reducer.cc 47.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/reducer.h"
16 17
#include "paddle/phi/backends/device_guard.h"
#include "paddle/phi/backends/device_manager.h"
18

19
DECLARE_bool(use_stream_safe_cuda_allocator);
20
DECLARE_string(allocator_strategy);
21

22 23 24
namespace paddle {
namespace distributed {

25 26 27 28 29
static bool IsStreamSafeAllocator() {
  return FLAGS_allocator_strategy == "auto_growth" &&
         FLAGS_use_stream_safe_cuda_allocator;
}

30 31 32 33 34 35 36 37
static Backend TransToBackend(platform::Place place) {
  static const std::map<phi::AllocationType, Backend> type_backend = {
      {phi::AllocationType::GPU, Backend::GPU},
      {phi::AllocationType::CPU, Backend::CPU},
  };

  phi::AllocationType type = place.GetType();
  auto it = type_backend.find(type);
38 39
  PADDLE_ENFORCE_EQ(it != type_backend.end(),
                    true,
40 41 42 43 44
                    platform::errors::InvalidArgument(
                        "Place type (%s) is not supported. ", place));
  return it->second;
}

45 46 47 48 49 50
std::vector<std::vector<size_t>> Eager_AssignGroupBySize(
    const std::vector<Tensor> tensors,
    const std::vector<bool> &is_sparse_gradient,
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
  PADDLE_ENFORCE_EQ(
51 52
      tensors.size(),
      is_sparse_gradient.size(),
53 54 55
      platform::errors::PreconditionNotMet(
          "tensors len must be equal to is_sparse_gradient len, but "
          "[%lu] != [%lu]",
56 57
          tensors.size(),
          is_sparse_gradient.size()));
58 59 60 61 62 63 64 65 66 67 68 69
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };

70 71
  PADDLE_ENFORCE_EQ(true,
                    check_perm(tensor_indices),
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::map<experimental::DataType, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::map<experimental::DataType, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < tensors.size(); ++i) {
    const auto &var = tensors[i];

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
      // we keep sparse var a single group
      res.push_back({tensor_real_index});
      continue;
    }

    const auto &var_dtype = var.dtype();
    VLOG(3) << "var[" << var.name() << "] 's type is " << var_dtype;
    auto &group_info = next_group[var_dtype];

    int64_t var_size = -1;

    if (var.is_dense_tensor()) {
      var_size =
          std::dynamic_pointer_cast<phi::DenseTensor>(var.impl())->numel();
    } else {
      VLOG(3) << "var " << var.name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }

    group_info.first.push_back(tensor_real_index);
    group_info.second += experimental::SizeOf(var_dtype) * var_size;
    // group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
144 145
        group_index.empty(),
        true,
146 147 148 149
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
  if (tensor_indices.empty()) {
150 151
    std::sort(res.begin(),
              res.end(),
152 153 154 155 156 157 158
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
  return res;
}

159
template <typename DeviceContext, typename T>
160 161 162 163 164 165 166 167 168 169 170 171 172
struct ConcatTensorsForAllReduce {
  void operator()(const DeviceContext &context,
                  const std::vector<phi::DenseTensor> &dense_tensors_,
                  Tensor *p_dense_contents) {
    operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
    concat_functor_(
        context,
        dense_tensors_,
        0,
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get());
  }
};
173 174

template <typename DeviceContext, typename T>
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
struct SplitTensorsForAllReduce {
  void operator()(const DeviceContext &context,
                  Tensor *p_dense_contents,
                  std::vector<phi::DenseTensor> *p_dense_tensors) {
    auto *in =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    std::vector<phi::DenseTensor *> outs;
    std::vector<const phi::DenseTensor *> shape_refer;

    outs.reserve(p_dense_tensors->size());
    shape_refer.reserve(p_dense_tensors->size());

    for (auto &tensor : *p_dense_tensors) {
      outs.emplace_back(&tensor);
      shape_refer.emplace_back(&tensor);
    }
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
};

