partial_program.py 40.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24 25
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass
26
from paddle.nn.layer import layers
27 28

from . import logging_utils
29
from .utils import RETURN_NO_VALUE_MAGIC_NUM, _out_grad_names, _param_grad_names
30

31 32
__all__ = []

33

34
class NestSequence:
35 36 37 38 39 40 41
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
42
        self.__input_list = self.tolist()
43 44 45 46 47 48 49
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
50
        return paddle.utils.flatten(self.__raw_input)
51 52 53 54 55

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
56
        assert len(self.__input_list) == len(value_list)
57
        return paddle.utils.pack_sequence_as(self.__raw_input, value_list)
58 59 60

    def _get_var_ids(self):
        var_ids = []
61
        for idx, var in enumerate(self.__input_list):
62
            if isinstance(
63 64
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
65 66 67 68 69 70 71 72 73 74
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
75
            for var in self.__input_list:
76
                if not isinstance(
77 78
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
79 80
                    warning_types.add(type(var))
            if warning_types:
81
                logging_utils.warn(
82 83
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
84 85 86 87
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
88 89 90 91 92 93

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
94
        return self.__input_list[item]
95

96

97
class LazyInitialized:
98 99 100 101 102 103 104 105 106 107 108 109 110
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


111 112 113 114 115
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

116
    def __init__(self):
117 118 119 120 121
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
122 123 124 125 126 127 128 129 130 131 132 133 134 135
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
136 137


X
xiongkun 已提交
138
class PartialProgramLayerHook:
139
    def before_append_backward(self, forward_program):
X
xiongkun 已提交
140 141
        ...

142
    def after_append_backward(self, whole_program, backward_start_idx):
X
xiongkun 已提交
143 144
        ...

145
    def after_infer(self, infer_program):
X
xiongkun 已提交
146 147 148
        ...


149
class PartialProgramLayer:
150
    """
H
hjyp 已提交
151
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
152 153 154
    and execute them as a static subgraph.

    .. note::
155 156 157
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
158 159 160 161
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
162 163
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
164 165 166
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
167
        Layer: A Layer object that run all ops internally in static graph mode.
168 169
    """

170 171 172
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
173
        super().__init__()
174 175
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
176
        self._params = parameters if parameters is not None else []
177

178 179 180
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

181
        self._origin_main_program = self._verify_program(main_program)
182 183 184
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
185
        # Set default mode to train
186
        self.training = True
187
        self._infer_info = ProgramInfo()
188
        self._forward_end_index_map = {}
189

190 191 192 193
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
194
        # For AMP training
195
        self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
196
            custom_white_list=custom_white_list,
197 198
            custom_black_list=custom_black_list,
        )
199

200 201
        # program_id -> list(scope)
        self._scope_cache = {}
X
xiongkun 已提交
202
        self._hooker = None
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
        in_vars, out_vars = self._prepare(inputs)
        self._cast_fp16_if_pure_fp16(in_vars)
        attrs = self._prepare_attributes()

        _legacy_C_ops.run_program(
            self._valid_vars(in_vars),
            self._valid_vars(self._params),
            self._valid_vars(out_vars),
            self._create_scope_vec(
                program_id=self.program_id, use_scope_cache=True
            ),
            self._double_grads,
            self._cuda_graph_vec,
            *attrs
        )
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)

X
xiongkun 已提交
226 227 228
    def set_hooker(self, hooker):
        self._hooker = hooker

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

245 246 247 248
    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

249 250 251 252
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
X
xiongkun 已提交
253 254 255 256
            infer_program = self._origin_main_program.clone(
                for_test=is_infer_mode
            )
            if self._hooker:
257
                infer_program = self._hooker.after_infer(infer_program)
X
xiongkun 已提交
258
            return infer_program
259 260
        else:
            train_program = self._append_backward_desc(
261 262
                self._origin_main_program
            )
263 264 265
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
266

267 268 269 270
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
271 272 273
            paddle.static.amp.fp16_utils.rewrite_program(
                amp_program, self._amp_list
            )
274 275 276 277 278 279
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
280

281 282 283
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
284 285
            for_test=is_infer_mode
        )
286
        with program_guard(pure_fp16_program):
287
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
288 289
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
290

291
        if is_infer_mode:
292 293
            if self._hooker:
                pure_fp16_program = self._hooker.after_infer(pure_fp16_program)
294 295 296
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
297 298
                pure_fp16_program
            )
299 300
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
301

302
    @switch_to_static_graph
303
    def _create_forward_backward_train_program(self):
304
        whole_program = self._train_program
X
xiongkun 已提交
305
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
306
        assert forward_end_op_index >= 0
307

308 309 310
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
311

312 313
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
314
        whole_program = self._train_amp_program
315
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
316
        assert forward_end_op_index >= 0
317

318 319 320
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
321 322 323

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
324
        whole_program = self._train_pure_fp16_program
325
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
326
        assert forward_end_op_index >= 0
327

328 329 330
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
331 332

    @LazyInitialized
333 334
    def _train_program(self):
        return self._create_program()
335

