io.py 33.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
fengjiayi 已提交
14
import contextlib
15
import multiprocessing
Y
yuyang18 已提交
16
import threading
D
dzhwinter 已提交
17

Y
yuyang18 已提交
18
from ..data_feeder import DataFeeder
T
WIP  
typhoonzero 已提交
19
from control_flow import BlockGuard
Y
yuyang18 已提交
20 21
from layer_function_generator import templatedoc
from .. import core
Y
Refine  
Yu Yang 已提交
22
from ..executor import global_scope
Y
yuyang18 已提交
23
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
Y
yuyang18 已提交
24
    default_startup_program, program_guard, Program
Y
yuyang18 已提交
25 26
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
Y
Yu Yang 已提交
27

Y
Yu Yang 已提交
28
__all__ = [
S
sneaxiy 已提交
29 30 31 32
    'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'Recv',
    'open_recordio_file', 'open_files', 'read_file', 'shuffle', 'batch',
    'double_buffer', 'random_data_generator', 'py_reader', 'Preprocessor',
    'load'
Y
Yu Yang 已提交
33
]
Y
Yu Yang 已提交
34 35 36 37 38 39 40 41 42 43


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
44
    **Data Layer**
Y
Yu Yang 已提交
45

K
kavyasrinet 已提交
46
    This function takes in the input and based on whether data has
C
caoying03 已提交
47
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
48
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
49
    following operators in the graph.
Y
Yu Yang 已提交
50 51 52 53

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
83
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
84 85 86 87 88
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
89 90
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
91
    return data_var
T
typhoonzero 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
117
    **ListenAndServ Layer**
T
typhoonzero 已提交
118

Y
yi.wu 已提交
119 120 121 122 123 124 125 126 127
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
128

Y
yi.wu 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    Examples:
        .. code-block:: python

            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
144 145
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
146 147
    """

Y
Yancey1989 已提交
148
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
149
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
150
        self.inputs = inputs
T
typhoonzero 已提交
151 152 153
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
154 155
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
156
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
170 171 172 173 174 175 176 177
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
178 179
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
180 181 182

        return params, grads

T
typhoonzero 已提交
183 184 185 186 187 188 189
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
190 191 192 193 194 195
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
196
            type='listen_and_serv',
Y
Yancey1989 已提交
197
            inputs={"X": self.inputs},
T
typhoonzero 已提交
198 199 200 201
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
202 203 204
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
205
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
206
                'grad_to_block_id': [""]
T
typhoonzero 已提交
207 208 209
            })


Y
yi.wu 已提交
210
def Send(endpoints, send_vars, sync=True):
T
typhoonzero 已提交
211
    """
Y
yi.wu 已提交
212 213
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
214 215

    Args:
Y
yi.wu 已提交
216
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
217
                   of send_vars to send
Y
yi.wu 已提交
218 219
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
220 221 222 223 224

    """
    assert (type(send_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
225
    endpoints = list(set(epmap))
T
typhoonzero 已提交
226 227

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
228
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
229

T
typhoonzero 已提交
230 231 232
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
Y
Yancey1989 已提交
233 234 235 236 237
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
238 239
    if sync:
        helper.append_op(type="send_barrier", attrs={"endpoints": endpoints})
240 241


Y
yi.wu 已提交
242
def Recv(endpoints, get_vars, sync=True):
243
    """
Y
yi.wu 已提交
244
    Receive variables from server side
245 246

    Args:
Y
yi.wu 已提交
247
        endpoints (str): comma seperated IP:PORT pairs in the order
248
                   of send_vars to send
Y
yi.wu 已提交
249 250
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
251

Y
yi.wu 已提交
252 253
    Returns:
        list: list of received variables
254 255 256 257 258 259 260 261 262 263 264 265 266
    """
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
267 268 269
    if sync:
        helper.append_op(type="fetch_barrier", attrs={"endpoints": endpoints})
    return get_vars
Y
Yu Yang 已提交
270 271


Y
Refine  
Yu Yang 已提交
272 273 274 275 276 277 278 279 280 281
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
282 283
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
284 285 286
    return reader


Y
Yu Yang 已提交
287 288 289 290 291
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
292 293 294 295
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
312
    new_op = block.append_op(
F
fengjiayi 已提交
313 314 315
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
316
        attrs=op.all_attrs())
F
fengjiayi 已提交
317
    return new_op
Y
Yu Yang 已提交
318 319


