fusion_gru_op.cc 18.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
T
tensor-tang 已提交
16
#include <cstring>  // for memcpy
T
tensor-tang 已提交
17
#include <string>
18
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/blas.h"
20
#include "paddle/fluid/operators/math/fc.h"
T
tensor-tang 已提交
21 22 23 24 25 26
#include "paddle/fluid/operators/math/sequence2batch.h"

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
27 28 29 30 31 32
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightX"), "Input", "WeightX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightH"), "Input", "WeightH", "fusion_gru");

  OP_INOUT_CHECK(ctx->HasOutput("XX"), "Output", "XX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "fusion_gru");
T
tensor-tang 已提交
33 34

  auto x_dims = ctx->GetInputDim("X");
35 36 37 38 39
  PADDLE_ENFORCE_EQ(x_dims.size(), 2,
                    platform::errors::InvalidArgument(
                        "Input(X)'s rank must be 2, but received input dim "
                        "size is:%d, input dim is:[%s]",
                        x_dims.size(), x_dims));
T
tensor-tang 已提交
40 41 42

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
43 44 45 46
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightX) should be 2, but received "
                        "WeightX dim size is:%d, WeightX dim is:[%s] ",
                        wx_dims.size(), wx_dims));
T
tensor-tang 已提交
47
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
48 49 50 51 52
                    platform::errors::InvalidArgument(
                        "The first dimension of Input(WeightX) "
                        "should equal to second dimension of input x, but "
                        "received WeightX dimension is:%d, x dimension is:%d",
                        wx_dims[0], x_dims[1]));
T
tensor-tang 已提交
53 54 55

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
56

T
tensor-tang 已提交
57
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
58 59 60 61
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightH) should be 2, but received "
                        "WeightH dim size is:%d, WeightH dim is:[%s]",
                        wh_dims.size(), wh_dims));
T
tensor-tang 已提交
62
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
63 64 65 66 67 68
                    platform::errors::InvalidArgument(
                        "The first dimension of WeightH "
                        "should equal to frame_size, but received WeightH's "
                        "first dimension is: "
                        "%d, frame size is:%d",
                        wh_dims[0], frame_size));
T
tensor-tang 已提交
69
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
70 71 72 73 74
                    platform::errors::InvalidArgument(
                        "The second dimension of Input(WeightH) "
                        "should equal to 3 * frame_size, but received WeightH "
                        "is:%d, frame size is:%d",
                        wh_dims[1], frame_size));
T
tensor-tang 已提交
75

76
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
77 78
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
79 80 81 82
                      platform::errors::InvalidArgument(
                          "The width of H0 must be equal to frame_size, but "
                          "receiced the width of H0 is:%d, frame size is:%d",
                          h0_dims[1], frame_size));
T
tensor-tang 已提交
83
  }
84
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
85
    auto b_dims = ctx->GetInputDim("Bias");
86 87 88 89 90
    PADDLE_ENFORCE_EQ(b_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The rank of Input(Bias) should be 2, but received "
                          "Bias rank is:%d, Bias dim is:[%s]",
                          b_dims.size(), b_dims));
T
tensor-tang 已提交
91
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
92 93 94 95
                      platform::errors::InvalidArgument(
                          "The first dimension of Input(Bias) should be 1, but "
                          "received Bias first dim is:%d, Bias dim is:[%s]",
                          b_dims[0], b_dims));
T
tensor-tang 已提交
96
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
97 98 99 100
                      platform::errors::InvalidArgument(
                          "The shape of Bias must be [1, frame_size * 3], but "
                          "received bias dim is:[%s], frame size is:%d",
                          b_dims, frame_size));
T
tensor-tang 已提交
101
  }
T
tensor-tang 已提交
102 103 104
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
105
  int xx_width;
T
tensor-tang 已提交
106
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
107 108 109
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
110 111 112 113 114 115
    OP_INOUT_CHECK(ctx->HasOutput("ReorderedH0"), "Output", "ReorderedH0",
                   "fusion_gru");
    OP_INOUT_CHECK(ctx->HasOutput("BatchedInput"), "Output", "BatchedInput",
                   "fusion_gru");
    OP_INOUT_CHECK(ctx->HasOutput("BatchedOut"), "Output", "BatchedOut",
                   "fusion_gru");
T
tensor-tang 已提交
116 117
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
118
  }
T
tensor-tang 已提交
119 120
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
121 122 123 124
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
125 126
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context());
T
tensor-tang 已提交
127 128 129
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
130 131
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
132
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
133 134
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
135 136 137 138 139
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
140 141 142 143
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
144 145 146 147 148
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
149
  AddInput("Bias",
T
tensor-tang 已提交
150 151 152
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
153
      .AsDispensable();
T
tensor-tang 已提交
154 155
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
156
  AddOutput("XX",
T
tensor-tang 已提交
157
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
158 159 160
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
161
      .AsIntermediate();
T
tensor-tang 已提交
162 163 164 165
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
166
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
167
      .AsIntermediate();
T
tensor-tang 已提交
168
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
169 170 171 172 173 174 175 176 177 178
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
翟飞跃 已提交
179
                "(bool, default: False) "
T
tensor-tang 已提交
180 181
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
182
  AddAttr<bool>("use_seq",
翟飞跃 已提交
183
                "(bool, default: True) "
T
tensor-tang 已提交
184 185
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
A
Adam 已提交
186 187 188 189
  AddAttr<bool>("origin_mode",
                "bool"
                "use origin mode in article https://arxiv.org/abs/1412.3555")
      .SetDefault(false);
T
tensor-tang 已提交
190 191 192 193 194 195 196
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
197
template <typename T>
T
tensor-tang 已提交
198 199
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
200
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
201
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
202 203 204 205 206 207
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

