auto* wh = ctx.Input<phi::DenseTensor>("WeightH");       \
266
  auto* xx = ctx.Output<phi::DenseTensor>("XX");           \
267 268 269
  auto x_lod = x->lod();                                   \
  auto x_dims = x->dims(); /* T x M*/                      \
  auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1) \
270
                        ? phi::flatten_to_2d(x_dims, 1)    \
271 272 273
                        : x_dims;                          \
  auto wh_dims = wh->dims(); /* D x 3D*/                   \
  const int total_T = x_mat_dims[0];                       \
T
tensor-tang 已提交
274 275
  const int D3 = wh_dims[1]

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
#define INIT_OTHER_DEFINES                                                  \
  auto* h0 = ctx.Input<phi::DenseTensor>("H0");                             \
  auto* wx = ctx.Input<phi::DenseTensor>("WeightX");                        \
  auto* bias = ctx.Input<phi::DenseTensor>("Bias");                         \
  auto* hidden_out = ctx.Output<phi::DenseTensor>("Hidden");                \
  bool is_reverse = ctx.Attr<bool>("is_reverse");                           \
  const int M = x_mat_dims[1];                                              \
  const int D = wh_dims[0];                                                 \
  const int D2 = D * 2;                                                     \
  const phi::jit::gru_attr_t attr(                                          \
      D,                                                                    \
      phi::jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")),    \
      phi::jit::to_kerneltype(ctx.Attr<std::string>("activation")));        \
  phi::jit::gru_t one_step;                                                 \
  auto ComputeH1 = phi::jit::KernelFuncs<phi::jit::GRUH1Tuple<T>,           \
                                         platform::CPUPlace>::Cache()       \
                       .At(attr);                                           \
  auto ComputeHtPart1 = phi::jit::KernelFuncs<phi::jit::GRUHtPart1Tuple<T>, \
                                              platform::CPUPlace>::Cache()  \
                            .At(attr);                                      \
  auto ComputeHtPart2 = phi::jit::KernelFuncs<phi::jit::GRUHtPart2Tuple<T>, \
                                              platform::CPUPlace>::Cache()  \
                            .At(attr);                                      \
  const T* x_data = x->data<T>();                                           \
  const T* wx_data = wx->data<T>();                                         \
  const T* wh_data = wh->data<T>();                                         \
  auto place = ctx.GetPlace();                                              \
T
tensor-tang 已提交
303
  T* xx_data = xx->mutable_data<T>(place)
T
tensor-tang 已提交
304

T
tensor-tang 已提交
305
  void SeqCompute(const framework::ExecutionContext& ctx) const {
L
Leo Chen 已提交
306
    using DeviceContext = phi::CPUContext;
T
tensor-tang 已提交
307 308
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
309
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
310
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
311
    const T* wh_state_data = wh_data + D * D2;
T
tensor-tang 已提交
312
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
313
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
314 315

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
316
    phi::funcs::FCFunctor<DeviceContext, T> fc;
317 318 319 320 321 322 323
    fc(dev_ctx,
       total_T,
       D3,
       M,
       x_data,
       wx_data,
       xx_data,
324
       bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
342
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
343 344 345 346
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
347 348
        one_step.gates = xx_data;
        one_step.ht = hidden_out_data;
349
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
350 351 352 353 354 355
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
356 357 358 359 360 361 362 363 364 365 366 367
        blas.GEMM(CblasNoTrans,
                  CblasNoTrans,
                  1,
                  D2,
                  D,
                  static_cast<T>(1),
                  prev_hidden_data,
                  D,
                  wh_data,
                  D2,
                  static_cast<T>(1),
                  xx_data,
T
tensor-tang 已提交
368
                  D3);
369 370 371
        one_step.gates = xx_data;
        one_step.ht_1 = prev_hidden_data;
        one_step.ht = hidden_out_data;
372
        ComputeHtPart1(&one_step, &attr);
T
tensor-tang 已提交
373
        // gemm rt * Ws
374 375 376 377 378 379 380 381 382 383 384 385 386
        blas.GEMM(CblasNoTrans,
                  CblasNoTrans,
                  1,
                  D,
                  D,
                  static_cast<T>(1),
                  hidden_out_data,
                  D,
                  wh_state_data,
                  D,
                  static_cast<T>(1),
                  xx_data + D2,
                  D3);
387
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
388 389 390 391 392 393 394 395
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
L
Leo Chen 已提交
396
    using DeviceContext = phi::CPUContext;
T
tensor-tang 已提交
397 398
    INIT_BASE_DEFINES;
    if (x_lod[0].size() == 2) {
399
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
400 401 402
      SeqCompute(ctx);
      return;
    }
T
tensor-tang 已提交
403
    INIT_OTHER_DEFINES;
404
    auto* reordered_h0 = ctx.Output<phi::DenseTensor>("ReorderedH0");
405 406
    auto* batched_input = ctx.Output<phi::DenseTensor>("BatchedInput");
    auto* batched_out = ctx.Output<phi::DenseTensor>("BatchedOut");
T
tensor-tang 已提交
407 408 409
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_out_data = batched_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
410
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
411
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
F
Feiyu Chan 已提交
412
    phi::funcs::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
413

