common.py 93.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
X
xiaoting 已提交
16
from paddle.fluid.layer_helper import LayerHelper
17 18 19 20
from paddle.fluid.layers.tensor import fill_constant
from ...tensor import concat
from ...tensor.creation import zeros
from paddle.static import Variable
21
# TODO: define the common functions to build a neural network
22 23
from ...tensor.manipulation import squeeze
from ...tensor.manipulation import unsqueeze
Y
Yang Zhang 已提交
24 25 26
from ...tensor import clip
from ...tensor import sum
from ...tensor import sqrt
27
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype, check_type
28
from ...fluid.framework import _in_legacy_dygraph, _non_static_mode, in_dygraph_mode
Z
zhiboniu 已提交
29

30
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
31 32 33
from paddle.framework import in_dynamic_mode
from paddle.tensor.creation import full
from paddle.framework import core
34
from paddle.fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
35
from paddle.static import default_main_program
36

37 38
__all__ = []

X
xiaoting 已提交
39

40 41 42
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

43
    Return a col buffer of sliding local blocks of input x, also known
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
90
        Tensor, The tensor corresponding to the sliding local blocks.
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    if in_dygraph_mode():
149
        return _C_ops.unfold(x, kernel_sizes, strides, paddings, dilations)
150 151

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
152 153 154 155 156 157 158 159 160
    helper.append_op(type="unfold",
                     inputs={"X": x},
                     outputs={"Y": out},
                     attrs={
                         "kernel_sizes": kernel_sizes,
                         "strides": strides,
                         "paddings": paddings,
                         "dilations": dilations
                     })
161 162 163
    return out


X
xiaoting 已提交
164
def interpolate(x,
165 166 167 168
                size=None,
                scale_factor=None,
                mode='nearest',
                align_corners=False,
X
xiaoting 已提交
169
                align_mode=0,
170 171
                data_format='NCHW',
                name=None):
X
xiaoting 已提交
172
    """
S
swtkiwi 已提交
173

174
    This API resizes a batch of images.
175

176 177
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
178
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
179 180
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
181
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
182

X
xiaoting 已提交
183
    Supporting resample methods:
184 185 186 187 188 189 190

    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation
    - 'area': Area interpolation
191

192 193 194
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
209
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
210 211 212 213 214 215 216
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

217 218
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
219 220
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
221 222
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
223 224 225 226
    Example:

    .. code-block:: text

227
        # For scale_factor:
X
xiaoting 已提交
228 229 230 231 232
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

233
        # Linear interpolation:
234 235 236 237 238 239 240 241 242
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
243

244
        # Nearest neighbor interpolation:
X
xiaoting 已提交
245

X
xiaoting 已提交
246 247 248 249 250
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
251

252
        # Bilinear interpolation:
X
xiaoting 已提交
253 254 255 256 257 258 259 260 261 262 263 264
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

265
        # Bicubic interpolation:
X
xiaoting 已提交
266 267 268 269 270 271 272 273 274 275 276 277
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

278
        # Trilinear interpolation:
X
xiaoting 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

293 294
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
295

X
xiaoting 已提交
296 297
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
298

X
xiaoting 已提交
299 300
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
301

X
xiaoting 已提交
302 303
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
304

X
xiaoting 已提交
305 306
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
307

X
xiaoting 已提交
308
    Parameters:
X
xiaoting 已提交
309
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
310
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
311
        size (list|tuple|Tensor|None): Output shape of image resize
312 313
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
314
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
315
             If a Tensor, its dimensions size should be a 1.
316 317 318
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
319
             Default: None.
320
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
321
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
322 323
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
324
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
325 326 327 328
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
329
        data_format (str, optional): Specify the data format of the input, and the data format of the output
330
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
331 332 333
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
334 335 336
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
337
    Returns:
338
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
339 340
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
341

342

X
xiaoting 已提交
343 344 345
    Examples:
        .. code-block:: python

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
            import paddle
            import paddle.nn.functional as F

            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            output_1 = F.interpolate(x=input_data, size=[12,12])
            print(output_1.shape)
            # [2L, 3L, 12L, 12L]

            # given scale
            output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]

            # bilinear interp
            output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
363
    """
364 365 366 367 368 369 370 371 372 373
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
374
        'AREA',
375
    ]
X
xiaoting 已提交
376 377
    if resample not in resample_methods:
        raise ValueError(
378
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
379
            " 'bicubic' or 'nearest' currently.")
X
xiaoting 已提交
380

X
xiaoting 已提交
381
    if resample in ['LINEAR'] and len(x.shape) != 3:
382
        raise ValueError("'linear' only support 3-D tensor.")
383