Y
yuyang18 已提交
320
@templatedoc(op_type='create_recordio_file_reader')
F
fengjiayi 已提交
321 322 323 324 325
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
F
fengjiayi 已提交
326
                       for_parallel=True):
F
fengjiayi 已提交
327
    """
Y
yuyang18 已提交
328
    ${comment}
F
fengjiayi 已提交
329 330

    Args:
Y
yuyang18 已提交
331
       filename(${filename_type}): ${filename_comment}.
F
fengjiayi 已提交
332
       shapes(list): List of tuples which declaring data shapes.
Y
yuyang18 已提交
333
       lod_levels(${lod_levels_type}): ${lod_levels_comment}.
F
fengjiayi 已提交
334
       dtypes(list): List of strs which declaring data type.
F
fengjiayi 已提交
335
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
336 337 338 339
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
Y
yuyang18 已提交
340
       ${out_comment}.
F
fengjiayi 已提交
341 342 343

    Examples:

Y
yuyang18 已提交
344 345 346 347 348 349 350 351
        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.io.open_recordio_file(
        >>>                               filename='./data.recordio',
        >>>                               shapes=[(3,224,224), (1)],
        >>>                               lod_levels=[0, 0],
        >>>                               dtypes=['float32', 'int64'])
        >>> # Via the reader, we can use 'read_file' layer to get data:
        >>> image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
352
    """
Y
Yu Yang 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
377 378
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
379 380 381 382

    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)

F
fengjiayi 已提交
383
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
384 385


F
fengjiayi 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
    Instead of opening a file and reading data from it, this 
    Reader Variable generates float uniform random data by itself. 
    It can be used as a dummy reader to test a network without 
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:

409
        .. code-block:: python
F
fengjiayi 已提交
410

411 412 413 414 415 416 417
            reader = fluid.layers.random_data_generator(
                                             low=0.0,
                                             high=1.0,
                                             shapes=[[3,224,224], [1]],
                                             lod_levels=[0, 0])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    if for_parallel:
        main_prog_var = parallel(reader=main_prog_var)

    return monkey_patch_reader_methods(main_prog_var)


Y
yuyang18 已提交
453 454 455 456 457 458
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
              use_double_buffer=True):
S
sneaxiy 已提交
459 460
    """
    Create a reader and blocking queue for data feeding in Python
S
sneaxiy 已提交
461
    
S
sneaxiy 已提交
462
    This layer returns a Reader Variable and a BlockingQueue.
S
sneaxiy 已提交
463 464 465 466 467
    The BlockingQueue provides `push()` method to push a `LoDTensorArray` 
    object into the queue in Python side. In C++ side, the Reader 
    Variable would invoke `pop()` method of the queue to retrieve the 
    feeding data. The process of feeding data in Python side and fetching 
    data in C++ side can run in parallel. The BlockingQueue should be closed 
468
    using `close()` method when unused.
S
sneaxiy 已提交
469 470

    Args:
Y
yuyang18 已提交
471
       use_double_buffer(bool): Whether use double buffer or not.
S
sneaxiy 已提交
472
       capacity(int): The maximum capacity of the BlockingQueue.
Y
yuyang18 已提交
473 474 475 476 477
       shapes(list|tuple): List of tuples which declaring data shapes.
       dtypes(list|tuple): List of strs which declaring data type.
       lod_levels(list|tuple): List of ints which declaring data lod_level.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
S
sneaxiy 已提交
478 479

    Returns:
S
sneaxiy 已提交
480 481 482 483
       tuple(Variable, BlockingQueue):
       A Reader Variable from which we can get feeding data.
       
       A BlockingQueue object for data feeding.
S
sneaxiy 已提交
484 485 486 487 488 489 490 491 492 493 494

    Examples:

        .. code-block:: python

            reader, queue = fluid.layers.py_reader(
                                             capacity=10,
                                             shapes=[[-1,3,224,224], [-1,1]],
                                             dtypes=['float32', 'int64'])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
S
sneaxiy 已提交
495
            
S
sneaxiy 已提交
496 497 498 499 500 501 502 503 504
            # Via the blocking queue, we can feed data using threads
            def feed_data(queue, feed_images, feed_labels):
                for feed_image, feed_label in zip(feed_images, feed_labels):
                    data = core.LoDTensorArray()
                    data.append(feed_image)
                    data.append(feed_label)
                    queue.push(data)
            
            thread = threading.Thread(target=feed_data, args=(queue, feed_images, feed_labels))
505
            thread.start()
S
sneaxiy 已提交
506 507 508 509 510 511 512 513 514
    """
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

