fusion_gru_op.cc 21.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
16

T
tensor-tang 已提交
17
#include <cstring>  // for memcpy
T
tensor-tang 已提交
18
#include <string>
H
huangxu96 已提交
19
#include <vector>
20

21
#include "paddle/fluid/framework/op_version_registry.h"
22
#include "paddle/fluid/operators/jit/kernels.h"
23
#include "paddle/phi/kernels/funcs/blas/blas.h"
24
#include "paddle/phi/kernels/funcs/fc_functor.h"
F
Feiyu Chan 已提交
25
#include "paddle/phi/kernels/funcs/sequence2batch.h"
T
tensor-tang 已提交
26 27 28 29 30

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
31 32 33 34 35
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightX"), "Input", "WeightX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightH"), "Input", "WeightH", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("XX"), "Output", "XX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "fusion_gru");
T
tensor-tang 已提交
36
  auto x_dims = ctx->GetInputDim("X");
37
  auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1)
38
                        ? phi::flatten_to_2d(x_dims, 1)
39 40
                        : x_dims;
  PADDLE_ENFORCE_EQ(
41 42
      x_mat_dims.size(),
      2,
43 44 45 46
      platform::errors::InvalidArgument("The size of input X dims should be 2, "
                                        "or 3 with second dimension equal to "
                                        "1, but now Input X dim is:[%s] ",
                                        x_dims));
T
tensor-tang 已提交
47 48

  auto wx_dims = ctx->GetInputDim("WeightX");
49 50
  PADDLE_ENFORCE_EQ(wx_dims.size(),
                    2,
51 52 53
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightX) should be 2, but received "
                        "WeightX dim size is:%d, WeightX dim is:[%s] ",
54 55
                        wx_dims.size(),
                        wx_dims));
56
  PADDLE_ENFORCE_EQ(
57 58
      wx_dims[0],
      x_mat_dims[1],
59 60 61 62 63
      platform::errors::InvalidArgument(
          "The first dimension of flattened WeightX"
          "should equal to last dimension of flattened input X, but "
          "received fattened WeightX dimension is:%d, flattened X dimension "
          "is:%d",
64 65
          wx_dims[0],
          x_mat_dims[1]));
T
tensor-tang 已提交
66 67 68

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
69

70 71
  PADDLE_ENFORCE_EQ(wh_dims.size(),
                    2,
72 73 74
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightH) should be 2, but received "
                        "WeightH dim size is:%d, WeightH dim is:[%s]",
75 76 77 78
                        wh_dims.size(),
                        wh_dims));
  PADDLE_ENFORCE_EQ(wh_dims[0],
                    frame_size,
79 80 81 82 83
                    platform::errors::InvalidArgument(
                        "The first dimension of WeightH "
                        "should equal to frame_size, but received WeightH's "
                        "first dimension is: "
                        "%d, frame size is:%d",
84 85 86 87
                        wh_dims[0],
                        frame_size));
  PADDLE_ENFORCE_EQ(wh_dims[1],
                    3 * frame_size,
88 89 90 91
                    platform::errors::InvalidArgument(
                        "The second dimension of Input(WeightH) "
                        "should equal to 3 * frame_size, but received WeightH "
                        "is:%d, frame size is:%d",
92 93
                        wh_dims[1],
                        frame_size));
T
tensor-tang 已提交
94