384 385 386 387 388
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
389
    if resample == 'TRILINEAR' and len(x.shape) != 5:
390 391 392 393
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
394 395 396

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
397

X
xiaoting 已提交
398 399
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
400 401 402 403
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
404

X
xiaoting 已提交
405
    if resample == 'AREA':
406 407
        if isinstance(size, list) or isinstance(size, tuple) or isinstance(
                size, Variable):
X
xiaoting 已提交
408 409 410 411 412 413 414 415
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
416

X
xiaoting 已提交
417
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
418
    dtype = helper.input_dtype(input_param_name='x')
X
xiaoting 已提交
419
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
420 421
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
422
            " received but only `NCW` or `NWC` supported for 3-D input.")
X
xiaoting 已提交
423
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
424 425 426
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
X
xiaoting 已提交
427
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
428 429 430 431 432 433 434
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

435
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
436
        data_layout = 'NCHW'
437
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
438 439
        data_layout = 'NHWC'

X
xiaoting 已提交
440 441 442 443
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
444 445 446 447 448 449 450 451 452 453
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
        "data_layout": data_layout
    }

454 455
    out_shape = size
    scale = scale_factor
456 457
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
458
    if out_shape is not None:
Z
zhiboniu 已提交
459
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
460 461 462
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
463
            if in_dynamic_mode():
464 465
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
466 467
                else:
                    out_shape = list(out_shape)
468 469 470
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
471
            if not (_is_list_or_turple_(out_shape)):
472
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
495 496 497 498 499
                        fill_constant([1],
                                      'int32',
                                      dim,
                                      force_cpu=True,
                                      out=temp_out)
X
xiaoting 已提交
500 501 502 503
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
504
            if len(x.shape) == 3:
505 506
                if len(out_shape) != 1:
                    raise ValueError(
507
                        "size length should be 2 for input 3-D tensor")
508 509 510 511 512
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
513
            if len(x.shape) == 4:
X
xiaoting 已提交
514
                if len(out_shape) != 2:
515
                    raise ValueError("size length should be 2 for "
X
xiaoting 已提交
516 517 518 519 520 521 522 523
                                     "input 4-D tensor.")
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
524
            if len(x.shape) == 5:
X
xiaoting 已提交
525
                if len(out_shape) != 3:
526
                    raise ValueError("size length should be 3 for "
X
xiaoting 已提交
527 528 529 530 531 532 533 534 535 536 537 538
                                     "input 5-D tensor.")
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
539
        if in_dynamic_mode() and isinstance(scale, Variable):
540
            scale = list(scale.numpy())
X
xiaoting 已提交
541 542 543 544 545 546
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
547 548 549 550
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
551
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
552 553 554 555 556 557 558 559
            if len(scale) != len(x.shape) - 2:
                raise ValueError("scale_shape length should be {} for "
                                 "input {}-D tensor.".format(
                                     len(x.shape) - 2, len(x.shape)))
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
560 561
        else:
            raise TypeError(
562 563
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
564

Z
zhiboniu 已提交
565
    if in_dynamic_mode():
X
xiaoting 已提交
566 567 568 569 570 571 572
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
573
            if in_dygraph_mode():
574
                out = _C_ops.linear_interp(
575 576 577 578 579 580 581
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
582
            else:
583
                out = _legacy_C_ops.linear_interp_v2(x, *dy_attr)
584
        elif resample_type == "bilinear":
585
            if in_dygraph_mode():
586
                out = _C_ops.bilinear_interp(
587 588 589 590 591 592 593 594
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
595
                out = _legacy_C_ops.bilinear_interp_v2(x, *dy_attr)
596
        elif resample_type == "trilinear":
597
            if in_dygraph_mode():
598
                out = _C_ops.trilinear_interp(
599 600 601 602 603 604 605 606
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
607
                out = _legacy_C_ops.trilinear_interp_v2(x, *dy_attr)
608
        elif resample_type == "nearest":
609
            if in_dygraph_mode():
610
                out = _C_ops.nearest_interp(
611 612 613 614 615 616 617 618
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
619
                out = _legacy_C_ops.nearest_interp_v2(x, *dy_attr)
620
        elif resample_type == "bicubic":
621
            if in_dygraph_mode():
622
                out = _C_ops.bicubic_interp(
623 624 625 626 627 628 629 630
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
631
                out = _legacy_C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
632
        return out
X
xiaoting 已提交
633
    out = helper.create_variable_for_type_inference(dtype)
634 635 636 637
    helper.append_op(type='{}_interp_v2'.format(resample_type),
                     inputs=inputs,
                     outputs={"Out": out},
                     attrs=attrs)
X
xiaoting 已提交
638
    return out
L
littletomatodonkey 已提交
639 640


