fusion_gru_op.cc 21.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
16

T
tensor-tang 已提交
17
#include <cstring>  // for memcpy
T
tensor-tang 已提交
18
#include <string>
H
huangxu96 已提交
19
#include <vector>
20

21
#include "paddle/fluid/framework/op_version_registry.h"
22
#include "paddle/fluid/operators/jit/kernels.h"
23
#include "paddle/phi/kernels/funcs/blas/blas.h"
24
#include "paddle/phi/kernels/funcs/fc_functor.h"
F
Feiyu Chan 已提交
25
#include "paddle/phi/kernels/funcs/sequence2batch.h"
T
tensor-tang 已提交
26 27 28 29 30

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
31 32 33 34 35
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightX"), "Input", "WeightX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightH"), "Input", "WeightH", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("XX"), "Output", "XX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "fusion_gru");
T
tensor-tang 已提交
36
  auto x_dims = ctx->GetInputDim("X");
37
  auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1)
38
                        ? phi::flatten_to_2d(x_dims, 1)
39 40
                        : x_dims;
  PADDLE_ENFORCE_EQ(
41 42
      x_mat_dims.size(),
      2,
43 44 45 46
      platform::errors::InvalidArgument("The size of input X dims should be 2, "
                                        "or 3 with second dimension equal to "
                                        "1, but now Input X dim is:[%s] ",
                                        x_dims));
T
tensor-tang 已提交
47 48

  auto wx_dims = ctx->GetInputDim("WeightX");
49 50
  PADDLE_ENFORCE_EQ(wx_dims.size(),
                    2,
51 52 53
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightX) should be 2, but received "
                        "WeightX dim size is:%d, WeightX dim is:[%s] ",
54 55
                        wx_dims.size(),
                        wx_dims));
56
  PADDLE_ENFORCE_EQ(
57 58
      wx_dims[0],
      x_mat_dims[1],
59 60 61 62 63
      platform::errors::InvalidArgument(
          "The first dimension of flattened WeightX"
          "should equal to last dimension of flattened input X, but "
          "received fattened WeightX dimension is:%d, flattened X dimension "
          "is:%d",
64 65
          wx_dims[0],
          x_mat_dims[1]));
T
tensor-tang 已提交
66 67 68

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
69

70 71
  PADDLE_ENFORCE_EQ(wh_dims.size(),
                    2,
72 73 74
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightH) should be 2, but received "
                        "WeightH dim size is:%d, WeightH dim is:[%s]",
75 76 77 78
                        wh_dims.size(),
                        wh_dims));
  PADDLE_ENFORCE_EQ(wh_dims[0],
                    frame_size,
79 80 81 82 83
                    platform::errors::InvalidArgument(
                        "The first dimension of WeightH "
                        "should equal to frame_size, but received WeightH's "
                        "first dimension is: "
                        "%d, frame size is:%d",
84 85 86 87
                        wh_dims[0],
                        frame_size));
  PADDLE_ENFORCE_EQ(wh_dims[1],
                    3 * frame_size,
88 89 90 91
                    platform::errors::InvalidArgument(
                        "The second dimension of Input(WeightH) "
                        "should equal to 3 * frame_size, but received WeightH "
                        "is:%d, frame size is:%d",
92 93
                        wh_dims[1],
                        frame_size));
T
tensor-tang 已提交
94