#ifdef PADDLE_WITH_CUSTOM_DEVICE
// note(wangran16): A temporary solution for all backends.
template <typename T>
struct ConcatTensorsForAllReduce<platform::CustomDeviceContext, T> {
  void operator()(const platform::CustomDeviceContext &context,
                  const std::vector<phi::DenseTensor> &dense_tensors_,
                  Tensor *p_dense_contents) {
    phi::DeviceGuard guard(context.GetPlace());
    auto *out =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    uint8_t *out_data = reinterpret_cast<uint8_t *>(out->data<T>());
    auto *device = phi::DeviceManager::GetDeviceWithPlace(context.GetPlace());

    size_t offset = 0;
    for (const auto &tensor : dense_tensors_) {
      const uint8_t *in_data =
          reinterpret_cast<const uint8_t *>(tensor.data<T>());
      auto sz = tensor.numel() * sizeof(T);
      device->MemoryCopyD2D(out_data + offset, in_data, sz, nullptr);
      offset += sz;
    }
220
  }
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
};

template <typename T>
struct SplitTensorsForAllReduce<platform::CustomDeviceContext, T> {
  void operator()(const platform::CustomDeviceContext &context,
                  Tensor *p_dense_contents,
                  std::vector<phi::DenseTensor> *p_dense_tensors) {
    auto *in =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    uint8_t *in_data = reinterpret_cast<uint8_t *>(in->data<T>());
    auto *device = phi::DeviceManager::GetDeviceWithPlace(context.GetPlace());

    size_t offset = 0;
    for (auto &tensor : *p_dense_tensors) {
      uint8_t *out_data = reinterpret_cast<uint8_t *>(tensor.data<T>());
      auto sz = tensor.numel() * sizeof(T);
      device->MemoryCopyD2D(out_data, in_data + offset, sz, nullptr);
      offset += sz;
    }
  }
};
#endif
244 245 246 247 248 249

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<phi::DenseTensor> &dense_tensors_,
250 251
    Tensor *p_dense_contents,
    phi::DataType type) {
252 253
  switch (type) {
    case phi::DataType::FLOAT16:
254
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>()(
255 256 257
          context, dense_tensors_, p_dense_contents);
      break;
    case phi::DataType::FLOAT32:
258
      ConcatTensorsForAllReduce<DeviceContext, float>()(
259
          context, dense_tensors_, p_dense_contents);
260 261
      break;
    case phi::DataType::FLOAT64:
262
      ConcatTensorsForAllReduce<DeviceContext, double>()(
263
          context, dense_tensors_, p_dense_contents);
264
      break;
265 266 267 268
    case phi::DataType::BFLOAT16:
      ConcatTensorsForAllReduce<DeviceContext, platform::bfloat16>()(
          context, dense_tensors_, p_dense_contents);
      break;
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          type));
  }
}

// context is used to select the stream for split
template <typename DeviceContext>
static void SplitTensorsWithType(const DeviceContext &context,
                                 Tensor *p_dense_contents,
                                 std::vector<phi::DenseTensor> *p_dense_tensors,
                                 phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT16:
285
      SplitTensorsForAllReduce<DeviceContext, platform::float16>()(
286 287 288
          context, p_dense_contents, p_dense_tensors);
      break;
    case phi::DataType::FLOAT32:
289
      SplitTensorsForAllReduce<DeviceContext, float>()(
290
          context, p_dense_contents, p_dense_tensors);
291 292
      break;
    case phi::DataType::FLOAT64:
293
      SplitTensorsForAllReduce<DeviceContext, double>()(
294
          context, p_dense_contents, p_dense_tensors);
295
      break;
296 297 298 299
    case phi::DataType::BFLOAT16:
      SplitTensorsForAllReduce<DeviceContext, platform::bfloat16>()(
          context, p_dense_contents, p_dense_tensors);
      break;
300 301 302 303 304 305 306 307
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          type));
  }
}

J
james 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
#ifdef PADDLE_WITH_XPU_BKCL
// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    const std::vector<phi::DenseTensor> &dense_tensors_,
    Tensor *p_dense_contents,
    phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>()(
          context, dense_tensors_, p_dense_contents);
      break;
    case phi::DataType::FLOAT16:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext,
                                platform::float16>()(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          type));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    Tensor *p_dense_contents,
    std::vector<phi::DenseTensor> *p_dense_tensors,
    phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>()(
          context, p_dense_contents, p_dense_tensors);
      break;
    case phi::DataType::FLOAT16:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, platform::float16>()(
          context, p_dense_contents, p_dense_tensors);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          type));
  }
}
#endif

359
void EagerGroup::ConcatTensors(const platform::Place &place) {
360 361 362
  dense_contents_ =
      paddle::experimental::empty(IntArray({all_length_}), dtype_, place);

363 364
  if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
365
    auto *default_ctx = static_cast<phi::GPUContext *>(
366
        platform::DeviceContextPool::Instance().Get(place));
367 368
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
369 370 371 372
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
373 374 375 376 377 378 379 380 381 382 383 384
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto *default_ctx = static_cast<platform::CustomDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
J
james 已提交
385 386 387 388 389 390 391 392 393 394 395
#endif
  } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto *default_ctx = static_cast<paddle::platform::XPUDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
396 397
#endif
  } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
398
    auto *default_ctx = static_cast<phi::CPUContext *>(
399
        platform::DeviceContextPool::Instance().Get(place));
400 401
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
402 403 404 405 406 407
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