95
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
96
    auto h0_dims = ctx->GetInputDim("H0");
97 98
    PADDLE_ENFORCE_EQ(h0_dims[1],
                      frame_size,
99 100 101
                      platform::errors::InvalidArgument(
                          "The width of H0 must be equal to frame_size, but "
                          "receiced the width of H0 is:%d, frame size is:%d",
102 103
                          h0_dims[1],
                          frame_size));
T
tensor-tang 已提交
104
  }
105
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
106
    auto b_dims = ctx->GetInputDim("Bias");
107 108
    PADDLE_ENFORCE_EQ(b_dims.size(),
                      2,
109 110 111
                      platform::errors::InvalidArgument(
                          "The rank of Input(Bias) should be 2, but received "
                          "Bias rank is:%d, Bias dim is:[%s]",
112 113 114 115
                          b_dims.size(),
                          b_dims));
    PADDLE_ENFORCE_EQ(b_dims[0],
                      1,
116 117 118
                      platform::errors::InvalidArgument(
                          "The first dimension of Input(Bias) should be 1, but "
                          "received Bias first dim is:%d, Bias dim is:[%s]",
119 120 121 122
                          b_dims[0],
                          b_dims));
    PADDLE_ENFORCE_EQ(b_dims[1],
                      frame_size * 3,
123 124 125
                      platform::errors::InvalidArgument(
                          "The shape of Bias must be [1, frame_size * 3], but "
                          "received bias dim is:[%s], frame size is:%d",
126 127
                          b_dims,
                          frame_size));
T
tensor-tang 已提交
128
  }
129
  framework::DDim out_dims({x_mat_dims[0], frame_size});
T
tensor-tang 已提交
130 131
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
132
  int xx_width;
T
tensor-tang 已提交
133
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
134 135
    xx_width = wx_dims[1];
  } else {
136
    xx_width = x_mat_dims[1] > wx_dims[1] ? wx_dims[1] : x_mat_dims[1];
137 138 139 140 141 142
    OP_INOUT_CHECK(
        ctx->HasOutput("ReorderedH0"), "Output", "ReorderedH0", "fusion_gru");
    OP_INOUT_CHECK(
        ctx->HasOutput("BatchedInput"), "Output", "BatchedInput", "fusion_gru");
    OP_INOUT_CHECK(
        ctx->HasOutput("BatchedOut"), "Output", "BatchedOut", "fusion_gru");
143
    ctx->SetOutputDim("BatchedInput", {x_mat_dims[0], wx_dims[1]});
T
tensor-tang 已提交
144
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
145
  }
146
  ctx->SetOutputDim("XX", {x_mat_dims[0], xx_width});
T
tensor-tang 已提交
147
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
148 149 150 151
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
152
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
J
jiahongyu 已提交
153
  return framework::OpKernelType(data_type, ctx.GetPlace());
T
tensor-tang 已提交
154 155 156
}

void FusionGRUOpMaker::Make() {
157 158 159 160 161 162
  AddInput(
      "X",
      "(phi::DenseTensor) the input is a LodTensor, which support "
      "variable-time length input sequence. The underlying tensor in "
      "this phi::DenseTensor is a matrix with shape (T X M), where T is the "
      "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
163 164 165 166 167
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
168 169 170 171
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
172 173 174 175 176
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
177
  AddInput("Bias",
T
tensor-tang 已提交
178 179 180
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
181
      .AsDispensable();
T
tensor-tang 已提交
182 183
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
184
  AddOutput("XX",
185
            "(phi::DenseTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
186 187 188
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
189
      .AsIntermediate();
T
tensor-tang 已提交
190
  AddOutput("BatchedInput",
191
            "(phi::DenseTensor) This is the batched result of input X"
T
tensor-tang 已提交
192 193
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
194
  AddOutput("BatchedOut", "(phi::DenseTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
195
      .AsIntermediate();
196
  AddOutput("Hidden", "(phi::DenseTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
197 198 199 200 201 202 203 204 205 206
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
翟飞跃 已提交
207
                "(bool, default: False) "
T
tensor-tang 已提交
208 209
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
210
  AddAttr<bool>("use_seq",
翟飞跃 已提交
211
                "(bool, default: True) "
T
tensor-tang 已提交
212 213
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
A
Adam 已提交
214 215 216 217
  AddAttr<bool>("origin_mode",
                "bool"
                "use origin mode in article https://arxiv.org/abs/1412.3555")
      .SetDefault(false);
A
Adam 已提交
218 219 220
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
A
Adam 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
  AddAttr<float>("Scale_data",
                 "Scale to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Shift_data",
                 "Shift to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(0.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
T
tensor-tang 已提交
242 243
  AddComment(R"DOC(
The Fusion complete GRU Operator.
244
This operator fuse the fully-connected operator into GRU,
T
tensor-tang 已提交
245 246 247 248
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
249
template <typename T>
T
tensor-tang 已提交
250 251
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
252
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
253
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
254 255 256 257 258 259
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