T
tensor-tang 已提交
208 209 210 211 212 213 214 215 216 217
#define INIT_BASE_DEFINES                  \
  auto* x = ctx.Input<LoDTensor>("X");     \
  auto* wh = ctx.Input<Tensor>("WeightH"); \
  auto* xx = ctx.Output<LoDTensor>("XX");  \
  auto x_lod = x->lod();                   \
  auto x_dims = x->dims();   /* T x M*/    \
  auto wh_dims = wh->dims(); /* D x 3D*/   \
  const int total_T = x_dims[0];           \
  const int D3 = wh_dims[1]

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
#define INIT_OTHER_DEFINES                                                   \
  auto* h0 = ctx.Input<Tensor>("H0");                                        \
  auto* wx = ctx.Input<Tensor>("WeightX");                                   \
  auto* bias = ctx.Input<Tensor>("Bias");                                    \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");                        \
  bool is_reverse = ctx.Attr<bool>("is_reverse");                            \
  const int M = x_dims[1];                                                   \
  const int D = wh_dims[0];                                                  \
  const int D2 = D * 2;                                                      \
  const jit::gru_attr_t attr(                                                \
      D, jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")),       \
      jit::to_kerneltype(ctx.Attr<std::string>("activation")));              \
  jit::gru_t one_step;                                                       \
  auto ComputeH1 =                                                           \
      jit::KernelFuncs<jit::GRUH1Tuple<T>, platform::CPUPlace>::Cache().At(  \
          attr);                                                             \
  auto ComputeHtPart1 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart1Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  auto ComputeHtPart2 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart2Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  const T* x_data = x->data<T>();                                            \
  const T* wx_data = wx->data<T>();                                          \
  const T* wh_data = wh->data<T>();                                          \
  auto place = ctx.GetPlace();                                               \
T
tensor-tang 已提交
244
  T* xx_data = xx->mutable_data<T>(place)
T
tensor-tang 已提交
245

T
tensor-tang 已提交
246 247
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
248 249
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
250
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
251
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
252
    const T* wh_state_data = wh_data + D * D2;
T
tensor-tang 已提交
253
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
254
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
255 256 257 258 259

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::FCFunctor<DeviceContext, T> fc;
    fc(dev_ctx, total_T, D3, M, x_data, wx_data, xx_data,
       bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
277
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
278 279 280 281
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
282 283
        one_step.gates = xx_data;
        one_step.ht = hidden_out_data;
284
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
285 286 287 288 289 290 291 292 293
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
                  D3);
294 295 296
        one_step.gates = xx_data;
        one_step.ht_1 = prev_hidden_data;
        one_step.ht = hidden_out_data;
297
        ComputeHtPart1(&one_step, &attr);
T
tensor-tang 已提交
298 299 300 301
        // gemm rt * Ws
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
                  hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
                  xx_data + D2, D3);
302
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
303 304 305 306 307 308 309 310
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
311
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
312 313
    INIT_BASE_DEFINES;
    if (x_lod[0].size() == 2) {
314
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
315 316 317
      SeqCompute(ctx);
      return;
    }
T
tensor-tang 已提交
318
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
319 320 321
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
322 323 324
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_out_data = batched_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
325 326 327
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
328 329

    math::FCFunctor<DeviceContext, T> fc;
T
tensor-tang 已提交
330
    if (M > D3) {
331 332
      fc(dev_ctx, total_T, D3, M, x_data, wx_data, xx_data,
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
333
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
334 335
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
336
      batched_input->set_lod(xx->lod());
337 338
      fc(dev_ctx, total_T, D3, M, xx_data, wx_data, batched_input_data,
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
339 340
    }

T
tensor-tang 已提交
341 342 343 344
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
345

T
tensor-tang 已提交
346
    int tstart = 0;
T
tensor-tang 已提交
347
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
348
    if (h0) {
T
tensor-tang 已提交
349
      // reorder h0
T
tensor-tang 已提交
350
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T
tensor-tang 已提交
351 352 353 354 355 356 357
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
358
    } else {
T
tensor-tang 已提交
359 360 361 362 363
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
364 365
        one_step.gates = cur_in_data;
        one_step.ht = cur_out_data;
366
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
367 368 369 370 371 372
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
373
    }
T
tensor-tang 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
388
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
389 390
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
391 392 393
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
394
        ComputeHtPart1(&one_step, &attr);
395

T
tensor-tang 已提交
396 397
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
398
        cur_out_data += D;
T
tensor-tang 已提交
399 400
      }

T
tensor-tang 已提交
401
      cur_batched_data = batched_input_data;
402
      cur_out_data = batched_out_data;
T
tensor-tang 已提交
403
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
404
                cur_out_data, D, wh_state_data, D, static_cast<T>(1),
T
tensor-tang 已提交
405 406 407 408
                cur_batched_data + D2, D3);

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
409 410 411
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
412
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
413 414 415
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
416
      }
T
tensor-tang 已提交
417 418 419
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
420
    }
T
tensor-tang 已提交
421

T
tensor-tang 已提交
422
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
423 424
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
425
  }
T
tensor-tang 已提交
426 427
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
428 429 430 431 432 433
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
434 435
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker);

T
tensor-tang 已提交
436 437
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);