reducer.cc 48.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/reducer.h"
16 17
#include "paddle/phi/backends/device_guard.h"
#include "paddle/phi/backends/device_manager.h"
18
#include "paddle/phi/core/flags.h"
19

20
DECLARE_bool(use_stream_safe_cuda_allocator);
21
PHI_DECLARE_string(allocator_strategy);
22

23 24 25
namespace paddle {
namespace distributed {

26 27 28 29 30
static bool IsStreamSafeAllocator() {
  return FLAGS_allocator_strategy == "auto_growth" &&
         FLAGS_use_stream_safe_cuda_allocator;
}

31 32 33 34 35 36 37 38
static Backend TransToBackend(platform::Place place) {
  static const std::map<phi::AllocationType, Backend> type_backend = {
      {phi::AllocationType::GPU, Backend::GPU},
      {phi::AllocationType::CPU, Backend::CPU},
  };

  phi::AllocationType type = place.GetType();
  auto it = type_backend.find(type);
39 40
  PADDLE_ENFORCE_EQ(it != type_backend.end(),
                    true,
41 42 43 44 45
                    platform::errors::InvalidArgument(
                        "Place type (%s) is not supported. ", place));
  return it->second;
}

46 47 48 49 50 51
std::vector<std::vector<size_t>> Eager_AssignGroupBySize(
    const std::vector<Tensor> tensors,
    const std::vector<bool> &is_sparse_gradient,
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
  PADDLE_ENFORCE_EQ(
52 53
      tensors.size(),
      is_sparse_gradient.size(),
54 55 56
      platform::errors::PreconditionNotMet(
          "tensors len must be equal to is_sparse_gradient len, but "
          "[%lu] != [%lu]",
57 58
          tensors.size(),
          is_sparse_gradient.size()));
59 60 61 62 63 64 65 66 67 68 69 70
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };

71 72
  PADDLE_ENFORCE_EQ(true,
                    check_perm(tensor_indices),
73 74 75 76 77 78 79 80
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
81
  std::map<phi::DataType, size_t> group_limit_index;
82 83 84

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
85
  std::map<phi::DataType, std::pair<std::vector<size_t>, size_t>> next_group;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

  for (size_t i = 0; i < tensors.size(); ++i) {
    const auto &var = tensors[i];

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
      // we keep sparse var a single group
      res.push_back({tensor_real_index});
      continue;
    }

    const auto &var_dtype = var.dtype();
    VLOG(3) << "var[" << var.name() << "] 's type is " << var_dtype;
    auto &group_info = next_group[var_dtype];

    int64_t var_size = -1;

    if (var.is_dense_tensor()) {
      var_size =
          std::dynamic_pointer_cast<phi::DenseTensor>(var.impl())->numel();
    } else {
      VLOG(3) << "var " << var.name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }

    group_info.first.push_back(tensor_real_index);
117
    group_info.second += phi::SizeOf(var_dtype) * var_size;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    // group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
144 145
        group_index.empty(),
        true,
146 147 148 149
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
  if (tensor_indices.empty()) {
150 151
    std::sort(res.begin(),
              res.end(),
152 153 154 155 156 157 158
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
  return res;
}

159
template <typename DeviceContext, typename T>
160 161 162 163 164 165 166 167 168 169 170 171 172
struct ConcatTensorsForAllReduce {
  void operator()(const DeviceContext &context,
                  const std::vector<phi::DenseTensor> &dense_tensors_,
                  Tensor *p_dense_contents) {
    operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
    concat_functor_(
        context,
        dense_tensors_,
        0,
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get());
  }
};
173 174

template <typename DeviceContext, typename T>
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
struct SplitTensorsForAllReduce {
  void operator()(const DeviceContext &context,
                  Tensor *p_dense_contents,
                  std::vector<phi::DenseTensor> *p_dense_tensors) {
    auto *in =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    std::vector<phi::DenseTensor *> outs;
    std::vector<const phi::DenseTensor *> shape_refer;

    outs.reserve(p_dense_tensors->size());
    shape_refer.reserve(p_dense_tensors->size());

    for (auto &tensor : *p_dense_tensors) {
      outs.emplace_back(&tensor);
      shape_refer.emplace_back(&tensor);
    }
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
};

#ifdef PADDLE_WITH_CUSTOM_DEVICE
// note(wangran16): A temporary solution for all backends.
template <typename T>
struct ConcatTensorsForAllReduce<platform::CustomDeviceContext, T> {
  void operator()(const platform::CustomDeviceContext &context,
                  const std::vector<phi::DenseTensor> &dense_tensors_,
                  Tensor *p_dense_contents) {
    phi::DeviceGuard guard(context.GetPlace());
    auto *out =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    uint8_t *out_data = reinterpret_cast<uint8_t *>(out->data<T>());
    auto *device = phi::DeviceManager::GetDeviceWithPlace(context.GetPlace());
R
ronnywang 已提交
211
    phi::stream::Stream stream(context.GetPlace(), context.stream());
212 213 214 215 216 217

    size_t offset = 0;
    for (const auto &tensor : dense_tensors_) {
      const uint8_t *in_data =
          reinterpret_cast<const uint8_t *>(tensor.data<T>());
      auto sz = tensor.numel() * sizeof(T);
218 219 220 221 222
      if (tensor.place().GetType() == phi::AllocationType::CPU) {
        device->MemoryCopyH2D(out_data + offset, in_data, sz, &stream);
      } else {
        device->MemoryCopyD2D(out_data + offset, in_data, sz, &stream);
      }
223 224
      offset += sz;
    }
225
  }
226 227 228 229 230 231 232 233 234 235 236 237
};