X
xiaoting 已提交
641 642 643 644 645 646 647 648 649
def upsample(x,
             size=None,
             scale_factor=None,
             mode='nearest',
             align_corners=False,
             align_mode=0,
             data_format='NCHW',
             name=None):
    """
650
    This API resizes a batch of images.
651

X
xiaoting 已提交
652 653 654
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
655 656
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
657 658 659 660 661 662 663 664
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
665 666 667
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
668 669 670 671 672 673 674 675
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
676

X
xiaoting 已提交
677 678 679 680
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
681

X
xiaoting 已提交
682 683 684
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
685

X
xiaoting 已提交
686 687 688
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
689 690 691 692 693 694 695

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
696 697
    Example:
    .. code-block:: text
698

X
xiaoting 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
        For scale_factor:
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
727

X
xiaoting 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
768

X
xiaoting 已提交
769 770
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
771

X
xiaoting 已提交
772 773
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
774

X
xiaoting 已提交
775 776
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
777

X
xiaoting 已提交
778 779
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
780

X
xiaoting 已提交
781 782 783
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
784
        size (list|tuple|Tensor|None, optional): Output shape of image resize
785 786
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
787
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
788
             If a Tensor , its dimensions size should be a 1.
789
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
790
             least one of :attr:`size` or :attr:`scale_factor` must be set.
791
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if
792
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
793
             Default: None.
794
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
795
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
796
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
797 798 799
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
800
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
815

X
xiaoting 已提交
816
        Examples:
817
            .. code-block:: python
818

819 820
                import paddle
                import paddle.nn as nn
X
xiaoting 已提交
821

822 823
                input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
                upsample_out = paddle.nn.Upsample(size=[12,12])
824

825 826 827
                output = upsample_out(x=input_data)
                print(output.shape)
                # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
828 829 830 831 832 833

    """
    return interpolate(x, size, scale_factor, mode, align_corners, align_mode,
                       data_format)


834 835 836 837
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
838
    See :ref:`api_nn_Bilinear` for details and output shape.
839 840

    Parameters:
841 842 843 844 845 846
        x1 (Tensor): the first input tensor, it's data type should be float32, float64.
        x2 (Tensor): the second input tensor, it's data type should be float32, float64.
        weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
        bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
847 848

    Returns:
849
        Tensor: A 2-D Tensor of shape [batch_size, out_features].
850 851

    Examples:
852
        .. code-block:: python
853

854 855
            import paddle
            import paddle.nn.functional as F
856

857 858 859 860
            x1 = paddle.randn((5, 5)).astype(paddle.float32)
            x2 = paddle.randn((5, 4)).astype(paddle.float32)
            w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
            b = paddle.randn((1, 1000)).astype(paddle.float32)
861

862 863 864
            result = F.bilinear(x1, x2, w, b)
            print(result.shape)
            # [5, 1000]
865 866
    """

867
    if in_dygraph_mode():
W
wanghuancoder 已提交
868
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
869 870
    elif _non_static_mode():
        return _legacy_C_ops.bilinear_tensor_product(x1, x2, weight, bias)
871 872 873 874 875 876 877 878 879 880 881

    check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
    check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')

    inputs = {"X": x1, "Y": x2, "Weight": weight}
    if bias is not None:
        inputs["Bias"] = bias

    helper = LayerHelper("bilinear", **locals())
    out = helper.create_variable_for_type_inference(dtype=x1.dtype)

882 883 884
    helper.append_op(type="bilinear_tensor_product",
                     inputs=inputs,
                     outputs={"Out": out})
885 886 887 888

    return out


889 890 891 892 893 894 895 896 897 898 899 900 901 902
def dropout(x,
            p=0.5,
            axis=None,
            training=True,
            mode="upscale_in_train",
            name=None):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
903 904 905 906
        p (float|int, optional): Probability of setting units to zero. Default 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default True.
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
907

908 909 910 911
            1. upscale_in_train(default), upscale the output at training time

                - train: out = input * mask / ( 1.0 - dropout_prob )
                - inference: out = input
912

913
            2. downscale_in_infer, downscale the output at inference
914

915 916
                - train: out = input * mask
                - inference: out = input * (1.0 - dropout_prob)
917

918
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
919 920 921 922

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

923

924 925
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
926

927
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
928 929 930

        ..  code-block:: text

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

956 957


958
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
959 960 961

        ..  code-block:: text

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
990
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
991 992 993 994 995 996 997 998 999 1000
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1001 1002 1003

        When x is a 4d tensor with shape `NCHW`, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1004 1005

        .. code-block:: python
1006

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
            import paddle

            x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
            print(x)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_train)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_test)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_0)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 10., 12.]])
            print(y_1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_01)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 0. , 12.]])
1039 1040

