kernel_dispatch.h 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <limits>
#include <string>
#include <utility>

21 22 23 24 25 26
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/api/lib/backend_set.h"
#include "paddle/phi/api/lib/data_type_set.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
27
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
28
#include "paddle/phi/core/selected_rows.h"
29 30
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
31

Y
YuanRisheng 已提交
32
// TODO(chenweihang): split Key, Kernel, Factory into diff files
33
#include "paddle/phi/core/kernel_factory.h"
34 35 36 37 38

namespace paddle {
namespace experimental {

namespace detail {
39
BackendSet GetTensorBackendSet(const phi::TensorBase& t);
40
std::size_t CountLeadingZeros(uint32_t val);
41 42
}  // namespace detail

43
phi::DeviceContext* GetDeviceContextByBackend(phi::Backend backend);
44

45
enum class KernelType {
46 47 48 49
  DENSE_TENSOR_KENREL,   // kernel for DenseTensor
  SELECTED_ROWS_KENREL,  // kernel for SelectedRows
  SPARSE_COO_KERNEL,     // kernel for SparseCooTensor
  SPARSE_CSR_KERNEL      // kernel for SparseCsrTensor
50 51
};

52 53 54 55 56 57 58
// TODO(chenweihang): support DataLayout and DataType selected
struct KernelKeySet {
  BackendSet backend_set{Backend::UNDEFINED};
  DataLayout layout{DataLayout::UNDEFINED};
  DataType dtype{DataType::UNDEFINED};

  // TODO(chenweihang): iterate all kernelkey for kernel selection
59
  phi::KernelKey GetHighestPriorityKernelKey() {
60
    return phi::KernelKey(static_cast<Backend>(32 - detail::CountLeadingZeros(
61 62 63
                                                        backend_set.bitset())),
                          layout,
                          dtype);
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  }
};

namespace detail {

template <typename Functor>
struct ArgsIterator {
  template <typename... Args>
  inline Functor& apply() {
    return self();
  }

  template <typename T, typename... Args>
  inline Functor& apply(T&& arg, Args&&... args) {
    self()(std::forward<T>(arg));
    if (self().short_circuit()) {
      return self();
    } else {
      return apply(std::forward<Args>(args)...);
    }
  }

  constexpr bool short_circuit() const { return false; }

 private:
  inline Functor& self() { return *static_cast<Functor*>(this); }
};

struct KernelKeyParser : ArgsIterator<KernelKeyParser> {
  KernelKeySet key_set;
94
  bool disable_gpudnn = false;
95 96 97
  // this dtype_set is used for cache multi-inputs dtype and used for
  // data_promote
  DataTypeSet dtype_set{DataType::UNDEFINED};
98

99
  inline void AssignKernelKeySet(const phi::TensorBase& tensor) {
100 101 102
    // assign Backend
    BackendSet tensor_backend_set = detail::GetTensorBackendSet(tensor);
    key_set.backend_set = key_set.backend_set | tensor_backend_set;
103 104 105
    // tensor's attribute use_gpudnn=False, explicitly disable gpudnn kernel
    if (tensor_backend_set == BackendSet(Backend::GPU) || disable_gpudnn) {
      disable_gpudnn = true;
106 107 108
      key_set.backend_set = key_set.backend_set - BackendSet(Backend::GPUDNN);
    }
    // assign DataLayout
109 110 111
    phi::DataLayout tensor_layout = tensor.layout();
    key_set.layout =
        tensor_layout > key_set.layout ? tensor_layout : key_set.layout;
112
    // assign DataType
113 114
    key_set.dtype = tensor.dtype();
    dtype_set = dtype_set | DataTypeSet(key_set.dtype);
115 116 117 118
    auto promote_result = PromoteTypes(dtype_set);
    if (promote_result != DataType::UNDEFINED) {
      key_set.dtype = promote_result;
    }
119 120
  }