408
void EagerGroup::SplitTensors(const platform::DeviceContext &context) {
409
  auto place = context.GetPlace();
410 411
  if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
412
    auto &gpu_context = static_cast<const phi::GPUContext &>(context);
413
    SplitTensorsWithType(
414
        gpu_context, &dense_contents_, &dense_tensors_, dtype_);
415
    if (IsStreamSafeAllocator()) {
416 417 418 419 420 421
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(dense_contents_.impl());
      VLOG(3) << "Free dense_contents_ " << dense_contents_.numel();
      memory::RecordStream(dense_tensor->Holder(), gpu_context.stream());
      dense_contents_.reset();
    }
422 423 424 425
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
426 427 428 429
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    SplitTensorsWithType(
430 431 432 433
        static_cast<const platform::CustomDeviceContext &>(context),
        &dense_contents_,
        &dense_tensors_,
        dtype_);
434 435 436 437 438
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
J
james 已提交
439 440 441 442 443 444 445 446 447 448 449
#endif
  } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto *default_ctx = static_cast<paddle::platform::XPUDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    SplitTensorsWithType(
        *default_ctx, &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
450 451
#endif
  } else if (platform::is_cpu_place(place)) {
452 453 454 455
    SplitTensorsWithType(static_cast<const phi::CPUContext &>(context),
                         &dense_contents_,
                         &dense_tensors_,
                         dtype_);
456 457 458 459 460 461 462 463 464 465 466
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
  }
}

EagerReducer::EagerReducer(
    const std::vector<Tensor> tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
467 468
    const std::vector<size_t> &group_size_limits,
    bool find_unused_parameters)
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    : tensors_(tensors),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
      process_group_(process_group),
      group_size_limits_(group_size_limits),
      find_unused_vars_each_step_(find_unused_parameters) {
  VLOG(3) << "Start construct the Reducer ...";

  nranks_ = process_group_->GetSize();

  // initialize groups
  InitializeGroups(group_indices);

  for (size_t global_var_index = 0; global_var_index < tensors_.size();
       ++global_var_index) {
    auto tensor = tensors_[global_var_index];
    auto reduce_hook = [=](void) -> void {
      this->AddDistHook(global_var_index);
    };

    const auto &grad_node = GetGradNodeFromTensor(&tensor);

    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    const auto &accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    accumulation_grad_node->RegisterReduceHook(
499
        std::make_shared<egr::CppVoidHook>(reduce_hook));
500 501

    gradnode_index_map_[grad_node.get()] = global_var_index;
502 503 504 505
  }

  vars_marked_ready_.resize(tensors_.size(), false);
  local_used_vars_.resize(tensors_.size(), 0);
506 507 508

  if (find_unused_vars_each_step_) {
    global_used_vars_ = paddle::experimental::empty(
509 510
        IntArray({static_cast<int32_t>(tensors_.size())}),
        DataType::INT32,
511
        inner_place_);
512
  }
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
}

std::shared_ptr<egr::GradNodeBase> EagerReducer::GetGradNodeFromTensor(
    Tensor *tensor) {
  auto *autograd_meta = tensor->get_autograd_meta();
  const auto &grad_node =
      static_cast<egr::AutogradMeta *>(autograd_meta)->GetMutableGradNode();
  return grad_node;
}

void EagerReducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";

  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());

  variable_locators_.clear();
  variable_locators_.resize(tensors_.size());

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &tensor_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
538 539
        tensor_indices_.size(),
        0,
540 541 542 543 544 545 546 547 548 549 550
        platform::errors::PreconditionNotMet(
            "The number of group[%d]'s elements is 0.", group_index));

    EagerGroup group;

    // It's just for check the sparse or dense
    auto first_var = tensors_[tensor_indices_.front()];
    if (tensor_indices_.size() == 1 &&
        is_sparse_gradient_[tensor_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_var.dtype();
551
      group.is_sparse_ = true;
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    } else {
      // process the dense gradient.
      InitializeDenseGroups(tensor_indices_, &group);
    }

    // map tensors to this group by VariableLocator
    size_t inside_group_index = 0;
    for (const auto var_index : tensor_indices_) {
      TensorLocator tensor_locator;
      tensor_locator.group_index = group_index;
      tensor_locator.inside_group_index = inside_group_index++;
      variable_locators_[var_index] = tensor_locator;
    }
    group.tensor_indices_ = std::move(tensor_indices_);
    groups_.emplace_back(std::move(group));

    VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
  }
}

void EagerReducer::InitializeDenseGroups(
    const std::vector<size_t> &tensor_indices_, EagerGroup *p_group) {
  VLOG(3) << "InitializeDenseGroups.";
  int64_t all_length = 0;
  for (size_t index = 0; index < tensor_indices_.size(); ++index) {
    auto tensor_index = tensor_indices_[index];
    auto &tensor = tensors_[tensor_index];
    auto &tensor_name = tensor.name();

581 582
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[tensor_index],
                      false,
583 584 585 586 587
                      platform::errors::PreconditionNotMet(
                          "Tensor %s's GRAD must be Tensor, but received "
                          "GRAD is SelectedRows",
                          tensor_name));

588 589
    PADDLE_ENFORCE_EQ(tensor.initialized(),
                      true,
590 591 592 593
                      platform::errors::PreconditionNotMet(
                          "Tensor %s is not initialized.", tensor_name));
    const auto size = tensor.numel();
    PADDLE_ENFORCE_GT(
594 595
        size,
        0,
596 597
        platform::errors::PreconditionNotMet(
            "The number of tensor %s's elements is 0.", tensor_name));
598 599 600 601 602
    all_length += size;

    p_group->length_.push_back(size);

    // for concat operator
603
    p_group->origin_shapes_.push_back(IntArray(tensor.shape()));
604 605 606 607 608
    p_group->dense_tensors_.push_back(phi::DenseTensor());

    const auto &dtype = tensor.dtype();
    const auto &inner_place = tensor.impl()->place();
    if (index > 0) {
609 610
      PADDLE_ENFORCE_EQ(dtype,
                        p_group->dtype_,
611 612 613 614 615 616 617 618 619 620
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has unexpected dtype.", tensor_name));
    } else {
      p_group->dtype_ = dtype;
      inner_place_ = inner_place;
    }
  }
  p_group->all_length_ = all_length;
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
void EagerReducer::TraverseBackwardGraph(const std::vector<Tensor> &outputs) {
  std::queue<egr::GradNodeBase *> queue;
  std::set<egr::GradNodeBase *> visited;

  for (const auto &output : outputs) {
    auto *auto_grad_meta =
        static_cast<egr::AutogradMeta *>(output.get_autograd_meta());
    if (!auto_grad_meta) continue;
    auto shared_grad_node = auto_grad_meta->GetMutableGradNode();
    if (shared_grad_node == nullptr || shared_grad_node.get() == nullptr ||
        auto_grad_meta->StopGradient()) {
      continue;
    }
    egr::GradNodeBase *grad_node = shared_grad_node.get();
    queue.emplace(grad_node);
  }

  while (!queue.empty()) {
    egr::GradNodeBase *node = queue.front();
    queue.pop();
641 642 643 644 645 646
    const paddle::small_vector<std::vector<egr::GradSlotMeta>,
                               egr::kSlotSmallVectorSize> &metas =
        node->OutputMeta();
    for (size_t i = 0; i < metas.size(); i++) {
      for (size_t j = 0; j < metas[i].size(); j++) {
        const egr::Edge &edge = metas[i][j].GetEdge();
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
        auto next_node_shared = edge.GetMutableGradNode();
        if (!next_node_shared || !next_node_shared.get()) {
          continue;
        }
        auto *next_node = next_node_shared.get();
        const bool was_inserted = visited.insert(next_node).second;
        if (was_inserted) {
          queue.emplace(next_node);
        }
      }
    }
  }

  for (const auto &it : gradnode_index_map_) {
    if (visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "[Rank " << process_group_->GetRank() << "]: "
              << "Tensor " << tensors_[it.second].name() << " at index "
              << it.second << " is marked as unused.";
    }
  }
}

670
void EagerReducer::PrepareForBackward(const std::vector<Tensor> &outputs) {
671
  VLOG(3) << "after forward, then reset count for backward.";
672
  grad_need_hooks_ = true;
673

674 675 676
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](EagerGroup &group) {
    group.pending_ = group.tensor_indices_.size();
677
    group.sparse_contents_ = Tensor();
678 679 680 681 682
  });

  // reinitialize vars_marked_ready_ for next iteration
  vars_marked_ready_.clear();
  vars_marked_ready_.resize(tensors_.size(), false);
683 684