template <typename T>
struct SplitTensorsForAllReduce<platform::CustomDeviceContext, T> {
  void operator()(const platform::CustomDeviceContext &context,
                  Tensor *p_dense_contents,
                  std::vector<phi::DenseTensor> *p_dense_tensors) {
    auto *in =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    uint8_t *in_data = reinterpret_cast<uint8_t *>(in->data<T>());
    auto *device = phi::DeviceManager::GetDeviceWithPlace(context.GetPlace());
R
ronnywang 已提交
238
    phi::stream::Stream stream(context.GetPlace(), context.stream());
239 240 241 242 243

    size_t offset = 0;
    for (auto &tensor : *p_dense_tensors) {
      uint8_t *out_data = reinterpret_cast<uint8_t *>(tensor.data<T>());
      auto sz = tensor.numel() * sizeof(T);
244 245 246 247 248
      if (tensor.place().GetType() == phi::AllocationType::CPU) {
        device->MemoryCopyD2H(out_data, in_data + offset, sz, &stream);
      } else {
        device->MemoryCopyD2D(out_data, in_data + offset, sz, &stream);
      }
249 250 251 252 253
      offset += sz;
    }
  }
};
#endif
254 255 256 257 258 259

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<phi::DenseTensor> &dense_tensors_,
260 261
    Tensor *p_dense_contents,
    phi::DataType type) {
262 263
  switch (type) {
    case phi::DataType::FLOAT16:
264
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>()(
265 266 267
          context, dense_tensors_, p_dense_contents);
      break;
    case phi::DataType::FLOAT32:
268
      ConcatTensorsForAllReduce<DeviceContext, float>()(
269
          context, dense_tensors_, p_dense_contents);
270 271
      break;
    case phi::DataType::FLOAT64:
272
      ConcatTensorsForAllReduce<DeviceContext, double>()(
273
          context, dense_tensors_, p_dense_contents);
274
      break;
275 276 277 278
    case phi::DataType::BFLOAT16:
      ConcatTensorsForAllReduce<DeviceContext, platform::bfloat16>()(
          context, dense_tensors_, p_dense_contents);
      break;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          type));
  }
}

// context is used to select the stream for split
template <typename DeviceContext>
static void SplitTensorsWithType(const DeviceContext &context,
                                 Tensor *p_dense_contents,
                                 std::vector<phi::DenseTensor> *p_dense_tensors,
                                 phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT16:
295
      SplitTensorsForAllReduce<DeviceContext, platform::float16>()(
296 297 298
          context, p_dense_contents, p_dense_tensors);
      break;
    case phi::DataType::FLOAT32:
299
      SplitTensorsForAllReduce<DeviceContext, float>()(
300
          context, p_dense_contents, p_dense_tensors);
301 302
      break;
    case phi::DataType::FLOAT64:
303
      SplitTensorsForAllReduce<DeviceContext, double>()(
304
          context, p_dense_contents, p_dense_tensors);
305
      break;
306 307 308 309
    case phi::DataType::BFLOAT16:
      SplitTensorsForAllReduce<DeviceContext, platform::bfloat16>()(
          context, p_dense_contents, p_dense_tensors);
      break;
310 311 312 313 314 315 316 317
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          type));
  }
}

J
james 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
#ifdef PADDLE_WITH_XPU_BKCL
// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    const std::vector<phi::DenseTensor> &dense_tensors_,
    Tensor *p_dense_contents,
    phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>()(
          context, dense_tensors_, p_dense_contents);
      break;
    case phi::DataType::FLOAT16:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext,
                                platform::float16>()(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          type));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    Tensor *p_dense_contents,
    std::vector<phi::DenseTensor> *p_dense_tensors,
    phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>()(
          context, p_dense_contents, p_dense_tensors);
      break;
    case phi::DataType::FLOAT16:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, platform::float16>()(
          context, p_dense_contents, p_dense_tensors);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          type));
  }
}
#endif

369
void EagerGroup::ConcatTensors(const platform::Place &place) {
370 371 372
  dense_contents_ =
      paddle::experimental::empty(IntArray({all_length_}), dtype_, place);

373 374
  if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
375
    auto *default_ctx = static_cast<phi::GPUContext *>(
376
        platform::DeviceContextPool::Instance().Get(place));
377 378
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
379 380 381 382
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
383 384 385 386 387 388 389 390 391 392 393 394
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto *default_ctx = static_cast<platform::CustomDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
J
james 已提交
395 396 397 398 399 400 401 402 403 404 405
#endif
  } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto *default_ctx = static_cast<paddle::platform::XPUDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
406 407
#endif
  } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
408
    auto *default_ctx = static_cast<phi::CPUContext *>(
409
        platform::DeviceContextPool::Instance().Get(place));
410 411
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
412 413 414 415 416 417
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

