kernel_dispatch.h 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <limits>
#include <string>
#include <utility>

21 22 23 24 25 26
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/api/lib/backend_set.h"
#include "paddle/phi/api/lib/data_type_set.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
27
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
28
#include "paddle/phi/core/selected_rows.h"
29 30
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
31

Y
YuanRisheng 已提交
32
// TODO(chenweihang): split Key, Kernel, Factory into diff files
33
#include "paddle/phi/core/kernel_factory.h"
34 35 36 37 38

namespace paddle {
namespace experimental {

namespace detail {
39
BackendSet GetTensorBackendSet(const phi::TensorBase& t);
40
std::size_t CountLeadingZeros(uint32_t val);
41 42
}  // namespace detail

43
phi::DeviceContext* GetDeviceContextByBackend(phi::Backend backend);
44

45
enum class KernelType {
46 47 48 49
  DENSE_TENSOR_KENREL,   // kernel for DenseTensor
  SELECTED_ROWS_KENREL,  // kernel for SelectedRows
  SPARSE_COO_KERNEL,     // kernel for SparseCooTensor
  SPARSE_CSR_KERNEL      // kernel for SparseCsrTensor
50 51
};

52 53 54 55 56 57 58
// TODO(chenweihang): support DataLayout and DataType selected
struct KernelKeySet {
  BackendSet backend_set{Backend::UNDEFINED};
  DataLayout layout{DataLayout::UNDEFINED};
  DataType dtype{DataType::UNDEFINED};

  // TODO(chenweihang): iterate all kernelkey for kernel selection
59
  phi::KernelKey GetHighestPriorityKernelKey() {
60
    return phi::KernelKey(static_cast<Backend>(32 - detail::CountLeadingZeros(
61 62 63
                                                        backend_set.bitset())),
                          layout,
                          dtype);
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  }
};

namespace detail {

template <typename Functor>
struct ArgsIterator {
  template <typename... Args>
  inline Functor& apply() {
    return self();
  }

  template <typename T, typename... Args>
  inline Functor& apply(T&& arg, Args&&... args) {
    self()(std::forward<T>(arg));
    if (self().short_circuit()) {
      return self();
    } else {
      return apply(std::forward<Args>(args)...);
    }
  }

  constexpr bool short_circuit() const { return false; }

 private:
  inline Functor& self() { return *static_cast<Functor*>(this); }
};

struct KernelKeyParser : ArgsIterator<KernelKeyParser> {
  KernelKeySet key_set;
94
  bool disable_gpudnn = false;
95 96 97
  // this dtype_set is used for cache multi-inputs dtype and used for
  // data_promote
  DataTypeSet dtype_set{DataType::UNDEFINED};
98 99 100

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
101
  inline void AssignKernelKeySet(const phi::TensorBase& tensor) {
102 103 104
    // assign Backend
    BackendSet tensor_backend_set = detail::GetTensorBackendSet(tensor);
    key_set.backend_set = key_set.backend_set | tensor_backend_set;
105 106 107
    // tensor's attribute use_gpudnn=False, explicitly disable gpudnn kernel
    if (tensor_backend_set == BackendSet(Backend::GPU) || disable_gpudnn) {
      disable_gpudnn = true;
108 109 110
      key_set.backend_set = key_set.backend_set - BackendSet(Backend::GPUDNN);
    }
    // assign DataLayout
111 112 113
    phi::DataLayout tensor_layout = tensor.layout();
    key_set.layout =
        tensor_layout > key_set.layout ? tensor_layout : key_set.layout;
114
    // assign DataType
115 116
    key_set.dtype = tensor.dtype();
    dtype_set = dtype_set | DataTypeSet(key_set.dtype);
117 118 119 120
    auto promote_result = PromoteTypes(dtype_set);
    if (promote_result != DataType::UNDEFINED) {
      key_set.dtype = promote_result;
    }
121 122
  }

123 124 125 126 127 128
  void operator()(const Tensor& x) {
    const auto* tensor = x.impl().get();
    if (tensor) {
      AssignKernelKeySet(*tensor);
    }
  }
129

130
  void operator()(const std::vector<Tensor>& x) {
131 132 133 134
    if (!x.empty()) {
      const phi::TensorBase& tensor = *x.at(0).impl();
      AssignKernelKeySet(tensor);
    }
135 136
  }

137 138
  void operator()(const paddle::optional<Tensor>& x) {
    if (x) {
139 140 141 142 143
      const phi::TensorBase& tensor = *(x.get_ptr()->impl());
      AssignKernelKeySet(tensor);
    }
  }

144 145 146 147 148 149 150
  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

151 152 153 154 155 156
struct KernelTypeParser : ArgsIterator<KernelTypeParser> {
  KernelType kernel_type{KernelType::DENSE_TENSOR_KENREL};

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
157
    if (phi::SelectedRows::classof(x.impl().get())) {
158
      kernel_type = KernelType::SELECTED_ROWS_KENREL;
159 160 161 162
    } else if (phi::SparseCooTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_COO_KERNEL;
    } else if (phi::SparseCsrTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_CSR_KERNEL;
163 164 165 166 167 168 169 170 171 172
    }
  }

  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/* ------------------ for auto parallel ----------------------- */

struct DistTensorTypeParser : ArgsIterator<DistTensorTypeParser> {
  bool result = true;

  void operator()(const Tensor& x) { result &= x.is_dist_tensor(); }

  void operator()(const paddle::optional<Tensor>& x) {
    if (x) {
      result &= x.get_ptr()->is_dist_tensor();
    }
  }

  void operator()(const std::vector<Tensor>& x) {
    if (!x.empty()) {
      for (auto& t : x) {
        result &= t.is_dist_tensor();
      }
    }
  }

  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

201 202 203 204 205 206 207
}  // namespace detail

template <typename... Args>
KernelKeySet ParseKernelKeyByInputArgs(const Args&... args) {
  return detail::KernelKeyParser().apply(args...).key_set;
}

208 209 210 211 212
template <typename... Args>
KernelType ParseKernelTypeByInputArgs(const Args&... args) {
  return detail::KernelTypeParser().apply(args...).kernel_type;
}

213 214 215 216 217
DataType ParseDataType(DataType dtype);
DataType ParseDataType(const Tensor& tensor);
DataType ParseDataType(const std::vector<Tensor>& tensors);
DataType ParseDataTypeWithInputOrder(DataType dtype, const Tensor& tensor);

218
Backend ParseBackend(const Place& place);
219 220 221 222 223
Backend ParseBackend(const Tensor& tensor);
template <typename T, typename... Args>
Backend ParseBackend(T t, Args... args) {
  auto backend_set =
      BackendSet(ParseBackend(t)) | BackendSet(ParseBackend(args...));
224
  return static_cast<Backend>(32 -
225 226
                              detail::CountLeadingZeros(backend_set.bitset()));
}
227
Backend ParseBackendWithInputOrder(const Place& place, const Tensor& tensor);
228 229 230 231 232

DataLayout ParseLayout(DataLayout layout);
DataLayout ParseLayout(const Tensor& tensor);
DataLayout ParseLayoutWithInputOrder(DataLayout layout, const Tensor& tensor);

233 234 235 236 237
template <typename... Args>
bool AllInputsAreDistTensor(const Args&... args) {
  return detail::DistTensorTypeParser().apply(args...).result;
}

238 239
}  // namespace experimental
}  // namespace paddle