decorator.py 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15
from threading import Thread
Q
Qiao Longfei 已提交
16
import multiprocessing
17
import six
Q
Qiao Longfei 已提交
18
import sys
19
import warnings
20
import logging
T
tangwei12 已提交
21

22
from six.moves.queue import Queue
23
from six.moves import zip_longest
24 25
from six.moves import map
from six.moves import zip
26 27
import itertools
import random
28 29

from paddle.fluid.reader import QUEUE_GET_TIMEOUT
30

31 32
__all__ = []

33
# On macOS, the 'spawn' start method is now the default in Python3.8 multiprocessing,
34
# Paddle is currently unable to solve this, so forces the process to start using
35 36
# the 'fork' start method.
#
37
# TODO: This solution is not good, because the fork start method could lead to
38 39 40 41 42
# crashes of the subprocess. Figure out how to make 'spawn' work.
#
# For more details, please refer to
# https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
# https://bugs.python.org/issue33725
43
if sys.version_info >= (3, 8) and sys.platform == 'darwin':
44 45 46 47
    fork_context = multiprocessing.get_context('fork')
else:
    fork_context = multiprocessing

48

S
sneaxiy 已提交
49 50
def cache(reader):
    """
51
    Cache the reader data into memory.
S
sneaxiy 已提交
52

53 54 55
    Be careful that this method may take long time to process,
    and consume lots of memory. :code:`reader()` would only
    call once.
S
sneaxiy 已提交
56 57

    Args:
58
        reader (generator): a reader object which yields
S
sneaxiy 已提交
59 60 61
            data each time.

    Returns:
S
sneaxiy 已提交
62
        generator: a decorated reader object which yields data from cached memory.
63

64 65 66 67
    Examples:
        .. code-block:: python

            import paddle
68

69 70 71
            def reader():
                for i in range(3):
                    yield i
72

73 74
            # All data is cached into memory
            cached_reader = paddle.io.cache(reader)
75

76 77 78
            # Output: 0 1 2
            for i in cached_reader():
                print(i)
S
sneaxiy 已提交
79 80 81 82 83 84 85 86 87 88
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
89 90 91
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
92
    output of each data reader as arguments.
H
Helin Wang 已提交
93

94 95 96 97 98 99
    If input readers output the following data entries: 2 3,
    and the input func is mul(x, y),
    the output of the resulted reader will be 6.


    Args:
100
        func: a function to read data and compute result, the output of this function
101 102
              will be set as the output of the resulted data reader.
        readers (Reader|list of Reader): list of readers whose outputs will be used as arguments of func.
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    Returns:
        the resulted data reader (Reader)

    Examples:

        .. code-block:: python

         import paddle.reader
         d = {"h": 0, "i": 1}
         def func(x):
             return d[x]
         def reader():
             yield "h"
             yield "i"
         map_reader_result = paddle.reader.map_readers(func, reader)
H
Helin Wang 已提交
119 120 121 122 123 124
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
125
        for e in map(func, *rs):
H
Helin Wang 已提交
126 127 128 129 130
            yield e

    return reader


H
Helin Wang 已提交
131
def shuffle(reader, buf_size):
132
    """
133 134
    paddle.fluid.io.shuffle ( :ref:`api_fluid_io_shuffle` ) is recommended to use,
    and paddle.reader.shuffle is an alias.
135

136
    This API creates a decorated reader that outputs the shuffled data.
137

138
    The output data from the origin reader will be saved into a buffer,
139
    and then shuffle the data. The size of buffer is determined by argument buf_size.
140

141 142 143
    Args:
        reader(callable): the original reader whose data will be shuffled.
        buf_size(int): the size of shuffled buffer.
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    Returns:
        callable: a decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(5):
                    yield i
            shuffled_reader = fluid.io.shuffle(reader, 3)
            for e in shuffled_reader():
                print(e)
            # outputs are 0~4 unordered arrangement
160 161
    """