  PADDLE_ENFORCE_EQ(
685 686
      groups_need_finalize_,
      false,
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
      platform::errors::PreconditionNotMet(
          "A serious error has occurred here. Please "
          "set find_unused_parameters=True to traverse backward graph "
          "in each step to prepare reduce in advance. If you have "
          "set, There may be several reasons for this error: "
          "1) Please note that all forward outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph. "
          "2) Used multiple forwards and one backward. You may be able to wrap "
          "multiple forwards in a model."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;

  if (find_unused_vars_once_ || find_unused_vars_each_step_) {
    unused_vars_.clear();
    TraverseBackwardGraph(outputs);
    // only check once in first step
    find_unused_vars_once_ = false;
  }

  if (find_unused_vars_each_step_ && unused_vars_.empty()) {
    LOG_FIRST_N(WARNING, 1)
        << "All parameters are involved in the backward pass. "
           "It is recommended to set find_unused_parameters to False "
           "to improve performance. However, if unused parameters "
           "appear in subsequent iterative training, then an error "
           "will occur. Please make it clear that in the subsequent "
           "training, there will be no parameters that are not used "
           "in the backward pass, and then set find_unused_parameters";
  }

  if (unused_vars_.size() == tensors_.size()) {
    LOG_FIRST_N(WARNING, 1)
        << "There is no parameter in the device involved "
           "in the backward calculation. If there are "
           "parameters on other devices involved in the "
           "backward, then a serious error will occur here.";
  }
729 730 731
}

void EagerReducer::AddDistHook(size_t var_index) {
732 733
  PADDLE_ENFORCE_LT(var_index,
                    variable_locators_.size(),
734 735 736
                    platform::errors::OutOfRange(
                        "Out of bounds variable index. it must be less"
                        "than %d, but it is %d",
737 738
                        variable_locators_.size(),
                        var_index));
739 740

  // gradient synchronization is not required when grad_need_hooks_ is false.
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
  if (!grad_need_hooks_) {
    const auto &var_locator = variable_locators_[var_index];
    const auto group_index = var_locator.group_index;
    const auto inside_group_index = var_locator.inside_group_index;
    auto &group = groups_[group_index];
    auto &group_tensor = group.dense_tensors_[inside_group_index];

    auto *autograd_meta = tensors_[var_index].get_autograd_meta();
    auto &grad_tensor = static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();

    if (!HasGrad(var_index)) {
      group_tensor.ShareDataWith(phi::DenseTensor());
    } else {
      auto grad_dense_tensor =
          *(std::dynamic_pointer_cast<phi::DenseTensor>(grad_tensor.impl()));
      group_tensor.ShareDataWith(grad_dense_tensor);
    }
    return;
  }
760

761 762
  VLOG(3) << "Tensor[" << var_index << "] [" << tensors_[var_index].name()
          << "@Grad] arrived and triggered disthook";
763 764 765

  local_used_vars_[var_index] = 1;

766 767 768 769 770 771
  if (!has_marked_unused_vars_) {
    has_marked_unused_vars_ = true;
    for (const auto unused_index : unused_vars_) {
      MarkVarReady(unused_index, false);
    }
  }
772 773 774 775 776
  MarkVarReady(var_index, true);
}

void EagerReducer::MarkVarReady(const size_t var_index,
                                const bool is_used_var) {
777 778 779 780 781 782 783 784 785 786 787 788 789
  VLOG(3) << "Tensor[" << var_index << "][" << tensors_[var_index].name()
          << "] is marked ready.";
  // error happened, if the var is ready before.
  if (vars_marked_ready_[var_index]) {
    auto error_info = string::Sprintf(
        "Error happened, when parameter[%d][%s] has been ready before. "
        "Please set find_unused_parameters=True to traverse backward graph "
        "in each step to prepare reduce in advance. If you have set, "
        "there may be several reasons for this error: "
        "1) In multiple reentrant backward phase, some parameters are reused."
        "2) Using model parameters outside of forward function. Please "
        "make sure that model parameters are not shared in concurrent "
        "forward-backward passes.",
790 791
        var_index,
        tensors_[var_index].name());
792

793 794
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      false,
795 796 797 798 799 800 801 802 803 804 805 806 807 808
                      platform::errors::PreconditionNotMet(error_info));

    error_info +=
        "3) Unused parameters retrieval is incorrect. "
        "The return value of forward will be used to retrieve"
        " the unused parameters of the entire model. These "
        "gradients of unused parameters will not be synchronized "
        "between multiple cards. However, if the unused "
        "parameters participate in the backward calculation "
        "again at a later time (e.g. after the forward function, "
        "the loss calculation uses the unused "
        "paramters of the forward and trigger backward), "
        "its gradient will be wrong.";