    """
1041 1042 1043 1044 1045 1046 1047 1048
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
        if p == 0: return x
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1049 1050
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1051 1052
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1053
    if axis and not isinstance(axis, (int, list, tuple)):
1054 1055 1056 1057 1058 1059
        raise TypeError("datatype of axis argument should be int or list")

    if axis == None:  # commonly used dropout
        seed = None
        mode = 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode  #semantic transfer

H
hong 已提交
1060
        if _non_static_mode():
1061 1062
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1063 1064

            if in_dygraph_mode():
1065
                out, mask = _C_ops.dropout( x, None, p, not training, mode, \
H
hong 已提交
1066 1067 1068
                    seed if seed is not None else 0, seed is not None)

                return out
1069 1070 1071 1072 1073
            out, mask = _legacy_C_ops.dropout(x, 'dropout_prob', p, 'is_test',
                                              not training, 'fix_seed', seed
                                              is not None, 'seed',
                                              seed if seed is not None else 0,
                                              'dropout_implementation', mode)
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
            return out

        helper = LayerHelper('dropout', **locals())
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'dropout')

        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

1084 1085 1086
        def get_attrs(prog, dropout_prob, is_test, seed):
            if (seed is None or seed == 0) and prog.random_seed != 0:
                seed = prog.random_seed
1087 1088 1089 1090 1091 1092

            if isinstance(dropout_prob,
                          Variable) and not dropout_prob.shape != [1]:
                raise TypeError(
                    "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}"
                    .format(p.shape))
1093 1094 1095 1096 1097 1098 1099 1100 1101
            attrs = {
                'dropout_prob': dropout_prob,
                'is_test': is_test,
                'fix_seed': seed is not None,
                'seed': seed if seed is not None else 0,
                'dropout_implementation': mode,
            }
            return attrs

1102 1103
        attrs = get_attrs(helper.main_program, p, not training, seed)

1104 1105 1106 1107 1108 1109 1110
        helper.append_op(type='dropout',
                         inputs={'X': [x]},
                         outputs={
                             'Out': [out],
                             'Mask': [mask]
                         },
                         attrs=attrs)
1111 1112
        return out
    else:  #sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1113
        if not in_dynamic_mode():
1114 1115 1116 1117
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
1118
            if in_dynamic_mode() and p == 1.:
1119
                return paddle.scale(x, scale=0.)
1120

1121
            scale_input = paddle.scale(
1122 1123 1124 1125
                x, scale=1 / keep_prob) if mode == 'upscale_in_train' else x

            #get mask shape
            input_shape = x.shape
Z
zhiboniu 已提交
1126
            if not in_dynamic_mode():
1127
                input_shape_tensor = paddle.shape(x)
1128
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1129 1130
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
                raise ValueError("axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} " \
1131 1132 1133
                                 .format(len(input_shape), max(drop_axes)))
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1134 1135
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}"
                    .format(len(input_shape), len(drop_axes)))
1136
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1137
            if not in_dynamic_mode():
1138 1139 1140 1141 1142
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1143 1144

            #get mask
1145 1146 1147 1148
            random_tensor = paddle.uniform(mask_shape,
                                           dtype='float32',
                                           min=0.,
                                           max=1.0)
Z
zhiboniu 已提交
1149
            p = full(shape=[1], fill_value=p, dtype='float32')
1150
            keep_mask = paddle.greater_equal(random_tensor, p)
1151

1152 1153
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1154 1155 1156
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1157
            ret = paddle.scale(
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
                x, scale=keep_prob) if mode == 'downscale_in_infer' else x
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1175
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . The default is `NCHW` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
1176 1177 1178 1179 1180
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1181

1182 1183
    Examples:
        .. code-block:: python
1184

1185 1186
            import paddle

1187
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1188 1189 1190 1191
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1192 1193 1194 1195
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    """
    input_shape = x.shape
    if len(input_shape) != 4:
        raise ValueError("dimensions of x should be 4, but received {} != 4"\
        .format(len(input_shape)))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

1207 1208 1209 1210 1211 1212
    return dropout(x,
                   p=p,
                   axis=[0, 1] if data_format == 'NCHW' else [0, 3],
                   training=training,
                   mode="upscale_in_train",
                   name=name)
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1228
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. The default is ``NCDHW`` . When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
1229 1230 1231 1232 1233
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1234

1235 1236
    Examples:
        .. code-block:: python
1237

1238
            import paddle
1239

1240 1241 1242 1243 1244 1245
            x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x[0,0,:,:,:])
            print(y_train[0,0,:,:,:]) # may all 0
            print(y_test[0,0,:,:,:])
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