418
void EagerGroup::SplitTensors(const platform::DeviceContext &context) {
419
  auto place = context.GetPlace();
420 421
  if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
422
    auto &gpu_context = static_cast<const phi::GPUContext &>(context);
423
    SplitTensorsWithType(
424
        gpu_context, &dense_contents_, &dense_tensors_, dtype_);
425
    if (IsStreamSafeAllocator()) {
426 427 428 429 430 431
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(dense_contents_.impl());
      VLOG(3) << "Free dense_contents_ " << dense_contents_.numel();
      memory::RecordStream(dense_tensor->Holder(), gpu_context.stream());
      dense_contents_.reset();
    }
432 433 434 435
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
436 437 438 439
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    SplitTensorsWithType(
440 441 442 443
        static_cast<const platform::CustomDeviceContext &>(context),
        &dense_contents_,
        &dense_tensors_,
        dtype_);
444 445 446 447 448
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
J
james 已提交
449 450 451 452 453 454 455 456 457 458 459
#endif
  } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto *default_ctx = static_cast<paddle::platform::XPUDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    SplitTensorsWithType(
        *default_ctx, &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
460 461
#endif
  } else if (platform::is_cpu_place(place)) {
462 463 464 465
    SplitTensorsWithType(static_cast<const phi::CPUContext &>(context),
                         &dense_contents_,
                         &dense_tensors_,
                         dtype_);
466 467 468 469 470 471 472 473 474 475 476
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
  }
}

EagerReducer::EagerReducer(
    const std::vector<Tensor> tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
477 478
    const std::vector<size_t> &group_size_limits,
    bool find_unused_parameters)
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
    : tensors_(tensors),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
      process_group_(process_group),
      group_size_limits_(group_size_limits),
      find_unused_vars_each_step_(find_unused_parameters) {
  VLOG(3) << "Start construct the Reducer ...";

  nranks_ = process_group_->GetSize();

  // initialize groups
  InitializeGroups(group_indices);

  for (size_t global_var_index = 0; global_var_index < tensors_.size();
       ++global_var_index) {
    auto tensor = tensors_[global_var_index];
    auto reduce_hook = [=](void) -> void {
      this->AddDistHook(global_var_index);
    };

    const auto &grad_node = GetGradNodeFromTensor(&tensor);

    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    const auto &accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    accumulation_grad_node->RegisterReduceHook(
509
        std::make_shared<egr::CppVoidHook>(reduce_hook));
510 511

    gradnode_index_map_[grad_node.get()] = global_var_index;
512 513 514 515
  }

  vars_marked_ready_.resize(tensors_.size(), false);
  local_used_vars_.resize(tensors_.size(), 0);
516 517 518

  if (find_unused_vars_each_step_) {
    global_used_vars_ = paddle::experimental::empty(
519 520
        IntArray({static_cast<int32_t>(tensors_.size())}),
        DataType::INT32,
521
        inner_place_);
522
  }
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
}

std::shared_ptr<egr::GradNodeBase> EagerReducer::GetGradNodeFromTensor(
    Tensor *tensor) {
  auto *autograd_meta = tensor->get_autograd_meta();
  const auto &grad_node =
      static_cast<egr::AutogradMeta *>(autograd_meta)->GetMutableGradNode();
  return grad_node;
}

void EagerReducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";

  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());

  variable_locators_.clear();
  variable_locators_.resize(tensors_.size());

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &tensor_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
548 549
        tensor_indices_.size(),
        0,
550 551 552 553 554 555 556 557 558 559 560
        platform::errors::PreconditionNotMet(
            "The number of group[%d]'s elements is 0.", group_index));

    EagerGroup group;

    // It's just for check the sparse or dense
    auto first_var = tensors_[tensor_indices_.front()];
    if (tensor_indices_.size() == 1 &&
        is_sparse_gradient_[tensor_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_var.dtype();
561
      group.is_sparse_ = true;
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    } else {
      // process the dense gradient.
      InitializeDenseGroups(tensor_indices_, &group);
    }

    // map tensors to this group by VariableLocator
    size_t inside_group_index = 0;
    for (const auto var_index : tensor_indices_) {
      TensorLocator tensor_locator;
      tensor_locator.group_index = group_index;
      tensor_locator.inside_group_index = inside_group_index++;
      variable_locators_[var_index] = tensor_locator;
    }
    group.tensor_indices_ = std::move(tensor_indices_);
    groups_.emplace_back(std::move(group));

    VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
  }
}

void EagerReducer::InitializeDenseGroups(
    const std::vector<size_t> &tensor_indices_, EagerGroup *p_group) {
  VLOG(3) << "InitializeDenseGroups.";
  int64_t all_length = 0;
  for (size_t index = 0; index < tensor_indices_.size(); ++index) {
    auto tensor_index = tensor_indices_[index];
    auto &tensor = tensors_[tensor_index];
    auto &tensor_name = tensor.name();

591 592
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[tensor_index],
                      false,
593 594 595 596 597
                      platform::errors::PreconditionNotMet(
                          "Tensor %s's GRAD must be Tensor, but received "
                          "GRAD is SelectedRows",
                          tensor_name));

598 599
    PADDLE_ENFORCE_EQ(tensor.initialized(),
                      true,
600 601 602 603
                      platform::errors::PreconditionNotMet(
                          "Tensor %s is not initialized.", tensor_name));
    const auto size = tensor.numel();
    PADDLE_ENFORCE_GT(
604 605
        size,
        0,
606 607
        platform::errors::PreconditionNotMet(
            "The number of tensor %s's elements is 0.", tensor_name));
608 609 610 611 612
    all_length += size;

    p_group->length_.push_back(size);

