io.py 38.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
F
fengjiayi 已提交
16
import contextlib
17
import multiprocessing
M
minqiyang 已提交
18
import six
Y
yuyang18 已提交
19
import threading
D
dzhwinter 已提交
20

Y
yuyang18 已提交
21
from ..data_feeder import DataFeeder
22 23
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
24
from .. import core
Y
Refine  
Yu Yang 已提交
25
from ..executor import global_scope
Y
yuyang18 已提交
26
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
27
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
28 29
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
Y
Yu Yang 已提交
30

Y
Yu Yang 已提交
31
__all__ = [
Y
yuyang 已提交
32 33
    'data', 'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer',
    'random_data_generator', 'py_reader', 'Preprocessor', 'load'
Y
Yu Yang 已提交
34
]
Y
Yu Yang 已提交
35 36 37 38 39 40 41 42 43 44


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
45
    **Data Layer**
Y
Yu Yang 已提交
46

K
kavyasrinet 已提交
47
    This function takes in the input and based on whether data has
C
caoying03 已提交
48
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
49
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
50
    following operators in the graph.
Y
Yu Yang 已提交
51 52 53 54

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
71 72 73
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
M
minqiyang 已提交
74
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
75 76 77 78 79 80 81 82 83
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
84
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
85 86 87 88 89
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
90 91
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
92
    return data_var
T
typhoonzero 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
118
    **ListenAndServ Layer**
T
typhoonzero 已提交
119

Y
yi.wu 已提交
120 121 122 123 124 125 126 127 128
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
129

Y
yi.wu 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    Examples:
        .. code-block:: python

            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
145 146
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
147 148
    """

Y
Yancey1989 已提交
149
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
150
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
151
        self.inputs = inputs
T
typhoonzero 已提交
152 153 154
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
155 156
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
157
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
171 172 173 174 175 176 177 178
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
179 180
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
181 182 183

        return params, grads

T
typhoonzero 已提交
184 185 186 187 188 189 190
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
191 192 193 194 195 196
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
197
            type='listen_and_serv',
Y
Yancey1989 已提交
198
            inputs={"X": self.inputs},
T
typhoonzero 已提交
199 200 201 202
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
203 204 205
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
206
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
207
                'grad_to_block_id': [""]
T
typhoonzero 已提交
208 209 210
            })


211
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
212
    """
Y
yi.wu 已提交
213 214
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
215 216

    Args:
Y
yi.wu 已提交
217
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
218
                   of send_vars to send
Y
yi.wu 已提交
219 220
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
221 222 223 224

    """
    assert (type(send_vars) == list)

225 226 227 228 229 230 231
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
232
    epmap = endpoints.split(",")
T
typhoonzero 已提交
233
    endpoints = list(set(epmap))
T
typhoonzero 已提交
234 235

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
236
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
237

T
typhoonzero 已提交
238 239 240
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
241
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
242 243 244 245 246
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
247
    if sync:
W
Wu Yi 已提交
248 249 250 251 252
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
253 254


255
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
256
    """
Y
yi.wu 已提交
257
    Receive variables from server side
258 259

    Args:
Y
yi.wu 已提交
260
        endpoints (str): comma seperated IP:PORT pairs in the order
261
                   of send_vars to send
Y
yi.wu 已提交
262 263
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
264

Y
yi.wu 已提交
265 266
    Returns:
        list: list of received variables
267 268 269
    """
    assert (type(get_vars) == list)

270 271 272 273 274 275 276
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

277 278 279 280 281 282
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
283
        inputs={"X": dummy_input},
284 285 286
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
287
    if sync:
W
Wu Yi 已提交
288 289 290 291
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
292
    return get_vars
Y
Yu Yang 已提交
293 294


Y
Refine  
Yu Yang 已提交
295 296 297 298 299 300 301 302 303 304
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
305 306
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
307 308 309
    return reader


Y
Yu Yang 已提交
310 311 312 313 314
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
315 316 317 318
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
335
    new_op = block.append_op(
F
fengjiayi 已提交
336 337 338
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
339
        attrs=op.all_attrs())
F
fengjiayi 已提交
340
    return new_op
Y
Yu Yang 已提交
341 342