515 516 517
    if lod_levels is None:
        lod_levels = [0] * len(shapes)

Y
yuyang18 已提交
518 519 520
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
Y
yuyang18 已提交
521
        double_buffer_name = unique_name('double_buffer')
Y
yuyang18 已提交
522 523 524
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
Y
yuyang18 已提交
525
        double_buffer_name = "_".join([name, "double_buffer"])
Y
yuyang18 已提交
526

S
sneaxiy 已提交
527 528 529 530
    var = global_scope().var(queue_name)
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, shapes)

    startup_blk = default_startup_program().current_block()
Y
yuyang18 已提交
531
    startup_var = startup_blk.create_var(name=reader_name)
S
sneaxiy 已提交
532 533
    startup_blk.append_op(
        type='create_py_reader',
Y
yuyang18 已提交
534
        inputs={'blocking_queue': [queue_name]},
S
sneaxiy 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

Y
yuyang18 已提交
548 549
    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
Y
yuyang18 已提交
550 551 552 553 554
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader
Y
yuyang18 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None

    def start_provide_thread(func):
        def __provider_thread__():
            for tensors in func():
                array = core.LoDTensorArray()
                for item in tensors:
                    if not isinstance(item, core.LoDTensor):
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                feed_queue.push(array)
            feed_queue.close()

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader._tensor_provider = func
        start_provide_thread(reader._tensor_provider)

    def __set_paddle_reader__(reader):
        with program_guard(Program(), Program()):
            feed_list = []
            counter = 0
            for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                name = str(counter)
                feed_list.append(
                    data(
                        name=name,
                        dtype=dtype,
                        shape=shape,
                        lod_level=lod_level))
                counter += 1

            feeder = DataFeeder(feed_list=feed_list, place=core.CPUPlace())

        reader = feeder.decorate_reader(reader, multi_devices=False)

        def __tensor_provider__():
            for data in reader():
                yield [data[str(idx)] for idx in xrange(counter)]

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.thread.join()
            # restart provider thread.
            start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__

    return reader
S
sneaxiy 已提交
620 621


622 623 624 625
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yuyang18 已提交
626
               thread_num=None,
F
fengjiayi 已提交
627 628
               buffer_size=None,
               pass_num=1,
Y
yuyang18 已提交
629
               is_test=None):
F
fengjiayi 已提交
630 631 632
    """
    Open files

F
fengjiayi 已提交
633 634 635
    This layer takes a list of files to read from and returns a Reader Variable. 
    Via the Reader Variable, we can get data from given files. All files must 
    have name suffixs to indicate their formats, e.g., '*.recordio'. 
F
fengjiayi 已提交
636 637 638 639 640 641

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
Y
yuyang18 已提交
642 643 644
       thread_num(None): The number of thread to read files.
            Default: min(len(filenames), cpu_number).
       buffer_size(None): The buffer size of reader. Default: 3 * thread_num
F
fengjiayi 已提交
645
       pass_num(int): Number of passes to run.
Y
yuyang18 已提交
646 647 648 649
       is_test(bool|None): Whether `open_files` used for testing or not. If it
            is used for testing, the order of data generated is same as the file
            order. Otherwise, it is not guaranteed the order of data is same
            between every epoch. [Default: False].
F
fengjiayi 已提交
650 651 652 653 654 655 656

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
657
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
658
                                                     './data2.recordio'],
F
fengjiayi 已提交
659 660
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
Y
yuyang18 已提交
661
                                             dtypes=['float32', 'int64'])
F
fengjiayi 已提交
662 663

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
664
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
665
    """
Y
yuyang18 已提交
666 667 668 669 670 671 672 673 674
    if thread_num is None:
        thread_num = min(len(filenames), multiprocessing.cpu_count())
    else:
        thread_num = int(thread_num)

    if buffer_size is None:
        buffer_size = 3 * thread_num
    else:
        buffer_size = int(buffer_size)
Y
yuyang18 已提交
675

F
fengjiayi 已提交
676 677
    if isinstance(filenames, basestring):
        filenames = [filenames]
F
fengjiayi 已提交
678 679 680 681 682 683 684 685
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
686
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
687
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
688
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
Y
yuyang18 已提交
689 690 691 692
    attrs = {
        'shape_concat': shape_concat,
        'lod_levels': lod_levels,
        'ranks': ranks,
Y
yuyang18 已提交
693 694 695
        'file_names': filenames,
        'thread_num': thread_num,
        'buffer_size': buffer_size
Y
yuyang18 已提交
696 697 698
    }
    if is_test is not None:
        attrs['is_test'] = is_test
F
fengjiayi 已提交
699
    startup_blk.append_op(
Y
yuyang18 已提交
700
        type='open_files', outputs={'Out': [startup_reader]}, attrs=attrs)
F
fengjiayi 已提交
701