    // for concat operator
613
    p_group->origin_shapes_.push_back(IntArray(tensor.shape()));
614 615 616 617 618
    p_group->dense_tensors_.push_back(phi::DenseTensor());

    const auto &dtype = tensor.dtype();
    const auto &inner_place = tensor.impl()->place();
    if (index > 0) {
619 620
      PADDLE_ENFORCE_EQ(dtype,
                        p_group->dtype_,
621 622 623 624 625 626 627 628 629 630
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has unexpected dtype.", tensor_name));
    } else {
      p_group->dtype_ = dtype;
      inner_place_ = inner_place;
    }
  }
  p_group->all_length_ = all_length;
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
void EagerReducer::TraverseBackwardGraph(const std::vector<Tensor> &outputs) {
  std::queue<egr::GradNodeBase *> queue;
  std::set<egr::GradNodeBase *> visited;

  for (const auto &output : outputs) {
    auto *auto_grad_meta =
        static_cast<egr::AutogradMeta *>(output.get_autograd_meta());
    if (!auto_grad_meta) continue;
    auto shared_grad_node = auto_grad_meta->GetMutableGradNode();
    if (shared_grad_node == nullptr || shared_grad_node.get() == nullptr ||
        auto_grad_meta->StopGradient()) {
      continue;
    }
    egr::GradNodeBase *grad_node = shared_grad_node.get();
    queue.emplace(grad_node);
  }

  while (!queue.empty()) {
    egr::GradNodeBase *node = queue.front();
    queue.pop();
651 652 653 654 655 656
    const paddle::small_vector<std::vector<egr::GradSlotMeta>,
                               egr::kSlotSmallVectorSize> &metas =
        node->OutputMeta();
    for (size_t i = 0; i < metas.size(); i++) {
      for (size_t j = 0; j < metas[i].size(); j++) {
        const egr::Edge &edge = metas[i][j].GetEdge();
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        auto next_node_shared = edge.GetMutableGradNode();
        if (!next_node_shared || !next_node_shared.get()) {
          continue;
        }
        auto *next_node = next_node_shared.get();
        const bool was_inserted = visited.insert(next_node).second;
        if (was_inserted) {
          queue.emplace(next_node);
        }
      }
    }
  }

  for (const auto &it : gradnode_index_map_) {
    if (visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "[Rank " << process_group_->GetRank() << "]: "
              << "Tensor " << tensors_[it.second].name() << " at index "
              << it.second << " is marked as unused.";
    }
  }
}

680
void EagerReducer::PrepareForBackward(const std::vector<Tensor> &outputs) {
681
  VLOG(3) << "after forward, then reset count for backward.";
682
  grad_need_hooks_ = true;
683

684 685 686
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](EagerGroup &group) {
    group.pending_ = group.tensor_indices_.size();
687
    group.sparse_contents_ = Tensor();
688 689 690 691 692
  });

  // reinitialize vars_marked_ready_ for next iteration
  vars_marked_ready_.clear();
  vars_marked_ready_.resize(tensors_.size(), false);
693 694

  PADDLE_ENFORCE_EQ(
695 696
      groups_need_finalize_,
      false,
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
      platform::errors::PreconditionNotMet(
          "A serious error has occurred here. Please "
          "set find_unused_parameters=True to traverse backward graph "
          "in each step to prepare reduce in advance. If you have "
          "set, There may be several reasons for this error: "
          "1) Please note that all forward outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph. "
          "2) Used multiple forwards and one backward. You may be able to wrap "
          "multiple forwards in a model."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;

  if (find_unused_vars_once_ || find_unused_vars_each_step_) {
    unused_vars_.clear();
    TraverseBackwardGraph(outputs);
    // only check once in first step
    find_unused_vars_once_ = false;
  }

  if (find_unused_vars_each_step_ && unused_vars_.empty()) {
    LOG_FIRST_N(WARNING, 1)
        << "All parameters are involved in the backward pass. "
           "It is recommended to set find_unused_parameters to False "
           "to improve performance. However, if unused parameters "
           "appear in subsequent iterative training, then an error "
           "will occur. Please make it clear that in the subsequent "
           "training, there will be no parameters that are not used "
           "in the backward pass, and then set find_unused_parameters";
  }

  if (unused_vars_.size() == tensors_.size()) {
    LOG_FIRST_N(WARNING, 1)
        << "There is no parameter in the device involved "
           "in the backward calculation. If there are "
           "parameters on other devices involved in the "
           "backward, then a serious error will occur here.";
  }
739 740 741
}

void EagerReducer::AddDistHook(size_t var_index) {
742 743
  PADDLE_ENFORCE_LT(var_index,
                    variable_locators_.size(),
744 745 746
                    platform::errors::OutOfRange(
                        "Out of bounds variable index. it must be less"
                        "than %d, but it is %d",
747 748
                        variable_locators_.size(),
                        var_index));
749 750