336
    @LazyInitialized
337
    def _infer_program(self):
338 339
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
340

341 342 343 344 345 346
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
347 348
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
349 350 351

    @LazyInitialized
    def _train_pure_fp16_program(self):
352
        return self._create_pure_fp16_program()
353

354
    @LazyInitialized
355
    def _infer_pure_fp16_program(self):
356 357
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
358
        )
359
        return self._build_infer_program(program, op_size)
360

361
    @LazyInitialized
362 363 364
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
365 366

    @LazyInitialized
367 368 369 370
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

371 372 373 374
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

375 376 377 378 379
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

380 381
    @LazyInitialized
    def _train_program_id(self):
382
        program_id = paddle.utils._hash_with_id(self._train_program, self)
383 384 385
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
386
        return program_id
387

388 389
    @LazyInitialized
    def _infer_program_id(self):
390
        return paddle.utils._hash_with_id(self._infer_program, self)
391

392 393
    @LazyInitialized
    def _train_amp_program_id(self):
394
        program_id = paddle.utils._hash_with_id(self._train_amp_program, self)
395 396 397
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
398 399
        return program_id

400 401
    @LazyInitialized
    def _infer_amp_program_id(self):
402
        return paddle.utils._hash_with_id(self._infer_amp_program, self)
403

404 405
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
406 407 408
        program_id = paddle.utils._hash_with_id(
            self._train_pure_fp16_program, self
        )
409 410 411
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
412 413
        return program_id

414 415
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
416
        return paddle.utils._hash_with_id(self._infer_pure_fp16_program, self)
417

418 419
    @LazyInitialized
    def _param_grad_names(self):
420
        return _param_grad_names(self._train_program.desc, self._params)
421

X
xiongkun 已提交
422
    def get_forward_end_op_idx(self, program):
423 424 425
        return self._forward_end_index_map[
            paddle.utils._hash_with_id(program, self)
        ]
X
xiongkun 已提交
426

427 428
    @LazyInitialized
    def _out_grad_names(self):
429 430
        return _out_grad_names(
            self._train_program.desc,
X
xiongkun 已提交
431
            self.get_forward_end_op_idx(self._train_program),
432 433
            len(self._outputs.var_ids),
        )
434

435
    @property
436 437 438 439 440 441 442 443 444 445 446 447 448 449
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

518 519 520 521 522 523 524 525 526 527 528 529
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

530 531 532
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
533 534 535 536 537 538 539
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
540

541 542 543 544 545 546 547 548 549
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
550 551
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
568 569 570 571 572 573 574 575 576 577
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
578 579 580 581 582 583

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
584 585 586 587 588 589
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
590 591 592 593 594 595 596 597 598 599
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
600 601
                outputs={"Out": var_grad_name},
            )
602 603 604
            return None

        to_processed_vars = list(
605 606
            filter(_need_aggregation, self._outputs.tolist())
        )
607 608 609
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

610
    @switch_to_static_graph
611
    def _append_backward_desc(self, main_program):
612
        program = main_program.clone(for_test=False)
X
xiongkun 已提交
613
        if self._hooker:
614
            program = self._hooker.before_append_backward(program)
615
        targets = []
616
        for out in self._outputs.tolist():
617 618 619
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

X
xiongkun 已提交
620
        start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
621
        if targets:
622 623
            # TODO(CZ): later when use cinn, set_prim_all_enabled and check_and_set_prim_all_enabled will be set at else branch.
            core.check_and_set_prim_all_enabled()
624
            start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
625
            backward.gradients(targets=targets, inputs=[])
626

X
xiongkun 已提交
627 628
            if self._hooker:
                program, start_idx = self._hooker.after_append_backward(
629
                    program, start_idx
X
xiongkun 已提交
630
                )
631 632 633
            self.prepare_gradient_aggregation(
                start_idx + 1, main_program, program
            )
634

X
xiongkun 已提交
635
        self._forward_end_index_map[
636
            paddle.utils._hash_with_id(program, self)
X
xiongkun 已提交
637
        ] = start_idx - len(self._outputs.tolist())
638 639
        return program

640 641 642
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
643
        The `@to_static` may only decorated a sub function which
644 645 646 647 648 649
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
650
            found_param = False
651
            for block in program.blocks:
652
                for op in block.ops:
653 654 655 656
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
657 658 659 660
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
661 662 663 664
                    break

        self._params = required_params

665 666 667 668 669 670
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
671
                    var_base = None
672
                    if not framework.global_var._in_eager_mode_:
673 674 675 676 677 678 679
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
680
                    else:
681 682 683 684 685 686 687
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
688
                    double_grads.append(var_base)
689
        return self._valid_vars(double_grads)
690

691 692 693 694 695 696 697 698 699 700 701
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
702

703
    def _prepare_attributes(self):
704
        attrs = [
705 706 707 708
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
709 710 711 712
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
713
        ]
X
xiongkun 已提交
714