Y
yuyang18 已提交
343
@templatedoc(op_type='create_recordio_file_reader')
F
fengjiayi 已提交
344 345 346 347 348
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
F
fengjiayi 已提交
349
                       for_parallel=True):
F
fengjiayi 已提交
350
    """
Y
yuyang18 已提交
351
    ${comment}
F
fengjiayi 已提交
352 353

    Args:
Y
yuyang18 已提交
354
       filename(${filename_type}): ${filename_comment}.
F
fengjiayi 已提交
355
       shapes(list): List of tuples which declaring data shapes.
Y
yuyang18 已提交
356
       lod_levels(${lod_levels_type}): ${lod_levels_comment}.
F
fengjiayi 已提交
357
       dtypes(list): List of strs which declaring data type.
F
fengjiayi 已提交
358
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
359 360 361 362
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
Y
yuyang18 已提交
363
       ${out_comment}.
F
fengjiayi 已提交
364 365 366

    Examples:

Y
yuyang18 已提交
367 368 369 370 371 372 373 374
        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.io.open_recordio_file(
        >>>                               filename='./data.recordio',
        >>>                               shapes=[(3,224,224), (1)],
        >>>                               lod_levels=[0, 0],
        >>>                               dtypes=['float32', 'int64'])
        >>> # Via the reader, we can use 'read_file' layer to get data:
        >>> image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
375
    """
Y
Yu Yang 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
400 401
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
402 403 404 405

    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)

F
fengjiayi 已提交
406
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
407 408


F
fengjiayi 已提交
409 410 411 412 413
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
414 415 416
    Instead of opening a file and reading data from it, this
    Reader Variable generates float uniform random data by itself.
    It can be used as a dummy reader to test a network without
F
fengjiayi 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:

432
        .. code-block:: python
F
fengjiayi 已提交
433

434 435 436 437 438 439 440
            reader = fluid.layers.random_data_generator(
                                             low=0.0,
                                             high=1.0,
                                             shapes=[[3,224,224], [1]],
                                             lod_levels=[0, 0])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    return monkey_patch_reader_methods(main_prog_var)


Y
yuyang18 已提交
473 474 475 476 477 478
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
              use_double_buffer=True):
S
sneaxiy 已提交
479
    """
480
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
481

482
    This layer returns a Reader Variable.
483 484
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
485 486 487 488 489 490 491 492
    source in Python side. When :code:`Executor::Run()` is invoked in C++
    side, the data from the generator would be read automatically. Unlike
    :code:`DataFeeder.feed()`, the data reading process and
    :code:`Executor::Run()` process can run in parallel using
    :code:`py_reader`. The :code:`start()` method of the Reader should be
    called when each pass begins, while the :code:`reset()` method should be
    called when the pass ends and :code:`fluid.core.EOFException` raises.
    Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
S
sneaxiy 已提交
493 494

    Args:
495
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
Y
yuyang18 已提交
496 497 498 499 500
       shapes(list|tuple): List of tuples which declaring data shapes.
       dtypes(list|tuple): List of strs which declaring data type.
       lod_levels(list|tuple): List of ints which declaring data lod_level.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
501
       use_double_buffer(bool): Whether use double buffer or not.
S
sneaxiy 已提交
502 503

    Returns:
504
       Variable: A Reader from which we can get feeding data.
S
sneaxiy 已提交
505 506 507

    Examples:

508
        1. The basic usage of :code:`py_reader` is as follows:
S
sneaxiy 已提交
509

510 511 512 513 514 515 516
        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> reader = fluid.layers.py_reader(capacity=64,
        >>>                                 shapes=[(-1,3,224,224), (-1,1)],
        >>>                                 dtypes=['float32', 'int64'])
        >>> reader.decorate_paddle_reader(
X
Xin Pan 已提交
517
        >>>     paddle.reader.shuffle(paddle.batch(mnist.train())
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
        >>>
        >>> img, label = fluid.layers.read_file(reader)
        >>> loss = network(img, label) # some network definition
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
        >>>
        >>> exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
        >>> for epoch_id in range(10):
        >>>     reader.start()
        >>>     try:
        >>>         while True:
        >>>             exe.run(fetch_list=[loss.name])
        >>>     except fluid.core.EOFException:
        >>>         reader.reset()

        2. When training and testing are both performed, two different
        :code:`py_reader` should be created with different names, e.g.:

