graph_send_recv.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import numpy as np
16
from paddle.fluid.layer_helper import LayerHelper
17
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
18 19 20
from paddle.fluid.framework import Variable
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from paddle.fluid.layers.tensor import cast
21
from paddle import _C_ops, _legacy_C_ops
22
import paddle.utils.deprecated as deprecated
23 24


25 26 27 28 29
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.send_u_recv",
    level=1,
    reason="graph_send_recv in paddle.incubate will be removed in future")
30 31 32 33 34 35
def graph_send_recv(x,
                    src_index,
                    dst_index,
                    pool_type="sum",
                    out_size=None,
                    name=None):
36 37 38 39
    r"""

    Graph Learning Send_Recv combine operator.

40
    This operator is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory
41
    consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index`
42
    to gather the corresponding data, and then use `dst_index` to update the corresponding position of output tensor
43
    in different pooling types, like sum, mean, max, or min. Besides, we can set `out_size` to get necessary output shape.
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

    .. code-block:: text

           Given:

           X = [[0, 2, 3],
                [1, 4, 5],
                [2, 6, 7]]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

           pool_type = "sum"

59 60
           out_size = None

61 62 63 64 65 66 67 68 69
           Then:

           Out = [[0, 2, 3],
                  [2, 8, 10],
                  [1, 4, 5]]

    Args:
        x (Tensor): The input tensor, and the available data type is float32, float64, int32, int64.
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
70 71
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`.
                            The available data type is int32, int64.
72
        pool_type (str): The pooling types of graph_send_recv, including `sum`, `mean`, `max`, `min`.
73
                         Default value is `sum`.
74
        out_size (int|Tensor|None): We can set `out_size` to get necessary output shape. If not set or
75
                                    out_size is smaller or equal to 0, then this input will not be used.
76
                                    Otherwise, `out_size` should be equal with or larger than
77
                                    max(dst_index) + 1.
78 79 80 81
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
82 83
        out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`.
                      If `out_size` is set correctly, then it should have the same shape as `x` except
84
                      the 0th dimension.
85 86 87 88 89 90 91 92 93 94 95 96 97 98

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum")
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [1., 4., 5.]]

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out_size = paddle.max(dst_index) + 1
            out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum", out_size=out_size)
            # Outputs: [[0., 2., 3.], [[2., 8., 10.]]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum")
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [0., 0., 0.]]

114 115 116 117 118 119 120
    """

    if pool_type not in ["sum", "mean", "max", "min"]:
        raise ValueError(
            "pool_type should be `sum`, `mean`, `max` or `min`, but received %s"
            % pool_type)

121 122
    # TODO(daisiming): Should we add judgement for out_size: max(dst_index) + 1.

123 124
    if _in_legacy_dygraph():
        out_size = convert_out_size_to_list(out_size)
125 126 127 128
        out, tmp = _legacy_C_ops.graph_send_recv(x, src_index, dst_index,
                                                 None, 'reduce_op',
                                                 pool_type.upper(), 'out_size',
                                                 out_size)
129 130 131
        return out
    if in_dygraph_mode():
        out_size = convert_out_size_to_list(out_size)
132 133
        return _C_ops.graph_send_recv(x, src_index, dst_index,
                                      pool_type.upper(), out_size)
134 135 136 137 138 139 140

    check_variable_and_dtype(x, "X", ("float32", "float64", "int32", "int64"),
                             "graph_send_recv")
    check_variable_and_dtype(src_index, "Src_index", ("int32", "int64"),
                             "graph_send_recv")
    check_variable_and_dtype(dst_index, "Dst_index", ("int32", "int64"),
                             "graph_send_recv")
141 142 143 144 145 146
    if out_size:
        check_type(out_size, 'out_size', (int, np.int32, np.int64, Variable),
                   'graph_send_recv')
    if isinstance(out_size, Variable):
        check_dtype(out_size.dtype, 'out_size', ['int32', 'int64'],
                    'graph_send_recv')
147 148 149

    helper = LayerHelper("graph_send_recv", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
150 151
    dst_count = helper.create_variable_for_type_inference(dtype="int32",
                                                          stop_gradient=True)
152 153

    inputs = {"X": x, "Src_index": src_index, "Dst_index": dst_index}
154
    attrs = {"reduce_op": pool_type.upper()}
155 156 157 158 159
    get_out_size_tensor_inputs(inputs=inputs,
                               attrs=attrs,
                               out_size=out_size,
                               op_type='graph_send_recv')

160
    helper.append_op(type="graph_send_recv",
161
                     inputs=inputs,
162 163 164 165
                     outputs={
                         "Out": out,
                         "Dst_count": dst_count
                     },
166
                     attrs=attrs)
167
    return out
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201


def convert_out_size_to_list(out_size):
    """
    Convert out_size(int, np.int32, np.int64, Variable) to list
    in imperative mode.
    """
    if out_size is None:
        out_size = [0]
    elif isinstance(out_size, (int, np.int32, np.int64)):
        out_size = [out_size]
    else:
        out_size = [out_size.numpy().astype(int)[0]]
    return out_size


def get_out_size_tensor_inputs(inputs, attrs, out_size, op_type):
    """
    Convert out_size(int, np.int32, np.int64, Variable) to inputs
    and attrs in static mode.
    """
    if out_size is None:
        attrs['out_size'] = [0]
    elif isinstance(out_size, (int, np.int32, np.int64)):
        attrs['out_size'] = [out_size]
    elif isinstance(out_size, Variable):
        out_size.stop_gradient = True
        check_dtype(out_size.dtype, 'out_size', ['int32', 'int64'], op_type,
                    '(When type of out_size in' + op_type + ' is Variable.)')
        if (convert_dtype(out_size.dtype) == 'int64'):
            out_size = cast(out_size, 'int32')
        inputs["Out_size"] = out_size
    else:
        raise TypeError("Out_size only supports Variable or int.")