    """

    input_shape = x.shape
    if len(input_shape) != 5:
        raise ValueError("dimensions of x should be 5, but received {} != 5" \
        .format(len(input_shape)))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

1259 1260 1261 1262 1263 1264
    return dropout(x,
                   p=p,
                   axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
                   training=training,
                   mode="upscale_in_train",
                   name=name)
1265 1266


1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
            import paddle

            x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
            print(y_train)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.10721093, -0.77919382],
            #         [-0.10721093,  1.66559887]]) (randomly)
            print(y_test)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-1.,  1.],
            #         [-1.,  1.]])
1299 1300 1301 1302 1303 1304
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1305
    if not in_dynamic_mode():
1306 1307 1308 1309
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'alpha_dropout')

    if training:
1310
        if p == 1:
1311
            return paddle.scale(x, scale=0.)
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        #get transformation params
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
        a = ((1 - p) * (1 + p * alpha_p**2))**-0.5
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

        #get mask
1323 1324 1325 1326
        random_tensor = paddle.uniform(input_shape,
                                       dtype='float32',
                                       min=0.,
                                       max=1.0)
Z
zhiboniu 已提交
1327
        p = full(shape=[1], fill_value=p, dtype='float32')
1328 1329 1330
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1331
            full(shape=input_shape, fill_value=1., dtype=dtype), keep_mask)
1332 1333

        #apply mask
Z
zhiboniu 已提交
1334
        b = full(shape=[1], fill_value=b, dtype=dtype)
1335
        y = paddle.add(paddle.multiply(x, keep_mask),
1336
                       paddle.scale(drop_mask, scale=alpha_p))
1337
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1338 1339 1340 1341 1342
        return res
    else:  # test
        return x


L
littletomatodonkey 已提交
1343 1344 1345
def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
    """
    Pad tensor according to 'pad' and 'mode'.
L
littletomatodonkey 已提交
1346 1347 1348
    If mode is 'constant' and length of pad is twice as length of x dimension,
    then the padding will be started from the first dimension and moved back onto x
    according to 'pad' and 'value'.
L
littletomatodonkey 已提交
1349 1350 1351 1352 1353
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1354
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
1355
            If mode is 'constant' and length of pad is twice as length of x dimension, then x will
1356 1357
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
1358 1359
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right,
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form
L
littletomatodonkey 已提交
1360
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1361 1362 1363 1364 1365 1366 1367 1368
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'. Default is 'constant'

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`,
1369
        data_format (str, optional): An string from: "NCL", "NLC", NHWC", "NCHW", "NCDHW", "NDHWC". Specify the data format of
1370 1371
           the input data. Default is "NCHW",
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1372 1373

    Returns:
1374
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1375

1376
    Example:
1377

L
littletomatodonkey 已提交
1378 1379 1380 1381 1382 1383
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1384 1385 1386 1387 1388 1389 1390 1391 1392
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1393 1394 1395 1396 1397 1398 1399 1400
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1401
            Case 2:
L
littletomatodonkey 已提交
1402 1403 1404 1405 1406 1407 1408
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1409
            Case 3:
L
littletomatodonkey 已提交
1410 1411 1412 1413 1414 1415 1416
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1417
            Case 4:
L
littletomatodonkey 已提交
1418 1419 1420 1421 1422 1423 1424
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1425
    Examples:
L
littletomatodonkey 已提交
1426
        .. code-block:: python
L
littletomatodonkey 已提交
1427

L
littletomatodonkey 已提交
1428 1429
            import paddle
            import paddle.nn.functional as F
1430

L
littletomatodonkey 已提交
1431 1432
            # example 1
            x_shape = (1, 1, 3)
1433
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1434
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1435
            print(y)
L
littletomatodonkey 已提交
1436
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1437

L
littletomatodonkey 已提交
1438
            # example 2
1439
            x_shape = (1, 1, 3)
1440
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1441 1442 1443
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1444

1445
            # example 3
L
littletomatodonkey 已提交
1446
            x_shape = (1, 1, 2, 3)
1447
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1448 1449
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
    assert mode in ['reflect', 'replicate', 'constant', 'circular'], \
            "mode should be one of constant, reflect, replicate, circular, but got {}.".format(mode)

    data_format = data_format.upper()
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], \
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], " \
        "but got {}".format(data_format)

    x_dim = len(x.shape)

1465 1466
    if mode == "constant" and isinstance(
            pad, (list, tuple)) and len(pad) == x_dim * 2:
1467 1468
        paddings = pad
        pad_value = value
1469 1470

        if in_dygraph_mode():
1471
            out = _C_ops.pad(x, paddings, float(pad_value))
1472 1473
            return out