715 716 717 718 719 720 721 722 723 724 725 726
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
727 728
        if self._cuda_graph_capture_mode:
            attrs.extend(
729 730 731 732 733 734 735
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
736
        return attrs
737

738 739 740 741 742 743 744 745 746 747 748 749
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
750

751
    @switch_to_static_graph
752 753 754
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
755 756
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
757
        backward_start_op_index = forward_end_op_index + len(
758 759
            self._outputs.var_ids
        )
760
        backward_end_op_index = whole_program.desc.block(0).op_size()
761 762 763 764 765
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
766
        backward_builded_program = add_build_strategy_for(
767 768 769 770
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
771 772 773 774 775 776 777 778 779 780 781 782
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
783
        )
784

785 786 787
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
788 789 790 791 792 793
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
794
            "for_partial_block": "bool",
795 796 797 798
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
799 800 801 802
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
829

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
857
                backward_program.desc, True
858 859 860 861
            ):
                skip_vars.append(var_name)
        return skip_vars

862 863 864 865 866
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
867
        # Flatten inputs with nested structure into single list.
868
        flatten_inputs = paddle.utils.flatten(inputs)
869 870
        # Convert variable into VarBase and feed in training data.
        input_vars = []
871
        expected_place = framework._current_expected_place()
872
        for i, value in enumerate(flatten_inputs):
873
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
874
                var = None
875
                if not framework.global_var._in_eager_mode_:
876 877 878 879 880 881 882
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
883
                else:
884 885 886 887 888 889 890
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
891
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
892 893 894 895
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
896 897
                    expected_place
                ):
898 899
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
900 901
                else:
                    var = value
902
                var.name = self._inputs[i].desc.name()
903 904 905
            else:
                continue
            input_vars.append(var)
906

907 908 909
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

910 911
        def create_out(var_id):
            var = self._outputs[var_id]
912
            assert isinstance(var, framework.Variable)
913
            var_desc = var.desc
J
Jiabin Yang 已提交
914
            varbase = None
915 916 917 918

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

919
            if not framework.global_var._in_eager_mode_:
920 921 922 923 924 925 926
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
927
            else:
928 929 930 931 932 933 934
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
935
            var_base.stop_gradient = var.stop_gradient
936
            out_varbase_map[var_desc.name()] = var_base
937 938 939 940 941 942
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
943

944
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
945
        # Hold forward variables
J
Jiabin Yang 已提交
946
        tmp_scope_vec = None
947 948 949
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
950
        if not framework.global_var._in_eager_mode_:
951 952 953 954 955 956 957
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
958
            tmp_scope_vec.value().set_scope(inner_scope)
959 960
        else:
            tmp_scope_vec = [inner_scope]
961
        return tmp_scope_vec
962

963
    def _create_cuda_graph_vec(self):
964 965 966 967 968 969 970
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
971 972 973
        var.stop_gradient = True
        return var

974 975 976 977 978 979 980 981 982
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
983
        if outs is not None and len(outs) == 1:
984 985 986 987
            outs = outs[0]

        return outs

988 989 990 991
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

992
    def _is_no_value(self, var):
993 994 995
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
996 997
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
998 999 1000 1001 1002 1003 1004
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
1005
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
1006 1007 1008 1009 1010
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1011 1012 1013
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1014 1015 1016 1017
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1018
            has_removed = len(out_vars) > len(res)
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1029
    def _set_grad_type(self, params, train_program):
1030 1031 1032 1033 1034 1035 1036 1037
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1038
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1039 1040 1041 1042 1043
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1067 1068
                % type(self._params)
            )
1069

1070 1071 1072
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
1073
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
1074
                raise TypeError(
1075 1076 1077 1078
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1079
            param_and_buffer_names_set.add(var.name)
1080 1081

        for block in main_program.blocks:
1082
            for name, var in block.vars.items():
1083
                if isinstance(var, framework.Parameter):
1084
                    if name not in param_and_buffer_names_set:
1085
                        raise ValueError(
1086 1087 1088 1089 1090 1091
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1092 1093
                            % name
                        )
1094

1095
    def _valid_vars(self, vars):
1096
        return vars if vars else None
1097

1098 1099 1100 1101 1102 1103

def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1104 1105 1106 1107 1108 1109 1110
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1111 1112 1113


@switch_to_static_graph
1114
def add_build_strategy_for(
1115
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1116 1117
):
    if start_op_index < end_op_index:
1118 1119
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1120 1121
            build_strategy=build_strategy,
        )
1122 1123 1124
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1125 1126 1127
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1128 1129
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
1130 1131 1132 1133
        if hasattr(compiled_program._program, 'lr_scheduler'):
            builded_program.lr_scheduler = (
                compiled_program._program.lr_scheduler
            )
1134
    else:
X
xiongkun 已提交
1135
        # can't just create a new program, we need copy the vardesc.
1136
        builded_program = paddle.static.Program()
X
xiongkun 已提交
1137 1138
        for var in program.block(0).vars.values():
            builded_program.block(0)._clone_variable(var, False)
1139
    return builded_program