121 122 123 124 125 126
  void operator()(const Tensor& x) {
    const auto* tensor = x.impl().get();
    if (tensor) {
      AssignKernelKeySet(*tensor);
    }
  }
127

128
  void operator()(const std::vector<Tensor>& x) {
129 130 131 132
    if (!x.empty()) {
      const phi::TensorBase& tensor = *x.at(0).impl();
      AssignKernelKeySet(tensor);
    }
133 134
  }

135 136
  void operator()(const paddle::optional<Tensor>& x) {
    if (x) {
137 138 139 140 141
      const phi::TensorBase& tensor = *(x.get_ptr()->impl());
      AssignKernelKeySet(tensor);
    }
  }

142 143 144 145 146 147 148
  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

149 150 151 152 153 154
struct KernelTypeParser : ArgsIterator<KernelTypeParser> {
  KernelType kernel_type{KernelType::DENSE_TENSOR_KENREL};

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
155
    if (phi::SelectedRows::classof(x.impl().get())) {
156
      kernel_type = KernelType::SELECTED_ROWS_KENREL;
157 158 159 160
    } else if (phi::SparseCooTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_COO_KERNEL;
    } else if (phi::SparseCsrTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_CSR_KERNEL;
161 162 163 164 165 166 167 168 169 170
    }
  }

  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* ------------------ for auto parallel ----------------------- */

struct DistTensorTypeParser : ArgsIterator<DistTensorTypeParser> {
  bool result = true;

  void operator()(const Tensor& x) { result &= x.is_dist_tensor(); }

  void operator()(const paddle::optional<Tensor>& x) {
    if (x) {
      result &= x.get_ptr()->is_dist_tensor();
    }
  }

  void operator()(const std::vector<Tensor>& x) {
    if (!x.empty()) {
      for (auto& t : x) {
        result &= t.is_dist_tensor();
      }
    }
  }

192 193 194 195 196 197 198 199 200 201
  void operator()(const paddle::optional<std::vector<Tensor>>& x) {
    if (x) {
      if (!(x.get_ptr()->empty())) {
        for (auto& t : *(x.get_ptr())) {
          result &= t.is_dist_tensor();
        }
      }
    }
  }

202 203 204 205 206 207 208
  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

209 210 211 212 213 214 215
}  // namespace detail

template <typename... Args>
KernelKeySet ParseKernelKeyByInputArgs(const Args&... args) {
  return detail::KernelKeyParser().apply(args...).key_set;
}

216 217 218 219 220
template <typename... Args>
KernelType ParseKernelTypeByInputArgs(const Args&... args) {
  return detail::KernelTypeParser().apply(args...).kernel_type;
}

221 222 223 224 225
DataType ParseDataType(DataType dtype);
DataType ParseDataType(const Tensor& tensor);
DataType ParseDataType(const std::vector<Tensor>& tensors);
DataType ParseDataTypeWithInputOrder(DataType dtype, const Tensor& tensor);

226
Backend ParseBackend(const Place& place);
227 228 229 230 231
Backend ParseBackend(const Tensor& tensor);
template <typename T, typename... Args>
Backend ParseBackend(T t, Args... args) {
  auto backend_set =
      BackendSet(ParseBackend(t)) | BackendSet(ParseBackend(args...));
232
  return static_cast<Backend>(32 -
233 234
                              detail::CountLeadingZeros(backend_set.bitset()));
}
235
Backend ParseBackendWithInputOrder(const Place& place, const Tensor& tensor);
236 237 238 239 240

DataLayout ParseLayout(DataLayout layout);
DataLayout ParseLayout(const Tensor& tensor);
DataLayout ParseLayoutWithInputOrder(DataLayout layout, const Tensor& tensor);

241 242 243 244 245
template <typename... Args>
bool AllInputsAreDistTensor(const Args&... args) {
  return detail::DistTensorTypeParser().apply(args...).result;
}

246 247
}  // namespace experimental
}  // namespace paddle