1474 1475 1476 1477 1478
        check_variable_and_dtype(x, 'x', [
            'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
            'complex128'
        ], "pad")

1479 1480 1481 1482
        check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
        if isinstance(pad_value, int):
            pad_value = float(pad_value)

1483 1484 1485
        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1486 1487 1488 1489 1490
        helper.append_op(type='pad',
                         inputs={'X': x},
                         outputs={'Out': out},
                         attrs={
                             'paddings': paddings,
1491
                             'pad_value': pad_value
1492
                         })
1493
        return out
L
littletomatodonkey 已提交
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
    assert x_dim in [
        3, 4, 5
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
    assert data_format in supported_format_map[x_dim], \
    "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format)

L
littletomatodonkey 已提交
1508 1509 1510 1511 1512 1513 1514 1515
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [3, 4]
1516
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1517 1518 1519
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [2]
1520
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1521 1522 1523 1524 1525
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [2, 3]
1526
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1527 1528 1529
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [1]
1530
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1531
    else:
1532
        pad = list(pad)
L
littletomatodonkey 已提交
1533 1534 1535 1536 1537
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1538
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1539 1540 1541
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1542
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1543 1544 1545 1546 1547
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1548
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1549 1550 1551
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1552
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1553

J
Jiabin Yang 已提交
1554
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1555
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1556
            pad = pad.numpy().tolist()
1557
        out = _C_ops.pad3d(x, pad, mode, value, data_format)
J
Jiabin Yang 已提交
1558
    else:
1559
        if _in_legacy_dygraph():
J
Jiabin Yang 已提交
1560 1561
            if isinstance(pad, Variable):
                pad = pad.numpy().tolist()
1562 1563 1564
            out = _legacy_C_ops.pad3d(x, "paddings", pad, "mode", mode, "value",
                                      value, "data_format", data_format, "name",
                                      name)
1565
        else:
J
Jiabin Yang 已提交
1566 1567 1568 1569 1570 1571 1572
            attrs = {'mode': mode, 'value': value, 'data_format': data_format}
            inputs = {'X': [x]}
            if isinstance(pad, Variable):
                inputs['Paddings'] = [pad]
                attrs['paddings'] = []
            else:
                attrs['paddings'] = pad
L
littletomatodonkey 已提交
1573

J
Jiabin Yang 已提交
1574
            helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1575

J
Jiabin Yang 已提交
1576 1577
            dtype = helper.input_dtype(input_param_name='input')
            out = helper.create_variable_for_type_inference(dtype)
1578 1579 1580 1581
            helper.append_op(type='pad3d',
                             inputs=inputs,
                             outputs={"Out": out},
                             attrs=attrs)
L
littletomatodonkey 已提交
1582 1583

    if len(unsqueezed_dim) != 0:
1584
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1585 1586 1587 1588

    return out


1589 1590 1591 1592 1593 1594 1595 1596 1597
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1598
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1599 1600 1601 1602
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
            to set this property.

1603
    Returns:
1604
        Tensor, padded with 0 according to pad and data type is same as input.
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F

            x_shape = (1, 1, 2, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.zeropad2d(x, [1, 2, 1, 1])
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

    return pad(x,
               pad=padding,
               mode='constant',
               value=0,
               data_format=data_format,
               name=name)


Y
Yang Zhang 已提交
1630
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1631
    """
Y
Yang Zhang 已提交
1632
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1633 1634 1635 1636

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1637 1638
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
1639 1640

    Returns:
1641
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1642 1643 1644

    Examples:
        .. code-block:: text
1645

L
littletomatodonkey 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1655
                axis = 1
L
littletomatodonkey 已提交
1656 1657 1658 1659 1660
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1661

L
littletomatodonkey 已提交
1662 1663 1664
            import paddle
            import paddle.nn as nn

1665 1666 1667 1668
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1669
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1670
            print(result)
1671
            # [0.97689527,  0.99996042, -0.55138415]
1672

L
littletomatodonkey 已提交
1673
    """
1674 1675 1676
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1677
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1678 1679
    cos_sim = w12 / n12
    return cos_sim
1680 1681 1682


def linear(x, weight, bias=None, name=None):
1683
    r"""
1684

1685 1686
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1687 1688 1689

    .. math::

1690
        Out = XW + b
1691

1692
    where :math:`W` is the weight and :math:`b` is the bias.
1693

1694 1695 1696 1697
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
1698
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` ,
1699 1700
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1701

1702 1703 1704 1705 1706 1707 1708
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1709 1710

    Returns:
1711 1712
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1713 1714 1715