H
Helin Wang 已提交
162
    def data_reader():
163
        buf = []
H
Helin Wang 已提交
164
        for e in reader():
165 166 167 168 169 170 171 172 173 174 175 176
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
177
    return data_reader
178 179


H
Helin Wang 已提交
180
def chain(*readers):
181
    """
182
    Use the input data readers to create a chained data reader. The new created reader
183 184
    chains the outputs of input readers together as its output, and it do not change
    the format of the outputs.
185

186 187 188 189 190 191 192 193
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
194
    The chained reader will output:
195
    [0, 0, 0], [10, 10, 10], [20, 20, 20].
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
227 228 229

    """

H
Helin Wang 已提交
230
    def reader():
231
        rs = []
H
Helin Wang 已提交
232
        for r in readers:
233 234 235 236 237
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
238
    return reader
239 240


H
Helin Wang 已提交
241
class ComposeNotAligned(ValueError):
242 243 244
    pass


H
Helin Wang 已提交
245
def compose(*readers, **kwargs):
246 247
    """
    Creates a data reader whose output is the combination of input readers.
248

H
Helin Wang 已提交
249
    If input readers output following data entries:
250
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
251
    The composed reader will output:
252 253
    (1, 2, 3, 4, 5)

H
huzhiqiang 已提交
254
    Args:
255
        readers (Reader|list of Reader): readers that will be composed together.
H
huzhiqiang 已提交
256 257 258 259 260
        check_alignment(bool, optional): Indicates whether the input readers are checked for
                              alignment. If True, whether input readers are aligned
                              correctly will be checked, else alignment will not be checkout and trailing outputs
                              will be discarded. Defaults to True.

261
    Returns:
H
huzhiqiang 已提交
262 263 264 265
        the new data reader (Reader).

    Examples:
        .. code-block:: python
266

H
huzhiqiang 已提交
267 268 269 270 271 272 273
          import paddle.fluid as fluid
          def reader_creator_10(dur):
              def reader():
                 for i in range(10):
                     yield i
              return reader
          reader = fluid.io.compose(reader_creator_10(0), reader_creator_10(0))
274 275 276 277 278 279 280 281 282
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
            return (x, )

H
Helin Wang 已提交
283
    def reader():
284
        rs = []
H
Helin Wang 已提交
285
        for r in readers:
286 287
            rs.append(r())
        if not check_alignment:
288 289
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
290
        else:
291
            for outputs in zip_longest(*rs):
292 293 294
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
295 296
                        raise ComposeNotAligned(
                            "outputs of readers are not aligned.")
297
                yield sum(list(map(make_tuple, outputs)), ())
298

H
Helin Wang 已提交
299
    return reader
300 301


H
Helin Wang 已提交
302
def buffered(reader, size):
303 304
    """
    Creates a buffered data reader.
305

H
Helin Wang 已提交
306 307
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
308
    as the buffer is not empty.
309

310 311 312 313 314 315
    Args:
        reader(generator): the data reader to read from.
        size(int): max buffer size.

    Returns:
        generator: the buffered data reader.
316

317 318
    Examples:
        .. code-block:: python
319

320
            import paddle
321

322 323 324
            def reader():
                for i in range(3):
                    yield i
325

326 327
            # Create a buffered reader, and the buffer size is 2.
            buffered_reader = paddle.io.buffered(reader, 2)
328

329 330 331
            # Output: 0 1 2
            for i in buffered_reader():
                print(i)
332 333 334 335 336 337 338 339 340 341 342 343
    """

    class EndSignal():
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
344 345
    def data_reader():
        r = reader()
346
        q = Queue(maxsize=size)
347 348 349 350
        t = Thread(target=read_worker, args=(
            r,
            q,
        ))
351 352 353 354 355 356 357
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
358
    return data_reader
Y
Yu Yang 已提交
359 360


Y
Yu Yang 已提交
361
def firstn(reader, n):
Y
Yu Yang 已提交
362
    """
363 364
    paddle.fluid.io.firstn ( :ref:`api_fluid_io_firstn` ) is recommended to use,
    and paddle.reader.firstn is an alias.
365 366

    This API creates a decorated reader, and limits the max number of
367
    samples that reader could return.
Y
Yu Yang 已提交
368

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    Args:
        reader(callable): the input reader.
        n(int): the max number of samples in the reader.

