graph_send_recv.py 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid import core
19
from paddle import _C_ops
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85


def graph_send_recv(x, src_index, dst_index, pool_type="sum", name=None):
    r"""

    Graph Learning Send_Recv combine operator.

    This operator is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory 
    consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index`
    to gather the corresponding data, and then use `dst_index` to update the corresponding position of output tensor 
    in different pooling types, like sum, mean, max, or min.

    .. code-block:: text

           Given:

           X = [[0, 2, 3],
                [1, 4, 5],
                [2, 6, 7]]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

           pool_type = "sum"

           Then:

           Out = [[0, 2, 3],
                  [2, 8, 10],
                  [1, 4, 5]]

    Args:
        x (Tensor): The input tensor, and the available data type is float32, float64, int32, int64.
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`. 
                            The available data type is int32, int64. 
        pool_type (str): The pooling type of graph_send_recv, including `sum`, `mean`, `max`, `min`.
                         Default value is `sum`.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum")
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [1., 4., 5.]]

    """

    if pool_type not in ["sum", "mean", "max", "min"]:
        raise ValueError(
            "pool_type should be `sum`, `mean`, `max` or `min`, but received %s"
            % pool_type)

    if in_dygraph_mode():
86 87
        out, tmp = _C_ops.graph_send_recv(x, src_index, dst_index, 'pool_type',
                                          pool_type.upper())
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        return out

    check_variable_and_dtype(x, "X", ("float32", "float64", "int32", "int64"),
                             "graph_send_recv")
    check_variable_and_dtype(src_index, "Src_index", ("int32", "int64"),
                             "graph_send_recv")
    check_variable_and_dtype(dst_index, "Dst_index", ("int32", "int64"),
                             "graph_send_recv")

    helper = LayerHelper("graph_send_recv", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    dst_count = helper.create_variable_for_type_inference(
        dtype="int32", stop_gradient=True)
    helper.append_op(
        type="graph_send_recv",
        inputs={"X": x,
                "Src_index": src_index,
                "Dst_index": dst_index},
        outputs={"Out": out,
                 "Dst_count": dst_count},
        attrs={"pool_type": pool_type.upper()})
    return out