partial_program.py 40.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24 25 26 27 28
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass

from . import logging_utils
29
from .utils import RETURN_NO_VALUE_MAGIC_NUM, _out_grad_names, _param_grad_names
30

31 32
__all__ = []

33

34
class NestSequence:
35 36 37 38 39 40 41
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
42
        self.__input_list = self.tolist()
43 44 45 46 47 48 49
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
50
        return paddle.utils.flatten(self.__raw_input)
51 52 53 54 55

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
56
        assert len(self.__input_list) == len(value_list)
57
        return paddle.utils.pack_sequence_as(self.__raw_input, value_list)
58 59 60

    def _get_var_ids(self):
        var_ids = []
61
        for idx, var in enumerate(self.__input_list):
62
            if isinstance(
63 64
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
65 66 67 68 69 70 71 72 73 74
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
75
            for var in self.__input_list:
76
                if not isinstance(
77 78
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
79 80
                    warning_types.add(type(var))
            if warning_types:
81
                logging_utils.warn(
82 83
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
84 85 86 87
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
88 89 90 91 92 93

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
94
        return self.__input_list[item]
95

96

97
class LazyInitialized:
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


120 121 122 123 124
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

125
    def __init__(self):
126 127 128 129 130
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
131 132 133 134 135 136 137 138 139 140 141 142 143 144
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
145 146


X
xiongkun 已提交
147
class PartialProgramLayerHook:
148
    def before_append_backward(self, forward_program):
X
xiongkun 已提交
149 150
        ...

151
    def after_append_backward(self, whole_program, backward_start_idx):
X
xiongkun 已提交
152 153
        ...

154
    def after_infer(self, infer_program):
X
xiongkun 已提交
155 156 157
        ...


158
class PartialProgramLayer:
159
    """
H
hjyp 已提交
160
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
161 162 163
    and execute them as a static subgraph.

    .. note::
164 165 166
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
167 168 169 170
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
171 172
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
173 174 175
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
176
        Layer: A Layer object that run all ops internally in static graph mode.
177 178
    """

179 180 181
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
182
        super().__init__()
183 184
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
185
        self._params = parameters if parameters is not None else []
186

187 188 189
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

190
        self._origin_main_program = self._verify_program(main_program)
191 192 193
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
194
        # Set default mode to train
195
        self.training = True
196
        self._infer_info = ProgramInfo()
197
        self._forward_end_index_map = {}
198

199 200 201 202
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
203
        # For AMP training
204
        self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
205
            custom_white_list=custom_white_list,
206 207
            custom_black_list=custom_black_list,
        )
208

209 210
        # program_id -> list(scope)
        self._scope_cache = {}
X
xiongkun 已提交
211
        self._hooker = None
212

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
        in_vars, out_vars = self._prepare(inputs)
        self._cast_fp16_if_pure_fp16(in_vars)
        attrs = self._prepare_attributes()

        _legacy_C_ops.run_program(
            self._valid_vars(in_vars),
            self._valid_vars(self._params),
            self._valid_vars(out_vars),
            self._create_scope_vec(
                program_id=self.program_id, use_scope_cache=True
            ),
            self._double_grads,
            self._cuda_graph_vec,
            *attrs
        )
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)

X
xiongkun 已提交
235 236 237
    def set_hooker(self, hooker):
        self._hooker = hooker

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

254 255 256 257
    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

258 259 260 261
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
X
xiongkun 已提交
262 263 264 265
            infer_program = self._origin_main_program.clone(
                for_test=is_infer_mode
            )
            if self._hooker:
266
                infer_program = self._hooker.after_infer(infer_program)
X
xiongkun 已提交
267
            return infer_program
268 269
        else:
            train_program = self._append_backward_desc(
270 271
                self._origin_main_program
            )
272 273 274
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
275

276 277 278 279
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
280 281 282
            paddle.static.amp.fp16_utils.rewrite_program(
                amp_program, self._amp_list
            )
283 284 285 286 287 288
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
289

290 291 292
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
293 294
            for_test=is_infer_mode
        )
295
        with program_guard(pure_fp16_program):
296
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
297 298
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
299

300
        if is_infer_mode:
301 302
            if self._hooker:
                pure_fp16_program = self._hooker.after_infer(pure_fp16_program)
303 304 305
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
306 307
                pure_fp16_program
            )
308 309
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
310

311
    @switch_to_static_graph
312
    def _create_forward_backward_train_program(self):
313
        whole_program = self._train_program
X
xiongkun 已提交
314
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
315
        assert forward_end_op_index >= 0
316

317 318 319
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
320

321 322
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
323
        whole_program = self._train_amp_program
324
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
325
        assert forward_end_op_index >= 0
326

327 328 329
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
330 331 332

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
333
        whole_program = self._train_pure_fp16_program
334
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
335
        assert forward_end_op_index >= 0
336

337 338 339
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
340 341

    @LazyInitialized
342 343
    def _train_program(self):
        return self._create_program()
344