    Returns:
        callable: the decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(100):
                    yield i
            firstn_reader = fluid.io.firstn(reader, 5)
            for e in firstn_reader():
                print(e)
387
            # the outputs are: 0 1 2 3 4
Y
Yu Yang 已提交
388 389
    """

Y
Yu Yang 已提交
390 391 392 393
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
394
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
395
            if i == n:
Y
Yu Yang 已提交
396 397 398
                break
            yield item

Y
Yu Yang 已提交
399
    return firstn_reader
400 401 402 403 404 405


class XmapEndSignal():
    pass


406
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
407
    """
Z
Zeng Jinle 已提交
408 409 410 411
    Use multi-threads to map samples from reader by a mapper defined by user.

    Args:
        mapper (callable): a function to map the data from reader.
412
        reader (callable): a data reader which yields the data.
Z
Zeng Jinle 已提交
413
        process_num (int): thread number to handle original sample.
414 415
        buffer_size (int): size of the queue to read data in.
        order (bool): whether to keep the data order from original reader.
Z
Zeng Jinle 已提交
416 417 418
            Default False.

    Returns:
419
        callable: a decorated reader with data mapping.
420 421
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
422

423 424 425 426 427
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
428

429 430 431 432
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
433 434
            in_queue.put((in_order, i))
            in_order += 1
435
        in_queue.put(end)
436 437 438 439 440 441 442 443 444 445 446

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
447

448 449 450 451 452 453 454 455 456 457
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
458
            out_order[0] += 1
459 460 461
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
462 463

    def xreader():
464 465
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
466 467 468 469 470 471 472 473
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
474 475
        args = (in_queue, out_queue, mapper,
                out_order) if order else (in_queue, out_queue, mapper)
476
        workers = []
477
        for i in range(process_num):
478 479 480 481 482 483
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

484 485 486 487 488 489 490 491 492 493 494 495 496
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
497 498


Q
Qiao Longfei 已提交
499 500
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
501
    This API use python ``multiprocessing`` to read data from ``readers`` parallelly,
502 503 504
    and then ``multiprocess.Queue`` or ``multiprocess.Pipe`` is used to merge
    these data. A separate process will be created for each reader in the
    ``readers`` list, please guarantee every reader can work independently
505 506
    to avoid conflicts in parallel environment.

507 508

    ``Multiprocess.Queue`` require the rw access right to /dev/shm, and it's not supported
509
    in some platforms.
Q
Qiao Longfei 已提交
510

511
    Parameters:
512
       readers (list( ``generator`` ) | tuple( ``generator`` )): a python ``generator`` list
513 514 515 516 517 518
           used to read input data
       use_pipe (bool, optional): control the inner API used to implement the multi-processing,
           default True - use ``multiprocess.Pipe`` which is recommended
       queue_size (int, optional): only useful when ``use_pipe`` is False - ``multiprocess.Queue``
           is used, default 1000. Increase this value can speed up the data reading, and more memory
           will be consumed.
Q
Qiao Longfei 已提交
519

520 521
    Returns:
        ``generator``: a new reader which can be run parallelly
Q
Qiao Longfei 已提交
522

523 524

    Example:
Q
Qiao Longfei 已提交
525 526 527

    .. code-block:: python

528 529 530
        import paddle.fluid as fluid
        from paddle.fluid.io import multiprocess_reader
        import numpy as np
531

532
        sample_files = ['sample_file_1', 'sample_file_2']
533

534 535 536 537 538
        def fake_input_files():
            with open(sample_files[0], 'w') as f:
               np.savez(f, a=np.array([1, 2]), b=np.array([3, 4]), c=np.array([5, 6]), d=np.array([7, 8]))
            with open(sample_files[1], 'w') as f:
               np.savez(f, a=np.array([9, 10]), b=np.array([11, 12]), c=np.array([13, 14]))
539 540


