multiary.h 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

38 39
std::vector<DDim> GetMetaTensorsDim(
    const std::vector<const MetaTensor*>& tensors);
40

F
From00 已提交
41 42 43 44 45 46 47 48 49 50
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
                       float rho,
                       float epsilon,
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
                       MetaTensor* avg_squared_update_out);

H
hong 已提交
51 52 53 54 55 56 57 58
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
                      float epsilon,
                      MetaTensor* param_out,
                      MetaTensor* moment_out);

F
From00 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
                     float beta1,
                     float beta2,
                     float epsilon,
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
                     MetaTensor* inf_norm_out);

72
void AddNInferMeta(const std::vector<const MetaTensor*>& x,
73 74 75
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

76 77 78 79 80 81 82 83 84 85 86 87
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

H
hong 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool is_test,
                        bool use_global_stats,
                        bool trainable_statistics,
                        bool fuse_with_relu,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

108 109 110 111 112 113 114 115 116 117 118 119 120
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& scale,
                             const MetaTensor& bias,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

121 122 123 124 125 126 127
void BilinearTensorProductInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& weight,
                                    paddle::optional<const MetaTensor&> bias,
                                    MetaTensor* out,
                                    MetaConfig config = MetaConfig());

128
void BroadcastTensorsInferMeta(const std::vector<const MetaTensor*>& x,
129 130
                               std::vector<MetaTensor*> out);

131
void ConcatInferMeta(const std::vector<const MetaTensor*>& x,
132 133 134
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
135

136 137 138 139 140 141 142 143 144 145 146 147 148
void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
                             paddle::optional<const MetaTensor&> mask,
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config = MetaConfig());

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
void HierarchicalSigmoidInferMeta(const MetaTensor& x,
                                  const MetaTensor& w,
                                  const MetaTensor& label,
                                  paddle::optional<const MetaTensor&> path,
                                  paddle::optional<const MetaTensor&> code,
                                  paddle::optional<const MetaTensor&> bias,
                                  int num_classes,
                                  bool remote_prefetch,
                                  int trainer_id,
                                  const std::vector<int64_t>& height_sections,
                                  const std::vector<std::string>& epmap,
                                  const std::vector<std::string>& table_names,
                                  bool is_sparse,
                                  MetaTensor* out,
                                  MetaTensor* pre_out,
                                  MetaTensor* w_out);

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
void InterpolateInferMeta(
    const MetaTensor& x,
    paddle::optional<const MetaTensor&> out_size,
    paddle::optional<const std::vector<const MetaTensor*>> size_tensor,
    paddle::optional<const MetaTensor&> scale_tensor,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config = MetaConfig());

182
void MeshgridInferMeta(const std::vector<const MetaTensor*>& inputs,
H
hong 已提交
183 184
                       std::vector<MetaTensor*> outputs);

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void MomentumInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& velocity,
                       const MetaTensor& learning_rate,
                       paddle::optional<const MetaTensor&> master_param,
                       float mu,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff,
                       bool multi_precision,
                       float rescale_grad,
                       MetaTensor* param_out,
                       MetaTensor* velocity_out,
                       MetaTensor* master_param_out);

200 201
void MultiDotInferMeta(const std::vector<const MetaTensor*>& x,
                       MetaTensor* out);
202

203
void MultiplexInferMeta(const std::vector<const MetaTensor*>& ins,
204 205 206
                        const MetaTensor& ids,
                        MetaTensor* out);

F
From00 已提交
207 208 209 210 211 212 213 214 215
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
                        paddle::optional<const MetaTensor&> rois_num,
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

H
hong 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
                      paddle::optional<const MetaTensor&> mean_grad,
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
                      MetaTensor* mean_grad_out);

231
void RnnInferMeta(const MetaTensor& x,
232 233
                  const std::vector<const MetaTensor*>& pre_state,
                  const std::vector<const MetaTensor*>& weight_list,
234 235 236 237 238 239 240 241 242 243 244 245 246 247
                  paddle::optional<const MetaTensor&> sequence_length,
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve);

H
hong 已提交
248 249 250 251 252 253 254 255
void SGDInferMeta(const MetaTensor& param,
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
                  paddle::optional<const MetaTensor&> master_param,
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out);

256
void StackInferMeta(const std::vector<const MetaTensor*>& x,
C
csy0225 已提交
257 258 259
                    int axis,
                    MetaTensor* out);

260
void UnchangedMultiInferMeta(const std::vector<const MetaTensor*>& x,
261 262
                             std::vector<MetaTensor*> out);

0
0x45f 已提交
263 264 265 266 267 268 269 270 271
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
                      const paddle::optional<const MetaTensor&> logits_length,
                      const paddle::optional<const MetaTensor&> labels_length,
                      int blank,
                      bool norm_by_times,
                      MetaTensor* warpctc_grad,
                      MetaTensor* loss);

272 273 274 275
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
276

S
Siming Dai 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
                           paddle::optional<const MetaTensor&> hashtable_value,
                           paddle::optional<const MetaTensor&> hashtable_index,
                           bool flag_buffer_hashtable,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes);

void GraphSampleNeighborsInferMeta(
    const MetaTensor& row,
    const MetaTensor& col_ptr,
    const MetaTensor& x,
    paddle::optional<const MetaTensor&> eids,
    paddle::optional<const MetaTensor&> perm_buffer,
    int sample_size,
    bool return_eids,
    bool flag_perm_buffer,
    MetaTensor* out,
    MetaTensor* out_count,
    MetaTensor* out_eids);

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
void Yolov3LossInferMeta(const MetaTensor& x,
                         const MetaTensor& gt_box,
                         const MetaTensor& gt_label,
                         const paddle::optional<const MetaTensor&> gt_score,
                         const std::vector<int>& anchors,
                         const std::vector<int>& anchor_mask,
                         int class_num,
                         float ignore_thresh,
                         int downsample_ratio,
                         bool use_label_smooth,
                         float scale_x_y,
                         MetaTensor* loss,
                         MetaTensor* objectness_mask,
                         MetaTensor* gt_match_mask);

315
}  // namespace phi