        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> def network(reader):
        >>>     img, label = fluid.layers.read_file(reader)
        >>>     # Here, we omitted the network definition
        >>>     return loss
        >>>
        >>> train_reader = fluid.layers.py_reader(capacity=64,
        >>>                                       shapes=[(-1,3,224,224), (-1,1)],
        >>>                                       dtypes=['float32', 'int64'],
        >>>                                       name='train_reader')
        >>> train_reader.decorate_paddle_reader(
X
Xin Pan 已提交
549
        >>>     paddle.reader.shuffle(paddle.batch(mnist.train())
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        >>>
        >>> test_reader = fluid.layers.py_reader(capacity=32,
        >>>                                      shapes=[(-1,3,224,224), (-1,1)],
        >>>                                      dtypes=['float32', 'int64'],
        >>>                                      name='test_reader')
        >>> test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
        >>>
        >>> # Create train_main_prog and train_startup_prog
        >>> train_main_prog = fluid.Program()
        >>> train_startup_prog = fluid.Program()
        >>> with fluid.program_guard(train_main_prog, train_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with test program
        >>>     with fluid.unique_name.guard():
        >>>         train_loss = network(train_reader) # some network definition
        >>>         adam = fluid.optimizer.Adam(learning_rate=0.01)
        >>>         adam.minimize(loss)
        >>>
        >>> # Create test_main_prog and test_startup_prog
        >>> test_main_prog = fluid.Program()
        >>> test_startup_prog = fluid.Program()
        >>> with fluid.program_guard(test_main_prog, test_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with train program
        >>>     with fluid.unique_name.guard():
        >>>         test_loss = network(test_reader)
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)
        >>>
        >>> train_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=train_loss.name, main_program=train_main_prog)
        >>> test_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=test_loss.name, main_program=test_main_prog)
        >>> for epoch_id in range(10):
583
        >>>     train_reader.start()
584 585 586 587 588 589
        >>>     try:
        >>>         while True:
        >>>             train_exe.run(fetch_list=[train_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         train_reader.reset()
        >>>
590
        >>>     test_reader.start()
591 592 593 594 595
        >>>     try:
        >>>         while True:
        >>>             test_exe.run(fetch_list=[test_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         test_reader.reset()
S
sneaxiy 已提交
596 597 598 599 600 601 602 603 604
    """
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

605 606 607
    if lod_levels is None:
        lod_levels = [0] * len(shapes)

Y
yuyang18 已提交
608 609 610
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
Y
yuyang18 已提交
611
        double_buffer_name = unique_name('double_buffer')
Y
yuyang18 已提交
612 613 614
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
Y
yuyang18 已提交
615
        double_buffer_name = "_".join([name, "double_buffer"])
Y
yuyang18 已提交
616

S
sneaxiy 已提交
617 618 619 620
    var = global_scope().var(queue_name)
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, shapes)

    startup_blk = default_startup_program().current_block()
Y
yuyang18 已提交
621
    startup_var = startup_blk.create_var(name=reader_name)
S
sneaxiy 已提交
622 623
    startup_blk.append_op(
        type='create_py_reader',
Y
yuyang18 已提交
624
        inputs={'blocking_queue': [queue_name]},
S
sneaxiy 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

Y
yuyang18 已提交
638 639
    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
Y
yuyang18 已提交
640 641 642 643 644
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader
Y
yuyang18 已提交
645 646 647 648 649 650

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
Y
yuyang18 已提交
651
    reader.exited = False
Y
yuyang18 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664

    def start_provide_thread(func):
        def __provider_thread__():
            for tensors in func():
                array = core.LoDTensorArray()
                for item in tensors:
                    if not isinstance(item, core.LoDTensor):
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

Y
yuyang18 已提交
665 666
                if reader.exited:
                    break
Y
yuyang18 已提交
667
                feed_queue.push(array)
Y
yuyang18 已提交
668 669
                if reader.exited:
                    break
Y
yuyang18 已提交
670 671 672
            feed_queue.close()

        reader.thread = threading.Thread(target=__provider_thread__)
F
fengjiayi 已提交
673
        reader.thread.daemon = True
Y
yuyang18 已提交
674 675 676
        reader.thread.start()

    def __set_tensor_provider__(func):
Y
yuyang18 已提交
677
        reader.tensor_provider = func
Y
yuyang18 已提交
678