260
#define INIT_BASE_DEFINES                                  \
261
  auto* x = ctx.Input<phi::DenseTensor>("X");              \
262
  auto* wh = ctx.Input<phi::DenseTensor>("WeightH");       \
263
  auto* xx = ctx.Output<phi::DenseTensor>("XX");           \
264 265 266
  auto x_lod = x->lod();                                   \
  auto x_dims = x->dims(); /* T x M*/                      \
  auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1) \
267
                        ? phi::flatten_to_2d(x_dims, 1)    \
268 269 270
                        : x_dims;                          \
  auto wh_dims = wh->dims(); /* D x 3D*/                   \
  const int total_T = x_mat_dims[0];                       \
T
tensor-tang 已提交
271 272
  const int D3 = wh_dims[1]

273
#define INIT_OTHER_DEFINES                                                   \
274 275 276
  auto* h0 = ctx.Input<phi::DenseTensor>("H0");                              \
  auto* wx = ctx.Input<phi::DenseTensor>("WeightX");                         \
  auto* bias = ctx.Input<phi::DenseTensor>("Bias");                          \
277
  auto* hidden_out = ctx.Output<phi::DenseTensor>("Hidden");                 \
278
  bool is_reverse = ctx.Attr<bool>("is_reverse");                            \
279
  const int M = x_mat_dims[1];                                               \
280 281 282
  const int D = wh_dims[0];                                                  \
  const int D2 = D * 2;                                                      \
  const jit::gru_attr_t attr(                                                \
283 284
      D,                                                                     \
      jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")),          \
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
      jit::to_kerneltype(ctx.Attr<std::string>("activation")));              \
  jit::gru_t one_step;                                                       \
  auto ComputeH1 =                                                           \
      jit::KernelFuncs<jit::GRUH1Tuple<T>, platform::CPUPlace>::Cache().At(  \
          attr);                                                             \
  auto ComputeHtPart1 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart1Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  auto ComputeHtPart2 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart2Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  const T* x_data = x->data<T>();                                            \
  const T* wx_data = wx->data<T>();                                          \
  const T* wh_data = wh->data<T>();                                          \
  auto place = ctx.GetPlace();                                               \
T
tensor-tang 已提交
300
  T* xx_data = xx->mutable_data<T>(place)
T
tensor-tang 已提交
301

T
tensor-tang 已提交
302
  void SeqCompute(const framework::ExecutionContext& ctx) const {
L
Leo Chen 已提交
303
    using DeviceContext = phi::CPUContext;
T
tensor-tang 已提交
304 305
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
306
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
307
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
308
    const T* wh_state_data = wh_data + D * D2;
T
tensor-tang 已提交
309
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
310
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
311 312

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
313
    phi::funcs::FCFunctor<DeviceContext, T> fc;
314 315 316 317 318 319 320
    fc(dev_ctx,
       total_T,
       D3,
       M,
       x_data,
       wx_data,
       xx_data,
321
       bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
339
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
340 341 342 343
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
344 345
        one_step.gates = xx_data;
        one_step.ht = hidden_out_data;
346
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
347 348 349 350 351 352
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
353 354 355 356 357 358 359 360 361 362 363 364
        blas.GEMM(CblasNoTrans,
                  CblasNoTrans,
                  1,
                  D2,
                  D,
                  static_cast<T>(1),
                  prev_hidden_data,
                  D,
                  wh_data,
                  D2,
                  static_cast<T>(1),
                  xx_data,
T
tensor-tang 已提交
365
                  D3);
366 367 368
        one_step.gates = xx_data;
        one_step.ht_1 = prev_hidden_data;
        one_step.ht = hidden_out_data;
369
        ComputeHtPart1(&one_step, &attr);
T
tensor-tang 已提交
370
        // gemm rt * Ws
371 372 373 374 375 376 377 378 379 380 381 382 383
        blas.GEMM(CblasNoTrans,
                  CblasNoTrans,
                  1,
                  D,
                  D,
                  static_cast<T>(1),
                  hidden_out_data,
                  D,
                  wh_state_data,
                  D,
                  static_cast<T>(1),
                  xx_data + D2,
                  D3);
384
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
385 386 387 388 389 390 391 392
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
L
Leo Chen 已提交
393
    using DeviceContext = phi::CPUContext;
T
tensor-tang 已提交
394 395
    INIT_BASE_DEFINES;
    if (x_lod[0].size() == 2) {
396
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
397 398 399
      SeqCompute(ctx);
      return;
    }
T
tensor-tang 已提交
400
    INIT_OTHER_DEFINES;
401
    auto* reordered_h0 = ctx.Output<phi::DenseTensor>("ReorderedH0");
402 403
    auto* batched_input = ctx.Output<phi::DenseTensor>("BatchedInput");
    auto* batched_out = ctx.Output<phi::DenseTensor>("BatchedOut");
T
tensor-tang 已提交
404 405 406
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_out_data = batched_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
407
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
408
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
F
Feiyu Chan 已提交
409
    phi::funcs::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
410