345
    @LazyInitialized
346
    def _infer_program(self):
347 348
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
349

350 351 352 353 354 355
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
356 357
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
358 359 360

    @LazyInitialized
    def _train_pure_fp16_program(self):
361
        return self._create_pure_fp16_program()
362

363
    @LazyInitialized
364
    def _infer_pure_fp16_program(self):
365 366
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
367
        )
368
        return self._build_infer_program(program, op_size)
369

370
    @LazyInitialized
371 372 373
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
374 375

    @LazyInitialized
376 377 378 379
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

380 381 382 383
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

384 385 386 387 388
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

389 390
    @LazyInitialized
    def _train_program_id(self):
391
        program_id = paddle.utils._hash_with_id(self._train_program, self)
392 393 394
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
395
        return program_id
396

397 398
    @LazyInitialized
    def _infer_program_id(self):
399
        return paddle.utils._hash_with_id(self._infer_program, self)
400

401 402
    @LazyInitialized
    def _train_amp_program_id(self):
403
        program_id = paddle.utils._hash_with_id(self._train_amp_program, self)
404 405 406
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
407 408
        return program_id

409 410
    @LazyInitialized
    def _infer_amp_program_id(self):
411
        return paddle.utils._hash_with_id(self._infer_amp_program, self)
412

413 414
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
415 416 417
        program_id = paddle.utils._hash_with_id(
            self._train_pure_fp16_program, self
        )
418 419 420
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
421 422
        return program_id

423 424
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
425
        return paddle.utils._hash_with_id(self._infer_pure_fp16_program, self)
426

427 428
    @LazyInitialized
    def _param_grad_names(self):
429
        return _param_grad_names(self._train_program.desc, self._params)
430

X
xiongkun 已提交
431
    def get_forward_end_op_idx(self, program):
432 433 434
        return self._forward_end_index_map[
            paddle.utils._hash_with_id(program, self)
        ]
X
xiongkun 已提交
435

436 437
    @LazyInitialized
    def _out_grad_names(self):
438 439
        return _out_grad_names(
            self._train_program.desc,
X
xiongkun 已提交
440
            self.get_forward_end_op_idx(self._train_program),
441 442
            len(self._outputs.var_ids),
        )
443

444
    @property
445 446 447 448 449 450 451 452 453 454 455 456 457 458
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

527 528 529 530 531 532 533 534 535 536 537 538
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

539 540 541
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
542 543 544 545 546 547 548
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
549

550 551 552 553 554 555 556 557 558
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
559 560
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
577 578 579 580 581 582 583 584 585 586
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
587 588 589 590 591 592

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
593 594 595 596 597 598
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
599 600 601 602 603 604 605 606 607 608
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
609 610
                outputs={"Out": var_grad_name},
            )
611 612 613
            return None

        to_processed_vars = list(
614 615
            filter(_need_aggregation, self._outputs.tolist())
        )
616 617 618
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

619
    @switch_to_static_graph
620
    def _append_backward_desc(self, main_program):
621 622
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
X
xiongkun 已提交
623
        if self._hooker:
624
            program = self._hooker.before_append_backward(program)
625
        targets = []
626
        for out in self._outputs.tolist():
627 628 629
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

X
xiongkun 已提交
630
        start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
631
        if targets:
632 633
            # TODO(CZ): later when use cinn, set_prim_all_enabled and check_and_set_prim_all_enabled will be set at else branch.
            core.check_and_set_prim_all_enabled()
634
            start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
635
            backward.gradients(targets=targets, inputs=[])
636

X
xiongkun 已提交
637 638
            if self._hooker:
                program, start_idx = self._hooker.after_append_backward(
639
                    program, start_idx
X
xiongkun 已提交
640
                )
641 642 643
            self.prepare_gradient_aggregation(
                start_idx + 1, main_program, program
            )
644

X
xiongkun 已提交
645
        self._forward_end_index_map[
646
            paddle.utils._hash_with_id(program, self)
X
xiongkun 已提交
647
        ] = start_idx - len(self._outputs.tolist())
648 649
        return program

650 651 652
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
653
        The `@to_static` may only decorated a sub function which
654 655 656 657 658 659
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
660
            found_param = False
661
            for block in program.blocks:
662
                for op in block.ops:
663 664 665 666
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
667 668 669 670
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
671 672 673 674
                    break

        self._params = required_params

675 676 677 678 679 680
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
681
                    var_base = None
682
                    if not framework.global_var._in_eager_mode_:
683 684 685 686 687 688 689
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
690
                    else:
691 692 693 694 695 696 697
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
698
                    double_grads.append(var_base)
699
        return self._valid_vars(double_grads)
700

701 702 703 704 705 706 707 708 709 710 711
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
712

713
    def _prepare_attributes(self):
714
        attrs = [
715 716 717 718
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
719 720 721 722
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
723
        ]
X
xiongkun 已提交
724