Y
yuyang18 已提交
679
    def __set_paddle_reader__(paddle_reader):
Y
yuyang18 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693
        with program_guard(Program(), Program()):
            feed_list = []
            counter = 0
            for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                name = str(counter)
                feed_list.append(
                    data(
                        name=name,
                        dtype=dtype,
                        shape=shape,
                        lod_level=lod_level))
                counter += 1

            feeder = DataFeeder(feed_list=feed_list, place=core.CPUPlace())
Y
yuyang18 已提交
694 695
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)
Y
yuyang18 已提交
696 697

        def __tensor_provider__():
Y
yuyang18 已提交
698
            for slots in paddle_reader():
M
minqiyang 已提交
699
                yield [slots[str(idx)] for idx in six.moves.xrange(counter)]
Y
yuyang18 已提交
700 701 702 703 704 705

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
Y
yuyang18 已提交
706
            reader.exited = True
Y
yuyang18 已提交
707
            reader.thread.join()
Y
yuyang18 已提交
708 709 710 711
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)
Y
yuyang18 已提交
712 713 714 715

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
Y
yuyang18 已提交
716
    reader.start = __start__
Y
yuyang18 已提交
717 718

    return reader
S
sneaxiy 已提交
719 720


721 722 723 724
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yuyang18 已提交
725
               thread_num=None,
F
fengjiayi 已提交
726 727
               buffer_size=None,
               pass_num=1,
Y
yuyang18 已提交
728
               is_test=None):
F
fengjiayi 已提交
729 730 731
    """
    Open files

732 733 734
    This layer takes a list of files to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from given files. All files must
    have name suffixs to indicate their formats, e.g., '*.recordio'.
F
fengjiayi 已提交
735 736 737 738 739 740

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
Y
yuyang18 已提交
741 742 743
       thread_num(None): The number of thread to read files.
            Default: min(len(filenames), cpu_number).
       buffer_size(None): The buffer size of reader. Default: 3 * thread_num
F
fengjiayi 已提交
744
       pass_num(int): Number of passes to run.
Y
yuyang18 已提交
745 746 747 748
       is_test(bool|None): Whether `open_files` used for testing or not. If it
            is used for testing, the order of data generated is same as the file
            order. Otherwise, it is not guaranteed the order of data is same
            between every epoch. [Default: False].
F
fengjiayi 已提交
749 750 751 752 753 754 755

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
756
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
757
                                                     './data2.recordio'],
F
fengjiayi 已提交
758 759
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
Y
yuyang18 已提交
760
                                             dtypes=['float32', 'int64'])
F
fengjiayi 已提交
761 762

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
763
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
764
    """
Y
yuyang18 已提交
765 766 767 768 769 770 771 772 773
    if thread_num is None:
        thread_num = min(len(filenames), multiprocessing.cpu_count())
    else:
        thread_num = int(thread_num)

    if buffer_size is None:
        buffer_size = 3 * thread_num
    else:
        buffer_size = int(buffer_size)
Y
yuyang18 已提交
774

M
minqiyang 已提交
775
    if isinstance(filenames, six.string_types):
F
fengjiayi 已提交
776
        filenames = [filenames]
F
fengjiayi 已提交
777 778 779 780 781 782 783 784
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
785
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
786
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
787
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
Y
yuyang18 已提交
788 789 790 791
    attrs = {
        'shape_concat': shape_concat,
        'lod_levels': lod_levels,
        'ranks': ranks,
Y
yuyang18 已提交
792 793 794
        'file_names': filenames,
        'thread_num': thread_num,
        'buffer_size': buffer_size
Y
yuyang18 已提交
795 796 797
    }
    if is_test is not None:
        attrs['is_test'] = is_test
F
fengjiayi 已提交
798
    startup_blk.append_op(
Y
yuyang18 已提交
799
        type='open_files', outputs={'Out': [startup_reader]}, attrs=attrs)
F
fengjiayi 已提交
800

F
fengjiayi 已提交
801 802 803 804 805 806 807
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
808

F
fengjiayi 已提交
809 810 811
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
812
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
813 814 815
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
816
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
817 818 819 820 821
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
822 823 824 825
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
826 827


828 829
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
830 831 832 833 834 835 836 837 838 839
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
840
def shuffle(reader, buffer_size):
841 842 843
    """
    Shuffle the reader.
    """
844 845
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
846 847


J
JiayiFeng 已提交
848
def batch(reader, batch_size):
F
fengjiayi 已提交
849
    """
850 851 852
    This layer is a reader decorator. It takes a reader and adds
    'batching' decoration on it. When reading with the result
    decorated reader, output data will be automatically organized
F
fengjiayi 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
    to the form of batches.