809 810
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      true,
811 812 813 814 815 816
                      platform::errors::PreconditionNotMet(error_info));
  } else {
    vars_marked_ready_[var_index] = true;
  }
  groups_need_finalize_ = true;

817 818 819 820 821 822
  const auto &var_locator = variable_locators_[var_index];
  const auto group_index = var_locator.group_index;
  const auto inside_group_index = var_locator.inside_group_index;

  auto &group = groups_[group_index];
  auto &group_tensor = group.dense_tensors_[inside_group_index];
823 824
  const auto length = group.length_[inside_group_index];

825 826 827 828 829
  if (!group.is_sparse_) {
    if (is_used_var) {
      auto *autograd_meta = tensors_[var_index].get_autograd_meta();
      auto &grad_tensor =
          static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();
830 831
      group_tensor
          .ShareDataWith(*(
832 833
              std::dynamic_pointer_cast<phi::DenseTensor>(grad_tensor.impl())))
          .Resize({grad_tensor.numel()});
834
    } else {
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
      // TODO(shenliang03): maybe save the memory by avoiding tensor
      // construction
      if (!group_tensor.initialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
        group_tensor.mutable_data(inner_place_, group.dtype_);
      }
      if (HasGrad(var_index)) {
        VLOG(3) << "Tensor[" << tensors_[var_index].name() << "] has grad";
        auto grad_tensor = egr::EagerUtils::mutable_grad(tensors_[var_index]);
        group_tensor
            .ShareDataWith(*(std::dynamic_pointer_cast<phi::DenseTensor>(
                grad_tensor->impl())))
            .Resize({length});
      } else {
        VLOG(3) << "Tensor[" << tensors_[var_index].name()
                << "] doesn't have grad";
        auto *dev_ctx =
            platform::DeviceContextPool::Instance().Get(inner_place_);
        group_tensor.Resize({static_cast<int64_t>(length)});
        phi::funcs::set_constant(*dev_ctx, &group_tensor, 0.0);
      }
856
    }
857 858 859 860 861 862
  } else {
    auto *autograd_meta = tensors_[var_index].get_autograd_meta();
    auto &grad_tensor = static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();

    // process sparse group
    PADDLE_ENFORCE_EQ(
863 864
        HasGrad(var_index),
        true,
865 866 867 868 869 870 871
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] should have gradient. "
            "Currently, DataParallel does not support sparse "
            "parameters without generating gradients during training. "
            "For example, if is_sparese=True is used in Embedding, "
            "the current step of this parameter cannot generate gradient "
            "because of stop_gradient/detatch, where error will occur.",
872 873
            var_index,
            tensors_[var_index].name()));
874 875 876

    // need to check tensor type
    PADDLE_ENFORCE_EQ(
877 878
        grad_tensor.is_selected_rows(),
        true,
879 880 881 882 883 884 885 886 887
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] must have a selectedrows gradient. "
            "Before forward pass, the parameter type is inferred to be "
            "SelectedRows, but after backward pass, its actual type becomes "
            "LodTensor. It is currently not supported by DataParallel. "
            "For example, if sparse embedding is used, and the weight of "
            "embedding is shared with subsequent dense parameters, then "
            "the parameter gradient of the embedding will be converted "
            "to dense parameters.",
888 889
            var_index,
            tensors_[var_index].name()));
890 891

    group.sparse_contents_.set_impl(grad_tensor.impl());
892
  }
893 894 895 896 897

  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }
898 899 900 901

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
902 903 904 905 906 907
}

void EagerReducer::MarkGroupReady(size_t group_index) {
  VLOG(3) << "Group[" << group_index << "] is ready";

  PADDLE_ENFORCE_GE(
908 909
      group_index,
      next_group_,
910 911 912 913
      platform::errors::PreconditionNotMet(
          "The index of the incoming group must be greater "
          "than or equal to the previously synchronized group index, "
          "expect it to greater than or equal to %d, but got %d.",
914 915
          next_group_,
          group_index));
916 917 918 919 920 921 922 923 924

  if (group_index > next_group_) {
    VLOG(3) << "It will adjust the order of group in next batch automatically";
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
    UNUSED auto &group = groups_[next_group_];
925 926 927 928
    if (group.is_sparse_) {
      AllReduceSparse(&group, next_group_);
    } else {
      FusedAllReduceSchedule(&group, next_group_);
929
    }
930 931 932
  }
}

