graph_send_recv.py 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import numpy as np
16

17
import paddle
姜永久 已提交
18
from paddle import _C_ops
19 20
from paddle.fluid.data_feeder import (
    check_dtype,
21 22
    check_type,
    check_variable_and_dtype,
23 24
    convert_dtype,
)
25
from paddle.fluid.framework import Variable
26
from paddle.fluid.layer_helper import LayerHelper
27
from paddle.framework import in_dynamic_mode
28
from paddle.utils import deprecated
29 30


31 32 33 34
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.send_u_recv",
    level=1,
35 36 37 38 39
    reason="graph_send_recv in paddle.incubate will be removed in future",
)
def graph_send_recv(
    x, src_index, dst_index, pool_type="sum", out_size=None, name=None
):
40 41 42 43
    r"""

    Graph Learning Send_Recv combine operator.

44
    This operator is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory
45
    consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index`
46
    to gather the corresponding data, and then use `dst_index` to update the corresponding position of output tensor
47
    in different pooling types, like sum, mean, max, or min. Besides, we can set `out_size` to get necessary output shape.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

    .. code-block:: text

           Given:

           X = [[0, 2, 3],
                [1, 4, 5],
                [2, 6, 7]]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

           pool_type = "sum"

63 64
           out_size = None

65 66 67 68 69 70 71 72 73
           Then:

           Out = [[0, 2, 3],
                  [2, 8, 10],
                  [1, 4, 5]]

    Args:
        x (Tensor): The input tensor, and the available data type is float32, float64, int32, int64.
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
74 75
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`.
                            The available data type is int32, int64.
76
        pool_type (str): The pooling types of graph_send_recv, including `sum`, `mean`, `max`, `min`.
77
                         Default value is `sum`.
78
        out_size (int|Tensor|None): We can set `out_size` to get necessary output shape. If not set or
79
                                    out_size is smaller or equal to 0, then this input will not be used.
80
                                    Otherwise, `out_size` should be equal with or larger than
81
                                    max(dst_index) + 1.
82 83 84 85
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
86 87
        out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`.
                      If `out_size` is set correctly, then it should have the same shape as `x` except
88
                      the 0th dimension.
89 90 91 92 93 94 95 96 97 98 99 100 101 102

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum")
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [1., 4., 5.]]

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out_size = paddle.max(dst_index) + 1
            out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum", out_size=out_size)
            # Outputs: [[0., 2., 3.], [[2., 8., 10.]]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum")
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [0., 0., 0.]]

118 119 120 121 122
    """

    if pool_type not in ["sum", "mean", "max", "min"]:
        raise ValueError(
            "pool_type should be `sum`, `mean`, `max` or `min`, but received %s"
123 124
            % pool_type
        )
125

126 127
    # TODO(daisiming): Should we add judgement for out_size: max(dst_index) + 1.

128
    if in_dynamic_mode():
129
        out_size = convert_out_size_to_list(out_size)
130
        return _C_ops.send_u_recv(
131 132 133 134 135 136 137 138 139 140 141 142
            x, src_index, dst_index, pool_type.upper(), out_size
        )

    check_variable_and_dtype(
        x, "X", ("float32", "float64", "int32", "int64"), "graph_send_recv"
    )
    check_variable_and_dtype(
        src_index, "Src_index", ("int32", "int64"), "graph_send_recv"
    )
    check_variable_and_dtype(
        dst_index, "Dst_index", ("int32", "int64"), "graph_send_recv"
    )
143
    if out_size:
144 145 146 147 148 149
        check_type(
            out_size,
            'out_size',
            (int, np.int32, np.int64, Variable),
            'graph_send_recv',
        )
150
    if isinstance(out_size, Variable):
151 152 153
        check_dtype(
            out_size.dtype, 'out_size', ['int32', 'int64'], 'graph_send_recv'
        )
154 155 156

    helper = LayerHelper("graph_send_recv", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
157 158 159
    dst_count = helper.create_variable_for_type_inference(
        dtype="int32", stop_gradient=True
    )
160 161

    inputs = {"X": x, "Src_index": src_index, "Dst_index": dst_index}
162
    attrs = {"reduce_op": pool_type.upper()}
163 164 165 166 167 168 169 170 171 172
    get_out_size_tensor_inputs(
        inputs=inputs, attrs=attrs, out_size=out_size, op_type='graph_send_recv'
    )

    helper.append_op(
        type="graph_send_recv",
        inputs=inputs,
        outputs={"Out": out, "Dst_count": dst_count},
        attrs=attrs,
    )
173
    return out
174 175 176 177 178 179 180 181 182 183 184 185


def convert_out_size_to_list(out_size):
    """
    Convert out_size(int, np.int32, np.int64, Variable) to list
    in imperative mode.
    """
    if out_size is None:
        out_size = [0]
    elif isinstance(out_size, (int, np.int32, np.int64)):
        out_size = [out_size]
    else:
186
        out_size = [int(out_size)]
187 188 189 190 191 192
    return out_size


def get_out_size_tensor_inputs(inputs, attrs, out_size, op_type):
    """
    Convert out_size(int, np.int32, np.int64, Variable) to inputs
193
    and attrs in static graph mode.
194 195 196 197 198 199 200
    """
    if out_size is None:
        attrs['out_size'] = [0]
    elif isinstance(out_size, (int, np.int32, np.int64)):
        attrs['out_size'] = [out_size]
    elif isinstance(out_size, Variable):
        out_size.stop_gradient = True
201 202 203 204 205 206 207 208
        check_dtype(
            out_size.dtype,
            'out_size',
            ['int32', 'int64'],
            op_type,
            '(When type of out_size in' + op_type + ' is Variable.)',
        )
        if convert_dtype(out_size.dtype) == 'int64':
209
            out_size = paddle.cast(out_size, 'int32')
210 211 212
        inputs["Out_size"] = out_size
    else:
        raise TypeError("Out_size only supports Variable or int.")