    Args:
        reader(Variable): The reader to be decorated with 'batching'.
        batch_size(int): The batch size.

    Returns:
        Variable: The reader which has been decorated with 'batching'.

    Examples:
        .. code-block:: python

            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
                                                    shapes=[(3,224,224), (1)],
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)

            # If we read data with the raw_reader:
            #     data = fluid.layers.read_file(raw_reader)
            # We can only get data instance by instance.
877
            #
F
fengjiayi 已提交
878 879
            # However, if we read data with the batch_reader:
            #     data = fluid.layers.read_file(batch_reader)
880 881
            # Each 5 adjacent instances will be automatically combined together
            # to become a batch. So what we get('data') is a batch data instead
F
fengjiayi 已提交
882 883
            # of an instance.
    """
J
JiayiFeng 已提交
884 885 886 887
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


888
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:

        >>> reader = fluid.layers.open_files(filenames=['somefile'],
        >>>                                  shapes=[[-1, 784], [-1, 1]],
        >>>                                  dtypes=['float32', 'int64'])
        >>> reader = fluid.layers.double_buffer(reader)
        >>> img, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
912 913 914
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
915 916
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
917 918


F
fengjiayi 已提交
919
def multi_pass(reader, pass_num):
920 921
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
922 923


F
fengjiayi 已提交
924
def read_file(reader):
F
fengjiayi 已提交
925
    """
F
fengjiayi 已提交
926
    Execute the given reader and get data via it.
F
fengjiayi 已提交
927

928 929
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
F
fengjiayi 已提交
930 931 932 933
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
934
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
935 936

    Returns:
F
fengjiayi 已提交
937
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950

    Examples:
        .. code-block:: python

           data_file = fluid.layers.open_files(
                filenames=['mnist.recordio'],
                shapes=[(-1, 748), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"])
            data_file = fluid.layers.double_buffer(
                fluid.layers.batch(data_file, batch_size=64))
            input, label = fluid.layers.read_file(data_file)
    """
Y
Yu Yang 已提交
951 952 953 954
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
955
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
956 957
    ]
    helper.append_op(
F
fengjiayi 已提交
958
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
959 960 961 962
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
963 964 965


class Preprocessor(object):
X
Xin Pan 已提交
966 967 968 969 970 971 972 973 974
    """
    A block for data pre-processing in reader.

    Args:
        reader (Variable): A reader variable.
        name (str, default None): The name of the reader.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
975

X
Xin Pan 已提交
976 977 978 979 980 981 982 983 984 985
            preprocessor = fluid.layers.io.Preprocessor(reader=reader)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

            data_file = fluid.layers.io.double_buffer(preprocessor())

    """
F
fengjiayi 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

X
Xin Pan 已提交
1002
    def _is_completed(self):
F
fengjiayi 已提交
1003 1004 1005 1006 1007
        return self.sub_block and self.source_var_names and self.sink_var_names

    @contextlib.contextmanager
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
W
Wu Yi 已提交
1008
        self.sub_block = self.main_prog._create_block()
F
fengjiayi 已提交
1009
        yield
W
Wu Yi 已提交
1010
        self.main_prog._rollback()
F
fengjiayi 已提交
1011
        self.status = Preprocessor.AFTER_SUB_BLOCK
X
Xin Pan 已提交
1012
        if not self._is_completed():
F
fengjiayi 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
1028 1029
        self.source_var_names = [
            unique_name("preprocessor_source")
M
minqiyang 已提交
1030
            for _ in six.moves.range(len(source_shapes))
F
fengjiayi 已提交
1031
        ]
F
fengjiayi 已提交
1032
        source_vars = []
F
fengjiayi 已提交
1033 1034 1035
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
1036
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
1037
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)