  // gradient synchronization is not required when grad_need_hooks_ is false.
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
  if (!grad_need_hooks_) {
    const auto &var_locator = variable_locators_[var_index];
    const auto group_index = var_locator.group_index;
    const auto inside_group_index = var_locator.inside_group_index;
    auto &group = groups_[group_index];
    auto &group_tensor = group.dense_tensors_[inside_group_index];

    auto *autograd_meta = tensors_[var_index].get_autograd_meta();
    auto &grad_tensor = static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();

    if (!HasGrad(var_index)) {
      group_tensor.ShareDataWith(phi::DenseTensor());
    } else {
      auto grad_dense_tensor =
          *(std::dynamic_pointer_cast<phi::DenseTensor>(grad_tensor.impl()));
      group_tensor.ShareDataWith(grad_dense_tensor);
    }
    return;
  }
770

771 772
  VLOG(3) << "Tensor[" << var_index << "] [" << tensors_[var_index].name()
          << "@Grad] arrived and triggered disthook";
773 774 775

  local_used_vars_[var_index] = 1;

776 777 778 779 780 781
  if (!has_marked_unused_vars_) {
    has_marked_unused_vars_ = true;
    for (const auto unused_index : unused_vars_) {
      MarkVarReady(unused_index, false);
    }
  }
782 783 784 785 786
  MarkVarReady(var_index, true);
}

void EagerReducer::MarkVarReady(const size_t var_index,
                                const bool is_used_var) {
787 788 789 790 791 792 793 794 795 796 797 798 799
  VLOG(3) << "Tensor[" << var_index << "][" << tensors_[var_index].name()
          << "] is marked ready.";
  // error happened, if the var is ready before.
  if (vars_marked_ready_[var_index]) {
    auto error_info = string::Sprintf(
        "Error happened, when parameter[%d][%s] has been ready before. "
        "Please set find_unused_parameters=True to traverse backward graph "
        "in each step to prepare reduce in advance. If you have set, "
        "there may be several reasons for this error: "
        "1) In multiple reentrant backward phase, some parameters are reused."
        "2) Using model parameters outside of forward function. Please "
        "make sure that model parameters are not shared in concurrent "
        "forward-backward passes.",
800 801
        var_index,
        tensors_[var_index].name());
802

803 804
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      false,
805 806 807 808 809 810 811 812 813 814 815
                      platform::errors::PreconditionNotMet(error_info));

    error_info +=
        "3) Unused parameters retrieval is incorrect. "
        "The return value of forward will be used to retrieve"
        " the unused parameters of the entire model. These "
        "gradients of unused parameters will not be synchronized "
        "between multiple cards. However, if the unused "
        "parameters participate in the backward calculation "
        "again at a later time (e.g. after the forward function, "
        "the loss calculation uses the unused "
C
chenxujun 已提交
816
        "parameters of the forward and trigger backward), "
817 818
        "its gradient will be wrong.";

819 820
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      true,
821 822 823 824 825 826
                      platform::errors::PreconditionNotMet(error_info));
  } else {
    vars_marked_ready_[var_index] = true;
  }
  groups_need_finalize_ = true;

827 828 829 830 831
  const auto &var_locator = variable_locators_[var_index];
  const auto group_index = var_locator.group_index;
  const auto inside_group_index = var_locator.inside_group_index;

  auto &group = groups_[group_index];
832

833
  if (!group.is_sparse_) {
F
Frank Lin 已提交
834
    auto &group_tensor = group.dense_tensors_[inside_group_index];
835
    const auto length = group.length_[inside_group_index];
836 837 838 839
    if (is_used_var) {
      auto *autograd_meta = tensors_[var_index].get_autograd_meta();
      auto &grad_tensor =
          static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();
840 841
      group_tensor
          .ShareDataWith(*(
842 843
              std::dynamic_pointer_cast<phi::DenseTensor>(grad_tensor.impl())))
          .Resize({grad_tensor.numel()});
844
    } else {
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
      // TODO(shenliang03): maybe save the memory by avoiding tensor
      // construction
      if (!group_tensor.initialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
        group_tensor.mutable_data(inner_place_, group.dtype_);
      }
      if (HasGrad(var_index)) {
        VLOG(3) << "Tensor[" << tensors_[var_index].name() << "] has grad";
        auto grad_tensor = egr::EagerUtils::mutable_grad(tensors_[var_index]);
        group_tensor
            .ShareDataWith(*(std::dynamic_pointer_cast<phi::DenseTensor>(
                grad_tensor->impl())))
            .Resize({length});
      } else {
        VLOG(3) << "Tensor[" << tensors_[var_index].name()
                << "] doesn't have grad";
        auto *dev_ctx =
            platform::DeviceContextPool::Instance().Get(inner_place_);
        group_tensor.Resize({static_cast<int64_t>(length)});
        phi::funcs::set_constant(*dev_ctx, &group_tensor, 0.0);
      }
866
    }
867 868 869 870 871 872
  } else {
    auto *autograd_meta = tensors_[var_index].get_autograd_meta();
    auto &grad_tensor = static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();

    // process sparse group
    PADDLE_ENFORCE_EQ(
873 874
        HasGrad(var_index),
        true,
875 876 877 878 879 880
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] should have gradient. "
            "Currently, DataParallel does not support sparse "
            "parameters without generating gradients during training. "
            "For example, if is_sparese=True is used in Embedding, "
            "the current step of this parameter cannot generate gradient "
C
chenxujun 已提交
881
            "because of stop_gradient/detach, where error will occur.",
882 883
            var_index,
            tensors_[var_index].name()));
884 885 886