725 726 727 728 729 730 731 732 733 734 735 736
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
737 738
        if self._cuda_graph_capture_mode:
            attrs.extend(
739 740 741 742 743 744 745
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
746
        return attrs
747

748 749 750 751 752 753 754 755 756 757 758 759
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
760

761
    @switch_to_static_graph
762 763 764
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
765 766
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
767
        backward_start_op_index = forward_end_op_index + len(
768 769
            self._outputs.var_ids
        )
770
        backward_end_op_index = whole_program.desc.block(0).op_size()
771 772 773 774 775
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
776
        backward_builded_program = add_build_strategy_for(
777 778 779 780
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
781 782 783 784 785 786 787 788 789 790 791 792
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
793
        )
794

795 796 797
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
798 799 800 801 802 803
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
804
            "for_partial_block": "bool",
805 806 807 808
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
809 810 811 812
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
839

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
867
                backward_program.desc, True
868 869 870 871
            ):
                skip_vars.append(var_name)
        return skip_vars

872 873 874 875 876
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
877
        # Flatten inputs with nested structure into single list.
878
        flatten_inputs = paddle.utils.flatten(inputs)
879 880
        # Convert variable into VarBase and feed in training data.
        input_vars = []
881
        expected_place = framework._current_expected_place()
882
        for i, value in enumerate(flatten_inputs):
883
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
884
                var = None
885
                if not framework.global_var._in_eager_mode_:
886 887 888 889 890 891 892
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
893
                else:
894 895 896 897 898 899 900
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
901
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
902 903 904 905
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
906 907
                    expected_place
                ):
908 909
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
910 911
                else:
                    var = value
912
                var.name = self._inputs[i].desc.name()
913 914 915
            else:
                continue
            input_vars.append(var)
916

917 918 919
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

920 921
        def create_out(var_id):
            var = self._outputs[var_id]
922
            assert isinstance(var, framework.Variable)
923
            var_desc = var.desc
J
Jiabin Yang 已提交
924
            varbase = None
925 926 927 928

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

929
            if not framework.global_var._in_eager_mode_:
930 931 932 933 934 935 936
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
937
            else:
938 939 940 941 942 943 944
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
945
            var_base.stop_gradient = var.stop_gradient
946
            out_varbase_map[var_desc.name()] = var_base
947 948 949 950 951 952
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
953

954
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
955
        # Hold forward variables
J
Jiabin Yang 已提交
956
        tmp_scope_vec = None
957 958 959
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
960
        if not framework.global_var._in_eager_mode_:
961 962 963 964 965 966 967
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
968
            tmp_scope_vec.value().set_scope(inner_scope)
969 970
        else:
            tmp_scope_vec = [inner_scope]
971
        return tmp_scope_vec
972

973
    def _create_cuda_graph_vec(self):
974 975 976 977 978 979 980
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
981 982 983
        var.stop_gradient = True
        return var

984 985 986 987 988 989 990 991 992
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
993
        if outs is not None and len(outs) == 1:
994 995 996 997
            outs = outs[0]

        return outs

998 999 1000 1001
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

1002
    def _is_no_value(self, var):
1003 1004 1005
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
1006 1007
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
1008 1009 1010 1011 1012 1013 1014
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
1015
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
1016 1017 1018 1019 1020
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1021 1022 1023
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1024 1025 1026 1027
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1028
            has_removed = len(out_vars) > len(res)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1039
    def _set_grad_type(self, params, train_program):
1040 1041 1042 1043 1044 1045 1046 1047
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1048
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1049 1050 1051 1052 1053
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1077 1078
                % type(self._params)
            )
1079

1080 1081 1082
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
1083
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
1084
                raise TypeError(
1085 1086 1087 1088
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1089
            param_and_buffer_names_set.add(var.name)
1090 1091

        for block in main_program.blocks:
1092
            for name, var in block.vars.items():
1093
                if isinstance(var, framework.Parameter):
1094
                    if name not in param_and_buffer_names_set:
1095
                        raise ValueError(
1096 1097 1098 1099 1100 1101
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1102 1103
                            % name
                        )
1104

1105
    def _valid_vars(self, vars):
1106
        return vars if vars else None
1107

1108 1109 1110 1111 1112 1113

def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1114 1115 1116 1117 1118 1119 1120
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1121 1122 1123


@switch_to_static_graph
1124
def add_build_strategy_for(
1125
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1126 1127
):
    if start_op_index < end_op_index:
1128 1129
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1130 1131
            build_strategy=build_strategy,
        )
1132 1133 1134
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1135 1136 1137
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1138 1139 1140 1141 1142
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
X
xiongkun 已提交
1143
        # can't just create a new program, we need copy the vardesc.
1144
        builded_program = paddle.static.Program()
X
xiongkun 已提交
1145 1146
        for var in program.block(0).vars.values():
            builded_program.block(0)._clone_variable(var, False)
1147
    return builded_program