kernel_dispatch.h 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <limits>
#include <string>
#include <utility>

21 22 23 24 25 26 27
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/api/lib/backend_set.h"
#include "paddle/phi/api/lib/data_type_set.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/selected_rows.h"
28 29
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
30

Y
YuanRisheng 已提交
31
// TODO(chenweihang): split Key, Kernel, Factory into diff files
32
#include "paddle/phi/core/kernel_factory.h"
33 34 35 36 37

namespace paddle {
namespace experimental {

namespace detail {
38
BackendSet GetTensorBackendSet(const phi::TensorBase& t);
39
std::size_t CountLeadingZeros(uint32_t val);
40 41
}  // namespace detail

42
phi::DeviceContext* GetDeviceContextByBackend(phi::Backend backend);
43

44
enum class KernelType {
45 46 47 48
  DENSE_TENSOR_KENREL,   // kernel for DenseTensor
  SELECTED_ROWS_KENREL,  // kernel for SelectedRows
  SPARSE_COO_KERNEL,     // kernel for SparseCooTensor
  SPARSE_CSR_KERNEL      // kernel for SparseCsrTensor
49 50
};

51 52 53 54 55 56 57
// TODO(chenweihang): support DataLayout and DataType selected
struct KernelKeySet {
  BackendSet backend_set{Backend::UNDEFINED};
  DataLayout layout{DataLayout::UNDEFINED};
  DataType dtype{DataType::UNDEFINED};

  // TODO(chenweihang): iterate all kernelkey for kernel selection
58
  phi::KernelKey GetHighestPriorityKernelKey() {
59
    return phi::KernelKey(static_cast<Backend>(32 - detail::CountLeadingZeros(
60 61 62
                                                        backend_set.bitset())),
                          layout,
                          dtype);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  }
};

namespace detail {

template <typename Functor>
struct ArgsIterator {
  template <typename... Args>
  inline Functor& apply() {
    return self();
  }

  template <typename T, typename... Args>
  inline Functor& apply(T&& arg, Args&&... args) {
    self()(std::forward<T>(arg));
    if (self().short_circuit()) {
      return self();
    } else {
      return apply(std::forward<Args>(args)...);
    }
  }

  constexpr bool short_circuit() const { return false; }

 private:
  inline Functor& self() { return *static_cast<Functor*>(this); }
};

struct KernelKeyParser : ArgsIterator<KernelKeyParser> {
  KernelKeySet key_set;
93 94 95
  // this dtype_set is used for cache multi-inputs dtype and used for
  // data_promote
  DataTypeSet dtype_set{DataType::UNDEFINED};
96 97 98

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
99
  inline void AssignKernelKeySet(const phi::TensorBase& tensor) {
100 101 102 103 104 105
    key_set.backend_set =
        key_set.backend_set | detail::GetTensorBackendSet(tensor);
    // TODO(chenweihang): select multi layout and dtype
    key_set.layout = tensor.layout();
    key_set.dtype = tensor.dtype();
    dtype_set = dtype_set | DataTypeSet(key_set.dtype);
106 107 108 109
    auto promote_result = PromoteTypes(dtype_set);
    if (promote_result != DataType::UNDEFINED) {
      key_set.dtype = promote_result;
    }
110 111
  }

112 113 114 115 116 117
  void operator()(const Tensor& x) {
    const auto* tensor = x.impl().get();
    if (tensor) {
      AssignKernelKeySet(*tensor);
    }
  }
118

119
  void operator()(const std::vector<Tensor>& x) {
120
    const phi::TensorBase& tensor = *x.at(0).impl();
121
    key_set.backend_set =
122 123 124 125
        key_set.backend_set | detail::GetTensorBackendSet(tensor);
    // TODO(chenweihang): select multi layout and dtype
    key_set.layout = tensor.layout();
    key_set.dtype = tensor.dtype();
126 127
  }

128 129
  void operator()(const paddle::optional<Tensor>& x) {
    if (x) {
130 131 132 133 134
      const phi::TensorBase& tensor = *(x.get_ptr()->impl());
      AssignKernelKeySet(tensor);
    }
  }

135 136 137 138 139 140 141
  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

142 143 144 145 146 147
struct KernelTypeParser : ArgsIterator<KernelTypeParser> {
  KernelType kernel_type{KernelType::DENSE_TENSOR_KENREL};

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
148
    if (phi::SelectedRows::classof(x.impl().get())) {
149
      kernel_type = KernelType::SELECTED_ROWS_KENREL;
150 151 152 153
    } else if (phi::SparseCooTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_COO_KERNEL;
    } else if (phi::SparseCsrTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_CSR_KERNEL;
154 155 156 157 158 159 160 161 162 163
    }
  }

  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

164 165 166 167 168 169 170
}  // namespace detail

template <typename... Args>
KernelKeySet ParseKernelKeyByInputArgs(const Args&... args) {
  return detail::KernelKeyParser().apply(args...).key_set;
}

171 172 173 174 175
template <typename... Args>
KernelType ParseKernelTypeByInputArgs(const Args&... args) {
  return detail::KernelTypeParser().apply(args...).kernel_type;
}

176 177 178 179 180
DataType ParseDataType(DataType dtype);
DataType ParseDataType(const Tensor& tensor);
DataType ParseDataType(const std::vector<Tensor>& tensors);
DataType ParseDataTypeWithInputOrder(DataType dtype, const Tensor& tensor);

181
Backend ParseBackend(const Place& place);
182 183 184 185 186
Backend ParseBackend(const Tensor& tensor);
template <typename T, typename... Args>
Backend ParseBackend(T t, Args... args) {
  auto backend_set =
      BackendSet(ParseBackend(t)) | BackendSet(ParseBackend(args...));
187
  return static_cast<Backend>(32 -
188 189
                              detail::CountLeadingZeros(backend_set.bitset()));
}
190
Backend ParseBackendWithInputOrder(const Place& place, const Tensor& tensor);
191 192 193 194 195

DataLayout ParseLayout(DataLayout layout);
DataLayout ParseLayout(const Tensor& tensor);
DataLayout ParseLayoutWithInputOrder(DataLayout layout, const Tensor& tensor);

196 197
}  // namespace experimental
}  // namespace paddle