F
fengjiayi 已提交
702 703 704 705 706 707 708
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
709

F
fengjiayi 已提交
710 711 712
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
713
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
714 715 716
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
717
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
718 719 720 721 722
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
723 724 725 726
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
727 728


729 730
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
731 732 733 734 735 736 737 738 739 740
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
741
def shuffle(reader, buffer_size):
742 743 744
    """
    Shuffle the reader.
    """
745 746
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
747 748


J
JiayiFeng 已提交
749
def batch(reader, batch_size):
F
fengjiayi 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    """
    This layer is a reader decorator. It takes a reader and adds 
    'batching' decoration on it. When reading with the result 
    decorated reader, output data will be automatically organized 
    to the form of batches.

    Args:
        reader(Variable): The reader to be decorated with 'batching'.
        batch_size(int): The batch size.

    Returns:
        Variable: The reader which has been decorated with 'batching'.

    Examples:
        .. code-block:: python

            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
                                                    shapes=[(3,224,224), (1)],
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)

            # If we read data with the raw_reader:
            #     data = fluid.layers.read_file(raw_reader)
            # We can only get data instance by instance.
            # 
            # However, if we read data with the batch_reader:
            #     data = fluid.layers.read_file(batch_reader)
            # Each 5 adjacent instances will be automatically combined together 
            # to become a batch. So what we get('data') is a batch data instead 
            # of an instance.
    """
J
JiayiFeng 已提交
785 786 787 788
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


789
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:

        >>> reader = fluid.layers.open_files(filenames=['somefile'],
        >>>                                  shapes=[[-1, 784], [-1, 1]],
        >>>                                  dtypes=['float32', 'int64'])
        >>> reader = fluid.layers.double_buffer(reader)
        >>> img, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
813 814 815
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
816 817
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
818 819


F
fengjiayi 已提交
820
def multi_pass(reader, pass_num):
821 822
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
823 824


F
fengjiayi 已提交
825
def read_file(reader):
F
fengjiayi 已提交
826
    """
F
fengjiayi 已提交
827
    Execute the given reader and get data via it.
F
fengjiayi 已提交
828

F
fengjiayi 已提交
829
    A reader is also a Variable. It can be a raw reader generated by 
F
fengjiayi 已提交
830 831 832 833 834
    `fluid.layers.open_files()` or a decorated one generated by 
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
835
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
836 837

    Returns:
F
fengjiayi 已提交
838
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851

    Examples:
        .. code-block:: python

           data_file = fluid.layers.open_files(
                filenames=['mnist.recordio'],
                shapes=[(-1, 748), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"])
            data_file = fluid.layers.double_buffer(
                fluid.layers.batch(data_file, batch_size=64))
            input, label = fluid.layers.read_file(data_file)
    """
Y
Yu Yang 已提交
852 853 854 855
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
856
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
857 858
    ]
    helper.append_op(
F
fengjiayi 已提交
859
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
860 861 862 863
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
864 865 866


class Preprocessor(object):
X
Xin Pan 已提交
867 868 869 870 871 872 873 874 875
    """
    A block for data pre-processing in reader.

    Args:
        reader (Variable): A reader variable.
        name (str, default None): The name of the reader.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
876

X
Xin Pan 已提交
877 878 879 880 881 882 883 884 885 886
            preprocessor = fluid.layers.io.Preprocessor(reader=reader)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

            data_file = fluid.layers.io.double_buffer(preprocessor())

    """
F
fengjiayi 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

    def is_completed(self):
        return self.sub_block and self.source_var_names and self.sink_var_names

    @contextlib.contextmanager
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
        self.sub_block = self.main_prog.create_block()
        yield
        self.main_prog.rollback()
        self.status = Preprocessor.AFTER_SUB_BLOCK
        if not self.is_completed():
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
929 930 931 932
        self.source_var_names = [
            unique_name("preprocessor_source")
            for _ in xrange(len(source_shapes))
        ]
F
fengjiayi 已提交
933
        source_vars = []
F
fengjiayi 已提交
934 935 936
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
937
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
938
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)