541 542 543 544 545 546 547
        def generate_reader(file_name):
            # load data file
            def _impl():
                data = np.load(file_name)
                for item in sorted(data.files):
                    yield data[item],
            return _impl
548

549 550 551
        if __name__ == '__main__':
            # generate sample input files
            fake_input_files()
552

553 554 555
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                place = fluid.CPUPlace()
                # the 1st 2 is batch size
556
                image = fluid.data(name='image', dtype='int64', shape=[2, 1, 2])
557 558
                fluid.layers.Print(image)
                # print detailed tensor info of image variable
559

560
                reader = fluid.io.PyReader(feed_list=[image], capacity=2)
561

562 563
                decorated_reader = multiprocess_reader(
                    [generate_reader(sample_files[0]), generate_reader(sample_files[1])], False)
564

565
                reader.decorate_sample_generator(decorated_reader, batch_size=2, places=[place])
566

567 568
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
569

570 571 572 573 574 575 576 577 578
                for data in reader():
                    res = exe.run(feed=data, fetch_list=[image])
                    print(res[0])
                    # print below content in this case
                    # [[[1 2]], [[3 4]]]
                    # [[[5 6]], [[7 8]]]
                    # [[[9 10]], [[11 12]]]
                    # [13,14] will be dropped

Q
Qiao Longfei 已提交
579 580
    """

581 582 583 584
    if sys.platform == 'win32':
        raise NotImplementedError(
            "The multiprocess_reader method is not supported on windows.")

585
    # ujson is ultra fast json encoder and decoder written in pure C with bindings for Python 3.6+.
Q
Qiao Longfei 已提交
586 587 588
    try:
        import ujson as json
    except Exception as e:
589 590 591
        warnings.warn(
            "The `ujson` module is not found, use the `json` module, `ujson` encodes and decodes faster, "
            "you can install `ujson` through `pip install ujson`.")
Q
Qiao Longfei 已提交
592 593
        import json

594 595
    assert isinstance(readers, (list, tuple)) and len(readers) > 0, (
        "`readers` must be list or tuple.")
Q
Qiao Longfei 已提交
596 597

    def _read_into_queue(reader, queue):
598 599 600 601 602 603 604 605 606
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
607 608

    def queue_reader():
609
        queue = fork_context.Queue(queue_size)
Q
Qiao Longfei 已提交
610
        for reader in readers:
611 612
            p = fork_context.Process(target=_read_into_queue,
                                     args=(reader, queue))
Q
Qiao Longfei 已提交
613 614 615 616 617
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
618 619 620 621 622 623 624 625
            try:
                sample = queue.get(timeout=QUEUE_GET_TIMEOUT)
            except:
                logging.error(
                    "multiprocess_reader failed to get data from the multiprocessing.Queue."
                )
                six.reraise(*sys.exc_info())

Q
Qiao Longfei 已提交
626 627
            if sample is None:
                finish_num += 1
628
            elif sample == "":
629 630 631
                raise ValueError(
                    "multiprocess_reader failed to put data into the multiprocessing.Queue."
                )
Q
Qiao Longfei 已提交
632 633 634 635
            else:
                yield sample

    def _read_into_pipe(reader, conn):
636 637 638 639 640 641 642 643 644 645 646
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
        except:
            conn.send(json.dumps(""))
            conn.close()
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
647 648 649 650

    def pipe_reader():
        conns = []
        for reader in readers:
651
            parent_conn, child_conn = fork_context.Pipe()
Q
Qiao Longfei 已提交
652
            conns.append(parent_conn)
653 654
            p = fork_context.Process(target=_read_into_pipe,
                                     args=(reader, child_conn))
Q
Qiao Longfei 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
670 671 672
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
673 674 675
                    raise ValueError(
                        "multiprocess_reader failed to send data into the multiprocessing.Pipe."
                    )
Q
Qiao Longfei 已提交
676 677 678 679 680 681 682
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader