kernel_dispatch.h 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <limits>
#include <string>
#include <utility>

21 22 23 24 25 26 27
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/api/lib/backend_set.h"
#include "paddle/phi/api/lib/data_type_set.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/selected_rows.h"
28

Y
YuanRisheng 已提交
29
// TODO(chenweihang): split Key, Kernel, Factory into diff files
30
#include "paddle/phi/core/kernel_factory.h"
31 32 33 34 35

namespace paddle {
namespace experimental {

namespace detail {
36
BackendSet GetTensorBackendSet(const phi::TensorBase& t);
37
std::size_t CountLeadingZeros(uint64_t val);
38 39
}  // namespace detail

40
phi::DeviceContext* GetDeviceContextByBackend(phi::Backend backend);
41

42 43 44 45 46
enum class KernelType {
  DENSE_TENSOR_KENREL,  // kernel for DenseTensor
  SELECTED_ROWS_KENREL  // kernel for SelectedRows
};

47 48 49 50 51 52 53
// TODO(chenweihang): support DataLayout and DataType selected
struct KernelKeySet {
  BackendSet backend_set{Backend::UNDEFINED};
  DataLayout layout{DataLayout::UNDEFINED};
  DataType dtype{DataType::UNDEFINED};

  // TODO(chenweihang): iterate all kernelkey for kernel selection
54
  phi::KernelKey GetHighestPriorityKernelKey() {
55 56 57 58
    return phi::KernelKey(static_cast<Backend>(64 - detail::CountLeadingZeros(
                                                        backend_set.bitset())),
                          layout,
                          dtype);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  }
};

namespace detail {

template <typename Functor>
struct ArgsIterator {
  template <typename... Args>
  inline Functor& apply() {
    return self();
  }

  template <typename T, typename... Args>
  inline Functor& apply(T&& arg, Args&&... args) {
    self()(std::forward<T>(arg));
    if (self().short_circuit()) {
      return self();
    } else {
      return apply(std::forward<Args>(args)...);
    }
  }

  constexpr bool short_circuit() const { return false; }

 private:
  inline Functor& self() { return *static_cast<Functor*>(this); }
};

struct KernelKeyParser : ArgsIterator<KernelKeyParser> {
  KernelKeySet key_set;
89 90 91
  // this dtype_set is used for cache multi-inputs dtype and used for
  // data_promote
  DataTypeSet dtype_set{DataType::UNDEFINED};
92 93 94 95

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
96 97 98 99 100 101 102
    const phi::TensorBase& tensor = *x.impl();
    key_set.backend_set =
        key_set.backend_set | detail::GetTensorBackendSet(tensor);
    // TODO(chenweihang): select multi layout and dtype
    key_set.layout = tensor.layout();
    key_set.dtype = tensor.dtype();
    dtype_set = dtype_set | DataTypeSet(key_set.dtype);
103 104 105 106
    auto promote_result = PromoteTypes(dtype_set);
    if (promote_result != DataType::UNDEFINED) {
      key_set.dtype = promote_result;
    }
107 108
  }

109
  void operator()(const std::vector<Tensor>& x) {
110
    const phi::TensorBase& tensor = *x.at(0).impl();
111
    key_set.backend_set =
112 113 114 115
        key_set.backend_set | detail::GetTensorBackendSet(tensor);
    // TODO(chenweihang): select multi layout and dtype
    key_set.layout = tensor.layout();
    key_set.dtype = tensor.dtype();
116 117
  }

118 119 120 121 122 123 124
  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

125 126 127 128 129 130
struct KernelTypeParser : ArgsIterator<KernelTypeParser> {
  KernelType kernel_type{KernelType::DENSE_TENSOR_KENREL};

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
131
    if (phi::SelectedRows::classof(x.impl().get())) {
132 133 134 135 136 137 138 139 140 141 142
      kernel_type = KernelType::SELECTED_ROWS_KENREL;
    }
  }

  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

143 144 145 146 147 148 149
}  // namespace detail

template <typename... Args>
KernelKeySet ParseKernelKeyByInputArgs(const Args&... args) {
  return detail::KernelKeyParser().apply(args...).key_set;
}

150 151 152 153 154
template <typename... Args>
KernelType ParseKernelTypeByInputArgs(const Args&... args) {
  return detail::KernelTypeParser().apply(args...).kernel_type;
}

155 156 157 158 159
DataType ParseDataType(DataType dtype);
DataType ParseDataType(const Tensor& tensor);
DataType ParseDataType(const std::vector<Tensor>& tensors);
DataType ParseDataTypeWithInputOrder(DataType dtype, const Tensor& tensor);

160
Backend ParseBackend(const Place& place);
161 162 163 164 165 166 167 168
Backend ParseBackend(const Tensor& tensor);
template <typename T, typename... Args>
Backend ParseBackend(T t, Args... args) {
  auto backend_set =
      BackendSet(ParseBackend(t)) | BackendSet(ParseBackend(args...));
  return static_cast<Backend>(64 -
                              detail::CountLeadingZeros(backend_set.bitset()));
}
169
Backend ParseBackendWithInputOrder(const Place& place, const Tensor& tensor);
170 171 172 173 174

DataLayout ParseLayout(DataLayout layout);
DataLayout ParseLayout(const Tensor& tensor);
DataLayout ParseLayoutWithInputOrder(DataLayout layout, const Tensor& tensor);

175 176
}  // namespace experimental
}  // namespace paddle