95
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
96
    auto h0_dims = ctx->GetInputDim("H0");
97 98
    PADDLE_ENFORCE_EQ(h0_dims[1],
                      frame_size,
99 100 101
                      platform::errors::InvalidArgument(
                          "The width of H0 must be equal to frame_size, but "
                          "receiced the width of H0 is:%d, frame size is:%d",
102 103
                          h0_dims[1],
                          frame_size));
T
tensor-tang 已提交
104
  }
105
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
106
    auto b_dims = ctx->GetInputDim("Bias");
107 108
    PADDLE_ENFORCE_EQ(b_dims.size(),
                      2,
109 110 111
                      platform::errors::InvalidArgument(
                          "The rank of Input(Bias) should be 2, but received "
                          "Bias rank is:%d, Bias dim is:[%s]",
112 113 114 115
                          b_dims.size(),
                          b_dims));
    PADDLE_ENFORCE_EQ(b_dims[0],
                      1,
116 117 118
                      platform::errors::InvalidArgument(
                          "The first dimension of Input(Bias) should be 1, but "
                          "received Bias first dim is:%d, Bias dim is:[%s]",
119 120 121 122
                          b_dims[0],
                          b_dims));
    PADDLE_ENFORCE_EQ(b_dims[1],
                      frame_size * 3,
123 124 125
                      platform::errors::InvalidArgument(
                          "The shape of Bias must be [1, frame_size * 3], but "
                          "received bias dim is:[%s], frame size is:%d",
126 127
                          b_dims,
                          frame_size));
T
tensor-tang 已提交
128
  }
129
  framework::DDim out_dims({x_mat_dims[0], frame_size});
T
tensor-tang 已提交
130 131
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
132
  int xx_width;
T
tensor-tang 已提交
133
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
134 135
    xx_width = wx_dims[1];
  } else {
136
    xx_width = x_mat_dims[1] > wx_dims[1] ? wx_dims[1] : x_mat_dims[1];
137 138 139 140 141 142
    OP_INOUT_CHECK(
        ctx->HasOutput("ReorderedH0"), "Output", "ReorderedH0", "fusion_gru");
    OP_INOUT_CHECK(
        ctx->HasOutput("BatchedInput"), "Output", "BatchedInput", "fusion_gru");
    OP_INOUT_CHECK(
        ctx->HasOutput("BatchedOut"), "Output", "BatchedOut", "fusion_gru");
143
    ctx->SetOutputDim("BatchedInput", {x_mat_dims[0], wx_dims[1]});
T
tensor-tang 已提交
144
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
145
  }
146
  ctx->SetOutputDim("XX", {x_mat_dims[0], xx_width});
T
tensor-tang 已提交
147
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
148 149 150 151
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
152
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
J
jiahongyu 已提交
153
  return framework::OpKernelType(data_type, ctx.GetPlace());
T
tensor-tang 已提交
154 155 156
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
157 158
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
159
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
160 161
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
162 163 164 165 166
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
167 168 169 170
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
171 172 173 174 175
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
176
  AddInput("Bias",
T
tensor-tang 已提交
177 178 179
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
180
      .AsDispensable();
T
tensor-tang 已提交
181 182
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
183
  AddOutput("XX",
T
tensor-tang 已提交
184
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
185 186 187
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
188
      .AsIntermediate();
T
tensor-tang 已提交
189 190 191 192
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
193
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
194
      .AsIntermediate();
T
tensor-tang 已提交
195
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
196 197 198 199 200 201 202 203 204 205
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
翟飞跃 已提交
206
                "(bool, default: False) "
T
tensor-tang 已提交
207 208
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
209
  AddAttr<bool>("use_seq",
翟飞跃 已提交
210
                "(bool, default: True) "
T
tensor-tang 已提交
211 212
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
A
Adam 已提交
213 214 215 216
  AddAttr<bool>("origin_mode",
                "bool"
                "use origin mode in article https://arxiv.org/abs/1412.3555")
      .SetDefault(false);
A
Adam 已提交
217 218 219
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
A
Adam 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
  AddAttr<float>("Scale_data",
                 "Scale to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Shift_data",
                 "Shift to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(0.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
T
tensor-tang 已提交
241 242
  AddComment(R"DOC(
The Fusion complete GRU Operator.
243
This operator fuse the fully-connected operator into GRU,
T
tensor-tang 已提交
244 245 246 247
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
248
template <typename T>
T
tensor-tang 已提交
249 250
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
251
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
252
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
253 254 255 256 257 258
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

