graph_send_recv.py 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import numpy as np
16
from paddle.fluid.layer_helper import LayerHelper
17
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
18
from paddle.fluid.framework import Variable
19 20 21 22 23 24
from paddle.fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
25
from paddle.fluid.layers.tensor import cast
26
from paddle import _C_ops, _legacy_C_ops
27
import paddle.utils.deprecated as deprecated
28 29


30 31 32 33
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.send_u_recv",
    level=1,
34 35 36 37 38
    reason="graph_send_recv in paddle.incubate will be removed in future",
)
def graph_send_recv(
    x, src_index, dst_index, pool_type="sum", out_size=None, name=None
):
39 40 41 42
    r"""

    Graph Learning Send_Recv combine operator.

43
    This operator is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory
44
    consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index`
45
    to gather the corresponding data, and then use `dst_index` to update the corresponding position of output tensor
46
    in different pooling types, like sum, mean, max, or min. Besides, we can set `out_size` to get necessary output shape.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

    .. code-block:: text

           Given:

           X = [[0, 2, 3],
                [1, 4, 5],
                [2, 6, 7]]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

           pool_type = "sum"

62 63
           out_size = None

64 65 66 67 68 69 70 71 72
           Then:

           Out = [[0, 2, 3],
                  [2, 8, 10],
                  [1, 4, 5]]

    Args:
        x (Tensor): The input tensor, and the available data type is float32, float64, int32, int64.
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
73 74
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`.
                            The available data type is int32, int64.
75
        pool_type (str): The pooling types of graph_send_recv, including `sum`, `mean`, `max`, `min`.
76
                         Default value is `sum`.
77
        out_size (int|Tensor|None): We can set `out_size` to get necessary output shape. If not set or
78
                                    out_size is smaller or equal to 0, then this input will not be used.
79
                                    Otherwise, `out_size` should be equal with or larger than
80
                                    max(dst_index) + 1.
81 82 83 84
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
85 86
        out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`.
                      If `out_size` is set correctly, then it should have the same shape as `x` except
87
                      the 0th dimension.
88 89 90 91 92 93 94 95 96 97 98 99 100 101

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum")
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [1., 4., 5.]]

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out_size = paddle.max(dst_index) + 1
            out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum", out_size=out_size)
            # Outputs: [[0., 2., 3.], [[2., 8., 10.]]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum")
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [0., 0., 0.]]

117 118 119 120 121
    """

    if pool_type not in ["sum", "mean", "max", "min"]:
        raise ValueError(
            "pool_type should be `sum`, `mean`, `max` or `min`, but received %s"
122 123
            % pool_type
        )
124

125 126
    # TODO(daisiming): Should we add judgement for out_size: max(dst_index) + 1.

127 128
    if _in_legacy_dygraph():
        out_size = convert_out_size_to_list(out_size)
129 130 131 132 133 134 135 136 137 138
        out, tmp = _legacy_C_ops.graph_send_recv(
            x,
            src_index,
            dst_index,
            None,
            'reduce_op',
            pool_type.upper(),
            'out_size',
            out_size,
        )
139 140 141
        return out
    if in_dygraph_mode():
        out_size = convert_out_size_to_list(out_size)
142 143 144 145 146 147 148 149 150 151 152 153 154
        return _C_ops.graph_send_recv(
            x, src_index, dst_index, pool_type.upper(), out_size
        )

    check_variable_and_dtype(
        x, "X", ("float32", "float64", "int32", "int64"), "graph_send_recv"
    )
    check_variable_and_dtype(
        src_index, "Src_index", ("int32", "int64"), "graph_send_recv"
    )
    check_variable_and_dtype(
        dst_index, "Dst_index", ("int32", "int64"), "graph_send_recv"
    )
155
    if out_size:
156 157 158 159 160 161
        check_type(
            out_size,
            'out_size',
            (int, np.int32, np.int64, Variable),
            'graph_send_recv',
        )
162
    if isinstance(out_size, Variable):
163 164 165
        check_dtype(
            out_size.dtype, 'out_size', ['int32', 'int64'], 'graph_send_recv'
        )
166 167 168

    helper = LayerHelper("graph_send_recv", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
169 170 171
    dst_count = helper.create_variable_for_type_inference(
        dtype="int32", stop_gradient=True
    )
172 173

    inputs = {"X": x, "Src_index": src_index, "Dst_index": dst_index}
174
    attrs = {"reduce_op": pool_type.upper()}
175 176 177 178 179 180 181 182 183 184
    get_out_size_tensor_inputs(
        inputs=inputs, attrs=attrs, out_size=out_size, op_type='graph_send_recv'
    )

    helper.append_op(
        type="graph_send_recv",
        inputs=inputs,
        outputs={"Out": out, "Dst_count": dst_count},
        attrs=attrs,
    )
185
    return out
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212


def convert_out_size_to_list(out_size):
    """
    Convert out_size(int, np.int32, np.int64, Variable) to list
    in imperative mode.
    """
    if out_size is None:
        out_size = [0]
    elif isinstance(out_size, (int, np.int32, np.int64)):
        out_size = [out_size]
    else:
        out_size = [out_size.numpy().astype(int)[0]]
    return out_size


def get_out_size_tensor_inputs(inputs, attrs, out_size, op_type):
    """
    Convert out_size(int, np.int32, np.int64, Variable) to inputs
    and attrs in static mode.
    """
    if out_size is None:
        attrs['out_size'] = [0]
    elif isinstance(out_size, (int, np.int32, np.int64)):
        attrs['out_size'] = [out_size]
    elif isinstance(out_size, Variable):
        out_size.stop_gradient = True
213 214 215 216 217 218 219 220
        check_dtype(
            out_size.dtype,
            'out_size',
            ['int32', 'int64'],
            op_type,
            '(When type of out_size in' + op_type + ' is Variable.)',
        )
        if convert_dtype(out_size.dtype) == 'int64':
221 222 223 224
            out_size = cast(out_size, 'int32')
        inputs["Out_size"] = out_size
    else:
        raise TypeError("Out_size only supports Variable or int.")