    Examples:
        .. code-block:: python
1716

1717
          import paddle
1718

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1732
    """
J
Jiabin Yang 已提交
1733
    if in_dygraph_mode():
1734
        #TODO(jiabin): using addmm for fast forward route
1735
        return _C_ops.linear(x, weight, bias)
1736
    else:
J
Jiabin Yang 已提交
1737
        if _in_legacy_dygraph():
1738 1739
            pre_bias = _legacy_C_ops.matmul_v2(x, weight, 'trans_x', False,
                                               'trans_y', False)
1740

J
Jiabin Yang 已提交
1741 1742
            if bias is None:
                return pre_bias
1743

1744
            return _legacy_C_ops.elementwise_add(pre_bias, bias)
1745
        else:
J
Jiabin Yang 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
            helper = LayerHelper('linear', **locals())
            dtype = x.dtype

            check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                        'linear')

            inputs = {'X': [x], 'Y': [weight]}
            attrs = {'trans_x': False, 'trans_y': False}
            tmp = helper.create_variable_for_type_inference(dtype)
1757 1758 1759 1760
            helper.append_op(type='matmul_v2',
                             inputs=inputs,
                             outputs={'Out': tmp},
                             attrs=attrs)
J
Jiabin Yang 已提交
1761 1762
            if bias is not None:
                res = helper.create_variable_for_type_inference(dtype)
1763 1764 1765 1766 1767 1768 1769
                helper.append_op(type='elementwise_add',
                                 inputs={
                                     'X': [tmp],
                                     'Y': [bias]
                                 },
                                 outputs={'Out': [res]},
                                 attrs={'axis': len(x.shape) - 1})
J
Jiabin Yang 已提交
1770 1771 1772
            else:
                res = tmp
            return res
1773 1774 1775


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1776
    r"""
1777
    Label smoothing is a mechanism to regularize the classifier layer and is called
1778 1779 1780 1781
    label-smoothing regularization (LSR).Label smoothing is proposed to encourage
    the model to be less confident, since optimizing the log-likelihood of the
    correct label directly may cause overfitting and reduce the ability of the
    model to adapt.
1782

1783
    Label smoothing replaces the ground-truth label :math:`y` with the weighted sum
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
1821

1822 1823 1824 1825 1826 1827
            x_data = np.array([[[0, 1, 0],
                                [ 1,  0, 1]]]).astype("float32")
            print(x_data.shape)
            paddle.disable_static()
            x = paddle.to_tensor(x_data, stop_gradient=False)
            output = paddle.nn.functional.label_smooth(x)
1828
            print(output)
1829

1830 1831 1832
            #[[[0.03333334 0.93333334 0.03333334]
            #  [0.93333334 0.03333334 0.93333334]]]
    """
1833 1834 1835
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")

1836
    if in_dygraph_mode():
1837
        return _C_ops.label_smooth(label, prior_dist, float(epsilon))
1838

1839
    elif paddle.in_dynamic_mode():
1840 1841
        return _legacy_C_ops.label_smooth(label, prior_dist, 'epsilon',
                                          float(epsilon))
1842 1843 1844 1845 1846 1847 1848

    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'label_smooth')

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1849 1850 1851 1852 1853 1854 1855
    helper.append_op(type="label_smooth",
                     inputs={
                         "X": label,
                         "PriorDist": prior_dist
                     } if prior_dist else {"X": label},
                     outputs={"Out": smooth_label},
                     attrs={"epsilon": float(epsilon)})
1856
    return smooth_label
1857 1858


G
Guoxia Wang 已提交
1859
def class_center_sample(label, num_classes, num_samples, group=None):
1860 1861
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
1862
    The process of sampling subset class centers is straightforward:
1863 1864 1865 1866

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

1867
    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly
1868 1869 1870 1871
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
1872

1873
    .. hint::
1874
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive
1875
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
1876

1877 1878
        The API supports CPU, single GPU and multi GPU.

1879 1880 1881 1882
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

1883
    Args:
G
Guoxia Wang 已提交
1884 1885
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
1886
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
1887
        num_samples (int): A positive integer to specify the number of class center to sample.
1888
        group (Group, optional): The group instance return by paddle.distributed.new_group
1889 1890
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1891 1892 1893 1894 1895 1896 1897 1898

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1899
        :name: code-example1
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
1922
        :name: code-example2
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
1954

1955 1956 1957 1958 1959 1960 1961 1962
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
1963 1964 1965 1966 1967 1968 1969
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
             (got group: {})'.format(group))
        return

    if hasattr(group, 'is_member') and not group.is_member():
1970 1971
        return