    // need to check tensor type
    PADDLE_ENFORCE_EQ(
887 888
        grad_tensor.is_selected_rows(),
        true,
889 890 891 892 893 894 895 896 897
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] must have a selectedrows gradient. "
            "Before forward pass, the parameter type is inferred to be "
            "SelectedRows, but after backward pass, its actual type becomes "
            "LodTensor. It is currently not supported by DataParallel. "
            "For example, if sparse embedding is used, and the weight of "
            "embedding is shared with subsequent dense parameters, then "
            "the parameter gradient of the embedding will be converted "
            "to dense parameters.",
898 899
            var_index,
            tensors_[var_index].name()));
900 901

    group.sparse_contents_.set_impl(grad_tensor.impl());
902
  }
903 904 905 906 907

  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }
908 909 910 911

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
912 913 914 915 916 917
}

void EagerReducer::MarkGroupReady(size_t group_index) {
  VLOG(3) << "Group[" << group_index << "] is ready";

  PADDLE_ENFORCE_GE(
918 919
      group_index,
      next_group_,
920 921 922 923
      platform::errors::PreconditionNotMet(
          "The index of the incoming group must be greater "
          "than or equal to the previously synchronized group index, "
          "expect it to greater than or equal to %d, but got %d.",
924 925
          next_group_,
          group_index));
926 927 928 929 930 931 932 933 934

  if (group_index > next_group_) {
    VLOG(3) << "It will adjust the order of group in next batch automatically";
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
    UNUSED auto &group = groups_[next_group_];
935 936 937 938
    if (group.is_sparse_) {
      AllReduceSparse(&group, next_group_);
    } else {
      FusedAllReduceSchedule(&group, next_group_);
939
    }
940 941 942
  }
}

943 944
bool EagerReducer::HasGrad(size_t var_index) {
  auto grad = egr::EagerUtils::mutable_grad(tensors_[var_index]);
945
  if (grad && grad->initialized()) {
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
    return true;
  } else {
    return false;
  }
}

void EagerReducer::ProcessUnusedDenseVars() {
  // The calculation stream must be used here to
  // avoid conflicts with communication.
  VLOG(3) << "Local used vars : "
          << string::join_strings(local_used_vars_, ',');

  const auto *dev_ctx =
      platform::DeviceContextPool::Instance().Get(inner_place_);
  auto *global_used_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(global_used_vars_.impl())
          .get();
963 964
  framework::TensorFromVector<int32_t>(
      local_used_vars_, *dev_ctx, global_used_tensor);
965 966 967 968

  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;
  std::vector<Tensor> reduce_tensors = {global_used_vars_};
969 970 971 972 973
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  process_group_->AllReduce(in_out, in_out, opts)->Synchronize();
974

975 976
  framework::TensorToVector<int>(
      *global_used_tensor, *dev_ctx, &local_used_vars_);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
  dev_ctx->Wait();

  // sync compute stream to get global used var message,
  // but maybe affect speed performance
  VLOG(3) << "Global used vars : "
          << string::join_strings(local_used_vars_, ',');

  for (const auto var_index : unused_vars_) {
    const bool global_unused = (local_used_vars_[var_index] == 0);

    // global used but local unused, set grad
    VLOG(3) << "[Rank " << process_group_->GetRank() << "]: "
            << "Var [" << var_index << "] [" << tensors_[var_index].name()
            << "] global_unused: " << global_unused
            << "  has grad: " << HasGrad(var_index);

    if (!global_unused) {
      VLOG(3) << "Set Tensor[" << var_index << "]'s Grad for [Rank "
              << process_group_->GetRank() << "]";
      const auto &var_locator = variable_locators_[var_index];
      const auto group_index = var_locator.group_index;
      const auto &group = groups_[group_index];
      const auto inside_group_index = var_locator.inside_group_index;
      auto &src_tensor = group.dense_tensors_[inside_group_index];

1002 1003 1004 1005 1006
      // sparse no need to check and no support find_unused_parameters
      if (group.is_sparse_) {
        continue;
      }

1007 1008
      // NOTE(haohongxiang): Calling SetFakeEmpty here is to make sure that
      // gradient accumulation can continue normally after clear_gradients()
C
chenxujun 已提交
1009
      // especially in cases including complex control flow.
1010 1011 1012 1013
      std::static_pointer_cast<egr::GradNodeAccumulation>(
          GetGradNodeFromTensor(&tensors_[var_index]))
          ->SetFakeEmpty(false);

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
      Tensor grad_value(std::make_shared<phi::DenseTensor>(src_tensor));

      auto dest_var_base = tensors_[var_index];
      auto grad_tensor = egr::EagerUtils::mutable_grad(dest_var_base);
      grad_tensor->copy_(grad_value, inner_place_, true);
      grad_tensor->reshape(dest_var_base.shape());
    }
  }
}

void EagerReducer::FinalizeBackward() {
  groups_need_finalize_ = false;
1026
  grad_need_hooks_ = false;
1027
  for (auto &group : groups_) {
1028
    if (!group.is_sparse_) {
1029
      group.task->Synchronize();
1030 1031 1032 1033 1034
      if (!IsStreamSafeAllocator()) {
        auto *default_ctx =
            platform::DeviceContextPool::Instance().Get(inner_place_);
        group.SplitTensors(*default_ctx);
      }
1035
    }
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
  }

  if (find_unused_vars_each_step_) {
    ProcessUnusedDenseVars();
    local_used_vars_.clear();
    local_used_vars_.resize(tensors_.size(), 0);
    VLOG(3) << "ProcessUnusedDenseVars is finished.";
  }