259 260
#define INIT_BASE_DEFINES                                  \
  auto* x = ctx.Input<LoDTensor>("X");                     \
261
  auto* wh = ctx.Input<phi::DenseTensor>("WeightH");       \
262 263 264 265
  auto* xx = ctx.Output<LoDTensor>("XX");                  \
  auto x_lod = x->lod();                                   \
  auto x_dims = x->dims(); /* T x M*/                      \
  auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1) \
266
                        ? phi::flatten_to_2d(x_dims, 1)    \
267 268 269
                        : x_dims;                          \
  auto wh_dims = wh->dims(); /* D x 3D*/                   \
  const int total_T = x_mat_dims[0];                       \
T
tensor-tang 已提交
270 271
  const int D3 = wh_dims[1]

272
#define INIT_OTHER_DEFINES                                                   \
273 274 275
  auto* h0 = ctx.Input<phi::DenseTensor>("H0");                              \
  auto* wx = ctx.Input<phi::DenseTensor>("WeightX");                         \
  auto* bias = ctx.Input<phi::DenseTensor>("Bias");                          \
276 277
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");                        \
  bool is_reverse = ctx.Attr<bool>("is_reverse");                            \
278
  const int M = x_mat_dims[1];                                               \
279 280 281
  const int D = wh_dims[0];                                                  \
  const int D2 = D * 2;                                                      \
  const jit::gru_attr_t attr(                                                \
282 283
      D,                                                                     \
      jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")),          \
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
      jit::to_kerneltype(ctx.Attr<std::string>("activation")));              \
  jit::gru_t one_step;                                                       \
  auto ComputeH1 =                                                           \
      jit::KernelFuncs<jit::GRUH1Tuple<T>, platform::CPUPlace>::Cache().At(  \
          attr);                                                             \
  auto ComputeHtPart1 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart1Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  auto ComputeHtPart2 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart2Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  const T* x_data = x->data<T>();                                            \
  const T* wx_data = wx->data<T>();                                          \
  const T* wh_data = wh->data<T>();                                          \
  auto place = ctx.GetPlace();                                               \
T
tensor-tang 已提交
299
  T* xx_data = xx->mutable_data<T>(place)
T
tensor-tang 已提交
300

T
tensor-tang 已提交
301
  void SeqCompute(const framework::ExecutionContext& ctx) const {
L
Leo Chen 已提交
302
    using DeviceContext = phi::CPUContext;
T
tensor-tang 已提交
303 304
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
305
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
306
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
307
    const T* wh_state_data = wh_data + D * D2;
T
tensor-tang 已提交
308
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
309
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
310 311

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
312
    phi::funcs::FCFunctor<DeviceContext, T> fc;
313 314 315 316 317 318 319
    fc(dev_ctx,
       total_T,
       D3,
       M,
       x_data,
       wx_data,
       xx_data,
320
       bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
338
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
339 340 341 342
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
343 344
        one_step.gates = xx_data;
        one_step.ht = hidden_out_data;
345
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
346 347 348 349 350 351
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
352 353 354 355 356 357 358 359 360 361 362 363
        blas.GEMM(CblasNoTrans,
                  CblasNoTrans,
                  1,
                  D2,
                  D,
                  static_cast<T>(1),
                  prev_hidden_data,
                  D,
                  wh_data,
                  D2,
                  static_cast<T>(1),
                  xx_data,
T
tensor-tang 已提交
364
                  D3);
365 366 367
        one_step.gates = xx_data;
        one_step.ht_1 = prev_hidden_data;
        one_step.ht = hidden_out_data;
368
        ComputeHtPart1(&one_step, &attr);
T
tensor-tang 已提交
369
        // gemm rt * Ws
370 371 372 373 374 375 376 377 378 379 380 381 382
        blas.GEMM(CblasNoTrans,
                  CblasNoTrans,
                  1,
                  D,
                  D,
                  static_cast<T>(1),
                  hidden_out_data,
                  D,
                  wh_state_data,
                  D,
                  static_cast<T>(1),
                  xx_data + D2,
                  D3);
383
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
384 385 386 387 388 389 390 391
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
L
Leo Chen 已提交
392
    using DeviceContext = phi::CPUContext;
T
tensor-tang 已提交
393 394
    INIT_BASE_DEFINES;
    if (x_lod[0].size() == 2) {
395
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
396 397 398
      SeqCompute(ctx);
      return;
    }
T
tensor-tang 已提交
399
    INIT_OTHER_DEFINES;
400
    auto* reordered_h0 = ctx.Output<phi::DenseTensor>("ReorderedH0");
T
tensor-tang 已提交
401 402
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
403 404 405
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_out_data = batched_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
406
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
407
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
F
Feiyu Chan 已提交
408
    phi::funcs::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
409