1972
    ring_id = 0
1973 1974
    rank = 0
    nranks = 1
1975 1976 1977 1978 1979 1980 1981
    if group != False:
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
            rank = global_rank if group is None else group.get_group_rank(
                global_rank)
            nranks = parallel_env.world_size if group is None else group.nranks
1982 1983 1984 1985 1986 1987

    if num_samples > num_classes:
        raise ValueError(
            'Expected num_samples less than or equal to {}, got num_samples {}'.
            format(num_classes, num_samples))

G
Guoxia Wang 已提交
1988 1989 1990
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
1991
    if label_size != -1 and label_size < 1:
G
Guoxia Wang 已提交
1992
        raise ValueError('Expected label_size > 0 \
1993
             (got label_size: {})'.format(label_size))
G
Guoxia Wang 已提交
1994 1995 1996 1997

    label_dims = len(list(label.shape))
    if label_dims != 1:
        raise ValueError('Expected label_dims == 1 \
1998
             (got label_dims: {})'.format(label_dims))
G
Guoxia Wang 已提交
1999 2000

    seed = None
2001 2002 2003
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2004
    if in_dygraph_mode():
2005 2006 2007 2008
        return _C_ops.class_center_sample(label, num_classes, num_samples,
                                          ring_id, rank, nranks, seed
                                          is not None,
                                          seed if seed is not None else 0)
2009
    elif paddle.in_dynamic_mode():
2010
        remapped_label, sampled_class_center = _legacy_C_ops.class_center_sample(
2011
            label, 'num_classes', num_classes, 'num_samples', num_samples,
2012 2013
            'ring_id', ring_id, 'nranks', nranks, 'rank', rank, 'fix_seed', seed
            is not None, 'seed', seed if seed is not None else 0)
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
        return remapped_label, sampled_class_center

    check_variable_and_dtype(label, 'label', ['int64', 'int32'],
                             'class_center_sample')
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
        dtype=label.dtype)
    sampled_class_center = helper.create_variable_for_type_inference(
        dtype=label.dtype)
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
    helper.append_op(type=op_type,
                     inputs={'Label': label},
                     outputs={
                         'RemappedLabel': remapped_label,
                         'SampledLocalClassCenter': sampled_class_center
                     },
                     attrs={
                         'num_classes': num_classes,
                         'num_samples': num_samples,
                         'ring_id': ring_id,
                         'nranks': nranks,
                         'rank': rank,
                         'fix_seed': seed is not None,
                         'seed': seed if seed is not None else 0
                     })
2039
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049


def fold(x,
         output_sizes,
         kernel_sizes,
         strides=1,
         paddings=0,
         dilations=1,
         name=None):
    r"""
2050

2051
    Combines an array of sliding local blocks into a large containing
2052 2053
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
2054 2055 2056 2057 2058 2059


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2060

2061 2062 2063
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2064 2065 2066 2067

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2068
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2069
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2070
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2071
                                  or an integer k treated as [k, k].
2072
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2073 2074
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2075
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2076 2077 2078 2079 2080 2081
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2082
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2101 2102 2103
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

    """

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

    assert len(x.shape) == 3, \
            "input should be the format of [N, C, L]"

X
xiaoting 已提交
2114 2115 2116
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

X
xiaoting 已提交
2117 2118 2119
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
X
xiaoting 已提交
2120 2121
        assert _is_list_or_turple_(output_sizes) and (len(output_sizes) == 2), \
            "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2122 2123 2124 2125

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
X
xiaoting 已提交
2126 2127
        assert _is_list_or_turple_(kernel_sizes) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2128 2129 2130 2131

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
X
xiaoting 已提交
2132 2133
        assert _is_list_or_turple_(strides) and (len(strides) == 2), \
            "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2134 2135 2136 2137

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
X
xiaoting 已提交
2138 2139
        assert _is_list_or_turple_(dilations) and (len(dilations) == 2), \
            "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

X
xiaoting 已提交
2157
    if in_dygraph_mode():
2158 2159
        out = _C_ops.fold(x, output_sizes, kernel_sizes, strides, paddings,
                          dilations)
X
xiaoting 已提交
2160
    elif in_dynamic_mode():
2161 2162 2163 2164
        out = _legacy_C_ops.fold(x, "output_sizes", output_sizes,
                                 "kernel_sizes", kernel_sizes, "strides",
                                 strides, "paddings", paddings, "dilations",
                                 dilations)
X
xiaoting 已提交
2165 2166
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
        helper.append_op(type="fold",
                         inputs={"X": x},
                         outputs={"Y": out},
                         attrs={
                             "output_sizes": output_sizes,
                             "kernel_sizes": kernel_sizes,
                             "strides": strides,
                             "paddings": paddings,
                             "dilations": dilations
                         })
X
xiaoting 已提交
2177
    return out