  VLOG(3) << "In the batch, Reducer is finished.";
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
void EagerReducer::FusedAllReduceSchedule(EagerGroup *group,
                                          const int curr_group_index) {
  // The overall timeline: concat > div_nranks > allreduce > split
  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;

  VLOG(3) << "group [" << curr_group_index << "] start fused_allreduce.";

  // concat tensors
  group->ConcatTensors(inner_place_);

  // div nranks
1060 1061
  paddle::experimental::scale_(
      group->dense_contents_, 1.0 / nranks_, 0.0, false);
1062 1063 1064

  // all_reduce
  std::vector<Tensor> reduce_tensors = {group->dense_contents_};
1065 1066 1067 1068 1069
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  group->task = process_group_->AllReduce(in_out, in_out, opts);
1070

1071
  auto *context = process_group_->GetDeviceContext(inner_place_);
1072 1073 1074 1075 1076 1077 1078 1079 1080

  if (IsStreamSafeAllocator()) {
    // NOTE(shenliang03): The best_fit allocator strategy is multi-stream
    // insecure. In the Split operator, additional memory will be applied for
    // calculation, and if it is asynchronous, an illegal memory access may be
    // encountered.
    group->SplitTensors(*context);
    group->task->UpdateWaitChain(*context);
  }
1081 1082
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
void EagerReducer::AllReduceSparse(EagerGroup *group,
                                   const int curr_group_index) {
  // div nranks
  Tensor sparse_tensor(group->sparse_contents_);
  paddle::experimental::scale_(sparse_tensor, 1.0 / nranks_, 0.0, false);

  VLOG(3) << "sparse_group [" << curr_group_index << "] start allreduce.";

  auto *dev_ctx = platform::DeviceContextPool::Instance().Get(inner_place_);
  if (platform::is_gpu_place(inner_place_)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
1094
    dev_ctx = static_cast<phi::GPUContext *>(
1095 1096 1097 1098 1099
        platform::DeviceContextPool::Instance().Get(inner_place_));
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
#endif
  } else if (platform::is_custom_place(inner_place_)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    dev_ctx = static_cast<platform::CustomDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(inner_place_));
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
1110 1111
#endif
  } else if (platform::is_cpu_place(inner_place_)) {
L
Leo Chen 已提交
1112
    dev_ctx = static_cast<phi::CPUContext *>(
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        platform::DeviceContextPool::Instance().Get(inner_place_));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", inner_place_));
  }

  auto src = std::dynamic_pointer_cast<phi::SelectedRows>(
      group->sparse_contents_.impl());
  const auto &src_rows = src->rows();

  const auto &rank_ = process_group_->GetRank();
  const auto &size_ = process_group_->GetSize();

H
Huang Jiyi 已提交
1126
  phi::Vector<int64_t> rows_num_vector(size_);
1127 1128 1129 1130 1131 1132
  rows_num_vector[rank_] = static_cast<int64_t>(src_rows.size());

  Tensor rows_num_tensor = paddle::experimental::empty(
      IntArray({static_cast<int64_t>(size_)}), DataType::INT64, inner_place_);
  auto *rows_num_dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(rows_num_tensor.impl()).get();
1133 1134
  framework::TensorFromVector<int64_t>(
      rows_num_vector, *dev_ctx, rows_num_dense_tensor);
1135 1136 1137 1138

  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;
  std::vector<Tensor> reduce_tensors = {rows_num_tensor};
1139 1140 1141 1142 1143
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  process_group_->AllReduce(in_out, in_out, opts)->Synchronize();
1144

1145 1146
  framework::TensorToVector<int64_t>(
      *rows_num_dense_tensor, *dev_ctx, &rows_num_vector);
1147 1148 1149
  dev_ctx->Wait();

  const auto *cpu_rows_num_ptr = rows_num_vector.data();
1150 1151
  auto rows_num = std::accumulate(
      cpu_rows_num_ptr, cpu_rows_num_ptr + size_, static_cast<int64_t>(0));
1152 1153 1154 1155 1156 1157 1158

  VLOG(3) << "Gather rows: " << string::join_strings(rows_num_vector, ',')
          << ", total rows number: " << rows_num
          << ", height: " << src->height();

  dev_ctx->Wait();

1159 1160 1161
  Tensor src_value_tensor(std::make_shared<phi::DenseTensor>(src->value()));
  std::vector<int64_t> dst_shape = src_value_tensor.shape();

1162 1163 1164
  if (std::all_of(cpu_rows_num_ptr, cpu_rows_num_ptr + size_, [&](int64_t row) {
        return row == cpu_rows_num_ptr[0];
      })) {
1165 1166 1167 1168 1169 1170 1171
    // During sparse communication, the number of each card is same.
    // allgather is used to speed up the allreduce by replacing broadcast.