933 934
bool EagerReducer::HasGrad(size_t var_index) {
  auto grad = egr::EagerUtils::mutable_grad(tensors_[var_index]);
935
  if (grad && grad->initialized()) {
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
    return true;
  } else {
    return false;
  }
}

void EagerReducer::ProcessUnusedDenseVars() {
  // The calculation stream must be used here to
  // avoid conflicts with communication.
  VLOG(3) << "Local used vars : "
          << string::join_strings(local_used_vars_, ',');

  const auto *dev_ctx =
      platform::DeviceContextPool::Instance().Get(inner_place_);
  auto *global_used_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(global_used_vars_.impl())
          .get();
953 954
  framework::TensorFromVector<int32_t>(
      local_used_vars_, *dev_ctx, global_used_tensor);
955 956 957 958

  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;
  std::vector<Tensor> reduce_tensors = {global_used_vars_};
959 960 961 962 963
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  process_group_->AllReduce(in_out, in_out, opts)->Synchronize();
964

965 966
  framework::TensorToVector<int>(
      *global_used_tensor, *dev_ctx, &local_used_vars_);
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
  dev_ctx->Wait();

  // sync compute stream to get global used var message,
  // but maybe affect speed performance
  VLOG(3) << "Global used vars : "
          << string::join_strings(local_used_vars_, ',');

  for (const auto var_index : unused_vars_) {
    const bool global_unused = (local_used_vars_[var_index] == 0);

    // global used but local unused, set grad
    VLOG(3) << "[Rank " << process_group_->GetRank() << "]: "
            << "Var [" << var_index << "] [" << tensors_[var_index].name()
            << "] global_unused: " << global_unused
            << "  has grad: " << HasGrad(var_index);

    if (!global_unused) {
      VLOG(3) << "Set Tensor[" << var_index << "]'s Grad for [Rank "
              << process_group_->GetRank() << "]";
      const auto &var_locator = variable_locators_[var_index];
      const auto group_index = var_locator.group_index;
      const auto &group = groups_[group_index];
      const auto inside_group_index = var_locator.inside_group_index;
      auto &src_tensor = group.dense_tensors_[inside_group_index];

992 993 994 995 996
      // sparse no need to check and no support find_unused_parameters
      if (group.is_sparse_) {
        continue;
      }

997 998 999 1000 1001 1002 1003
      // NOTE(haohongxiang): Calling SetFakeEmpty here is to make sure that
      // gradient accumulation can continue normally after clear_gradients()
      // especiall in cases including complex control flow.
      std::static_pointer_cast<egr::GradNodeAccumulation>(
          GetGradNodeFromTensor(&tensors_[var_index]))
          ->SetFakeEmpty(false);

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
      Tensor grad_value(std::make_shared<phi::DenseTensor>(src_tensor));

      auto dest_var_base = tensors_[var_index];
      auto grad_tensor = egr::EagerUtils::mutable_grad(dest_var_base);
      grad_tensor->copy_(grad_value, inner_place_, true);
      grad_tensor->reshape(dest_var_base.shape());
    }
  }
}

void EagerReducer::FinalizeBackward() {
  groups_need_finalize_ = false;
1016
  grad_need_hooks_ = false;
1017
  for (auto &group : groups_) {
1018
    if (!group.is_sparse_) {
1019
      group.task->Synchronize();
1020 1021 1022 1023 1024
      if (!IsStreamSafeAllocator()) {
        auto *default_ctx =
            platform::DeviceContextPool::Instance().Get(inner_place_);
        group.SplitTensors(*default_ctx);
      }
1025
    }
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
  }

  if (find_unused_vars_each_step_) {
    ProcessUnusedDenseVars();
    local_used_vars_.clear();
    local_used_vars_.resize(tensors_.size(), 0);
    VLOG(3) << "ProcessUnusedDenseVars is finished.";
  }

  VLOG(3) << "In the batch, Reducer is finished.";
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
void EagerReducer::FusedAllReduceSchedule(EagerGroup *group,
                                          const int curr_group_index) {
  // The overall timeline: concat > div_nranks > allreduce > split
  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;

  VLOG(3) << "group [" << curr_group_index << "] start fused_allreduce.";

  // concat tensors
  group->ConcatTensors(inner_place_);

  // div nranks
1050 1051
  paddle::experimental::scale_(
      group->dense_contents_, 1.0 / nranks_, 0.0, false);
1052 1053 1054

  // all_reduce
  std::vector<Tensor> reduce_tensors = {group->dense_contents_};
1055 1056 1057 1058 1059
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  group->task = process_group_->AllReduce(in_out, in_out, opts);
1060