411
    phi::funcs::FCFunctor<DeviceContext, T> fc;
T
tensor-tang 已提交
412
    if (M > D3) {
413 414 415 416 417 418 419
      fc(dev_ctx,
         total_T,
         D3,
         M,
         x_data,
         wx_data,
         xx_data,
420
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
421
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
422 423
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
424
      batched_input->set_lod(xx->lod());
425 426 427 428 429 430 431
      fc(dev_ctx,
         total_T,
         D3,
         M,
         xx_data,
         wx_data,
         batched_input_data,
432
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
433 434
    }

T
tensor-tang 已提交
435 436 437 438
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
439

T
tensor-tang 已提交
440
    int tstart = 0;
T
tensor-tang 已提交
441
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
442
    if (h0) {
T
tensor-tang 已提交
443
      // reorder h0
T
tensor-tang 已提交
444
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T
tensor-tang 已提交
445 446 447 448 449 450 451
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
452
    } else {
T
tensor-tang 已提交
453 454 455 456 457
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
458 459
        one_step.gates = cur_in_data;
        one_step.ht = cur_out_data;
460
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
461 462 463 464 465 466
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
467
    }
T
tensor-tang 已提交
468 469 470 471 472 473 474 475 476
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
477 478 479 480 481 482 483 484 485 486 487 488 489
      blas.GEMM(CblasNoTrans,
                CblasNoTrans,
                cur_bs,
                D2,
                D,
                static_cast<T>(1),
                prev_hidden_data,
                D,
                wh_data,
                D2,
                static_cast<T>(1),
                batched_input_data,
                D3);
T
tensor-tang 已提交
490 491

      T* cur_batched_data = batched_input_data;
492
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
493 494
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
495 496 497
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
498
        ComputeHtPart1(&one_step, &attr);
499

T
tensor-tang 已提交
500 501
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
502
        cur_out_data += D;
T
tensor-tang 已提交
503 504
      }

T
tensor-tang 已提交
505
      cur_batched_data = batched_input_data;
506
      cur_out_data = batched_out_data;
507 508 509 510 511 512 513 514 515 516 517 518 519
      blas.GEMM(CblasNoTrans,
                CblasNoTrans,
                cur_bs,
                D,
                D,
                static_cast<T>(1),
                cur_out_data,
                D,
                wh_state_data,
                D,
                static_cast<T>(1),
                cur_batched_data + D2,
                D3);
T
tensor-tang 已提交
520 521 522

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
523 524 525
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
526
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
527 528 529
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
530
      }
T
tensor-tang 已提交
531 532 533
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
534
    }
T
tensor-tang 已提交
535

F
Feiyu Chan 已提交
536
    phi::funcs::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
537 538
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
539
  }
T
tensor-tang 已提交
540 541
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
542 543 544 545 546 547
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
548 549
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker);

550 551
REGISTER_OP_CPU_KERNEL(fusion_gru,
                       ops::FusionGRUKernel<float>,
T
tensor-tang 已提交
552
                       ops::FusionGRUKernel<double>);
553 554 555 556 557 558 559 560 561

/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(fusion_gru)
    .AddCheckpoint(
        R"ROC(Upgrade fusion_gru add a new attribute [Scale_weights])ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_weights",
            "The added attribute 'Scale_weights' is not yet "
            "registered.",
562
            std::vector<float>{1.0f}));