    VLOG(3) << "allgather replaces broadcast to speed up in sparse allreduce";

    Tensor dst_rows_tensor =
        paddle::experimental::empty(IntArray({static_cast<int64_t>(rows_num)}),
1172 1173
                                    DataType::INT64,
                                    inner_place_);
1174
    Tensor src_rows_tensor = paddle::experimental::empty(
1175 1176
        IntArray({static_cast<int64_t>((*src).rows().size())}),
        DataType::INT64,
1177 1178 1179 1180
        inner_place_);
    auto *src_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(src_rows_tensor.impl())
            .get();
1181 1182
    framework::TensorFromVector<int64_t>(
        (*src).rows(), *dev_ctx, src_rows_dense_tensor);
1183 1184 1185

    std::vector<Tensor> src_rows_tensors = {src_rows_tensor};
    std::vector<Tensor> dst_rows_tensors = {dst_rows_tensor};
1186 1187 1188 1189 1190 1191 1192 1193 1194
    std::vector<phi::DenseTensor> in;
    std::vector<phi::DenseTensor> out;
    for (auto &t : src_rows_tensors) {
      in.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    for (auto &t : dst_rows_tensors) {
      out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    process_group_->AllGather(in, out)->Synchronize();
1195

H
Huang Jiyi 已提交
1196
    phi::Vector<int64_t> dst_rows_vector(rows_num, 0);
1197 1198 1199
    auto *dst_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_rows_tensor.impl())
            .get();
1200 1201
    framework::TensorToVector<int64_t>(
        *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector);
1202 1203 1204 1205
    dev_ctx->Wait();

    dst_shape[dst_shape.size() - 2] = rows_num;
    auto dst_dense_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
1206 1207
        paddle::experimental::full(
            IntArray(dst_shape), 0, src_value_tensor.dtype(), inner_place_)
1208 1209 1210 1211 1212 1213 1214 1215 1216
            .impl());

    auto dst =
        std::make_shared<phi::SelectedRows>(dst_rows_vector, (*src).height());
    *(dst->mutable_value()) = *dst_dense_tensor;
    Tensor dst_value_tensor(std::make_shared<phi::DenseTensor>(dst->value()));

    std::vector<Tensor> src_value_tensors = {src_value_tensor};
    std::vector<Tensor> dst_value_tensors = {dst_value_tensor};
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    std::vector<phi::DenseTensor> src_dense;
    std::vector<phi::DenseTensor> dst_dense;
    for (auto &t : src_value_tensors) {
      src_dense.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    for (auto &t : dst_value_tensors) {
      dst_dense.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    process_group_->AllGather(src_dense, dst_dense)->Synchronize();
1228 1229 1230 1231 1232

    src->set_rows(dst_rows_vector);
    *(src->mutable_value()) =
        *(std::dynamic_pointer_cast<phi::DenseTensor>(dst_value_tensor.impl()));
  } else {
1233 1234 1235 1236 1237 1238 1239
    std::vector<Tensor> rows_tensors;
    std::vector<Tensor> values_tensors;

    for (int i = 0; i < size_; ++i) {
      std::vector<int64_t> value_tensor_shape = {
          cpu_rows_num_ptr[i], dst_shape[dst_shape.size() - 1]};
      Tensor rows_tensor = paddle::experimental::full(
1240 1241 1242 1243
          IntArray({static_cast<int64_t>(cpu_rows_num_ptr[i])}),
          0,
          DataType::INT64,
          inner_place_);
1244 1245 1246 1247 1248 1249 1250 1251 1252
      Tensor values_tensor = paddle::experimental::full(
          IntArray(value_tensor_shape), 0, src->value().dtype(), inner_place_);
      std::vector<phi::DenseTensor> rows_dense_vector;
      std::vector<phi::DenseTensor> values_dense_vector;

      if (i == rank_) {
        auto *rows_dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(rows_tensor.impl())
                .get();
1253 1254
        framework::TensorFromVector<int64_t>(
            src_rows, *dev_ctx, rows_dense_tensor);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        values_tensor.set_impl(
            std::make_shared<phi::DenseTensor>(src->value()));
      }
      rows_dense_vector.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(rows_tensor.impl()));
      values_dense_vector.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(values_tensor.impl()));

      auto b_opts = BroadcastOptions();
      b_opts.source_rank = i;
      process_group_->Broadcast(rows_dense_vector, rows_dense_vector, b_opts);
      process_group_
          ->Broadcast(values_dense_vector, values_dense_vector, b_opts)
          ->Wait();
      rows_tensors.push_back(rows_tensor);
      values_tensors.push_back(values_tensor);
    }

    Tensor dst_rows_tensor =
        paddle::experimental::concat(rows_tensors, phi::Scalar(0));
H
Huang Jiyi 已提交
1275
    phi::Vector<int64_t> dst_rows_vector(rows_num, 0);
1276 1277 1278
    auto *dst_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_rows_tensor.impl())
            .get();
1279 1280
    framework::TensorToVector<int64_t>(
        *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector);
1281 1282 1283 1284 1285 1286
    src->set_rows(dst_rows_vector);

    Tensor dst_values_tensor =
        paddle::experimental::concat(values_tensors, phi::Scalar(0));
    *(src->mutable_value()) = *(
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_values_tensor.impl()));
1287 1288 1289
  }
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
std::ostream &operator<<(std::ostream &out, const EagerGroup &group) {
  const auto &tensors_ = group.tensor_indices_;
  out << "numel: " << group.all_length_ << " ;var number: " << tensors_.size()
      << "\n";
  auto begin = tensors_.begin();
  auto end = tensors_.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

1308 1309
}  //  namespace distributed
}  //  namespace paddle