410
    phi::funcs::FCFunctor<DeviceContext, T> fc;
T
tensor-tang 已提交
411
    if (M > D3) {
412 413 414 415 416 417 418
      fc(dev_ctx,
         total_T,
         D3,
         M,
         x_data,
         wx_data,
         xx_data,
419
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
420
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
421 422
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
423
      batched_input->set_lod(xx->lod());
424 425 426 427 428 429 430
      fc(dev_ctx,
         total_T,
         D3,
         M,
         xx_data,
         wx_data,
         batched_input_data,
431
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
432 433
    }

T
tensor-tang 已提交
434 435 436 437
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
438

T
tensor-tang 已提交
439
    int tstart = 0;
T
tensor-tang 已提交
440
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
441
    if (h0) {
T
tensor-tang 已提交
442
      // reorder h0
T
tensor-tang 已提交
443
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T
tensor-tang 已提交
444 445 446 447 448 449 450
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
451
    } else {
T
tensor-tang 已提交
452 453 454 455 456
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
457 458
        one_step.gates = cur_in_data;
        one_step.ht = cur_out_data;
459
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
460 461 462 463 464 465
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
466
    }
T
tensor-tang 已提交
467 468 469 470 471 472 473 474 475
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
476 477 478 479 480 481 482 483 484 485 486 487 488
      blas.GEMM(CblasNoTrans,
                CblasNoTrans,
                cur_bs,
                D2,
                D,
                static_cast<T>(1),
                prev_hidden_data,
                D,
                wh_data,
                D2,
                static_cast<T>(1),
                batched_input_data,
                D3);
T
tensor-tang 已提交
489 490

      T* cur_batched_data = batched_input_data;
491
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
492 493
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
494 495 496
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
497
        ComputeHtPart1(&one_step, &attr);
498

T
tensor-tang 已提交
499 500
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
501
        cur_out_data += D;
T
tensor-tang 已提交
502 503
      }

T
tensor-tang 已提交
504
      cur_batched_data = batched_input_data;
505
      cur_out_data = batched_out_data;
506 507 508 509 510 511 512 513 514 515 516 517 518
      blas.GEMM(CblasNoTrans,
                CblasNoTrans,
                cur_bs,
                D,
                D,
                static_cast<T>(1),
                cur_out_data,
                D,
                wh_state_data,
                D,
                static_cast<T>(1),
                cur_batched_data + D2,
                D3);
T
tensor-tang 已提交
519 520 521

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
522 523 524
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
525
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
526 527 528
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
529
      }
T
tensor-tang 已提交
530 531 532
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
533
    }
T
tensor-tang 已提交
534

F
Feiyu Chan 已提交
535
    phi::funcs::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
536 537
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
538
  }
T
tensor-tang 已提交
539 540
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
541 542 543 544 545 546
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
547 548
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker);

549 550
REGISTER_OP_CPU_KERNEL(fusion_gru,
                       ops::FusionGRUKernel<float>,
T
tensor-tang 已提交
551
                       ops::FusionGRUKernel<double>);
552 553 554 555 556 557 558 559 560

/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(fusion_gru)
    .AddCheckpoint(
        R"ROC(Upgrade fusion_gru add a new attribute [Scale_weights])ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_weights",
            "The added attribute 'Scale_weights' is not yet "
            "registered.",
561
            std::vector<float>{1.0f}));