414
    phi::funcs::FCFunctor<DeviceContext, T> fc;
T
tensor-tang 已提交
415
    if (M > D3) {
416 417 418 419 420 421 422
      fc(dev_ctx,
         total_T,
         D3,
         M,
         x_data,
         wx_data,
         xx_data,
423
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
424
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
425 426
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
427
      batched_input->set_lod(xx->lod());
428 429 430 431 432 433 434
      fc(dev_ctx,
         total_T,
         D3,
         M,
         xx_data,
         wx_data,
         batched_input_data,
435
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
436 437
    }

T
tensor-tang 已提交
438 439 440 441
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
442

T
tensor-tang 已提交
443
    int tstart = 0;
T
tensor-tang 已提交
444
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
445
    if (h0) {
T
tensor-tang 已提交
446
      // reorder h0
T
tensor-tang 已提交
447
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T
tensor-tang 已提交
448 449 450 451 452 453 454
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
455
    } else {
T
tensor-tang 已提交
456 457 458 459 460
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
461 462
        one_step.gates = cur_in_data;
        one_step.ht = cur_out_data;
463
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
464 465 466 467 468 469
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
470
    }
T
tensor-tang 已提交
471 472 473 474 475 476 477 478 479
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
480 481 482 483 484 485 486 487 488 489 490 491 492
      blas.GEMM(CblasNoTrans,
                CblasNoTrans,
                cur_bs,
                D2,
                D,
                static_cast<T>(1),
                prev_hidden_data,
                D,
                wh_data,
                D2,
                static_cast<T>(1),
                batched_input_data,
                D3);
T
tensor-tang 已提交
493 494

      T* cur_batched_data = batched_input_data;
495
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
496 497
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
498 499 500
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
501
        ComputeHtPart1(&one_step, &attr);
502

T
tensor-tang 已提交
503 504
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
505
        cur_out_data += D;
T
tensor-tang 已提交
506 507
      }

T
tensor-tang 已提交
508
      cur_batched_data = batched_input_data;
509
      cur_out_data = batched_out_data;
510 511 512 513 514 515 516 517 518 519 520 521 522
      blas.GEMM(CblasNoTrans,
                CblasNoTrans,
                cur_bs,
                D,
                D,
                static_cast<T>(1),
                cur_out_data,
                D,
                wh_state_data,
                D,
                static_cast<T>(1),
                cur_batched_data + D2,
                D3);
T
tensor-tang 已提交
523 524 525

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
526 527 528
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
529
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
530 531 532
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
533
      }
T
tensor-tang 已提交
534 535 536
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
537
    }
T
tensor-tang 已提交
538

F
Feiyu Chan 已提交
539
    phi::funcs::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
540 541
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
542
  }
T
tensor-tang 已提交
543 544
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
545 546 547 548 549 550
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
551 552
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker);

553 554
REGISTER_OP_CPU_KERNEL(fusion_gru,
                       ops::FusionGRUKernel<float>,
T
tensor-tang 已提交
555
                       ops::FusionGRUKernel<double>);
556 557 558 559 560 561 562 563 564

/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(fusion_gru)
    .AddCheckpoint(
        R"ROC(Upgrade fusion_gru add a new attribute [Scale_weights])ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_weights",
            "The added attribute 'Scale_weights' is not yet "
            "registered.",
565
            std::vector<float>{1.0f}));