1061
  auto *context = process_group_->GetDeviceContext(inner_place_);
1062 1063 1064 1065 1066 1067 1068 1069 1070

  if (IsStreamSafeAllocator()) {
    // NOTE(shenliang03): The best_fit allocator strategy is multi-stream
    // insecure. In the Split operator, additional memory will be applied for
    // calculation, and if it is asynchronous, an illegal memory access may be
    // encountered.
    group->SplitTensors(*context);
    group->task->UpdateWaitChain(*context);
  }
1071 1072
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
void EagerReducer::AllReduceSparse(EagerGroup *group,
                                   const int curr_group_index) {
  // div nranks
  Tensor sparse_tensor(group->sparse_contents_);
  paddle::experimental::scale_(sparse_tensor, 1.0 / nranks_, 0.0, false);

  VLOG(3) << "sparse_group [" << curr_group_index << "] start allreduce.";

  auto *dev_ctx = platform::DeviceContextPool::Instance().Get(inner_place_);
  if (platform::is_gpu_place(inner_place_)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
1084
    dev_ctx = static_cast<phi::GPUContext *>(
1085 1086 1087 1088 1089
        platform::DeviceContextPool::Instance().Get(inner_place_));
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
#endif
  } else if (platform::is_custom_place(inner_place_)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    dev_ctx = static_cast<platform::CustomDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(inner_place_));
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
1100 1101
#endif
  } else if (platform::is_cpu_place(inner_place_)) {
L
Leo Chen 已提交
1102
    dev_ctx = static_cast<phi::CPUContext *>(
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
        platform::DeviceContextPool::Instance().Get(inner_place_));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", inner_place_));
  }

  auto src = std::dynamic_pointer_cast<phi::SelectedRows>(
      group->sparse_contents_.impl());
  const auto &src_rows = src->rows();

  const auto &rank_ = process_group_->GetRank();
  const auto &size_ = process_group_->GetSize();

H
Huang Jiyi 已提交
1116
  phi::Vector<int64_t> rows_num_vector(size_);
1117 1118 1119 1120 1121 1122
  rows_num_vector[rank_] = static_cast<int64_t>(src_rows.size());

  Tensor rows_num_tensor = paddle::experimental::empty(
      IntArray({static_cast<int64_t>(size_)}), DataType::INT64, inner_place_);
  auto *rows_num_dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(rows_num_tensor.impl()).get();
1123 1124
  framework::TensorFromVector<int64_t>(
      rows_num_vector, *dev_ctx, rows_num_dense_tensor);
1125 1126 1127 1128

  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;
  std::vector<Tensor> reduce_tensors = {rows_num_tensor};
1129 1130 1131 1132 1133
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  process_group_->AllReduce(in_out, in_out, opts)->Synchronize();
1134

1135 1136
  framework::TensorToVector<int64_t>(
      *rows_num_dense_tensor, *dev_ctx, &rows_num_vector);
1137 1138 1139
  dev_ctx->Wait();

  const auto *cpu_rows_num_ptr = rows_num_vector.data();
1140 1141
  auto rows_num = std::accumulate(
      cpu_rows_num_ptr, cpu_rows_num_ptr + size_, static_cast<int64_t>(0));
1142 1143 1144 1145 1146 1147 1148

  VLOG(3) << "Gather rows: " << string::join_strings(rows_num_vector, ',')
          << ", total rows number: " << rows_num
          << ", height: " << src->height();

  dev_ctx->Wait();

1149 1150 1151
  Tensor src_value_tensor(std::make_shared<phi::DenseTensor>(src->value()));
  std::vector<int64_t> dst_shape = src_value_tensor.shape();

1152 1153 1154
  if (std::all_of(cpu_rows_num_ptr, cpu_rows_num_ptr + size_, [&](int64_t row) {
        return row == cpu_rows_num_ptr[0];
      })) {
1155 1156 1157 1158 1159 1160 1161
    // During sparse communication, the number of each card is same.
    // allgather is used to speed up the allreduce by replacing broadcast.

    VLOG(3) << "allgather replaces broadcast to speed up in sparse allreduce";

    Tensor dst_rows_tensor =
        paddle::experimental::empty(IntArray({static_cast<int64_t>(rows_num)}),
1162 1163
                                    DataType::INT64,
                                    inner_place_);
1164
    Tensor src_rows_tensor = paddle::experimental::empty(
1165 1166
        IntArray({static_cast<int64_t>((*src).rows().size())}),
        DataType::INT64,
1167 1168 1169 1170
        inner_place_);
    auto *src_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(src_rows_tensor.impl())
            .get();
1171 1172
    framework::TensorFromVector<int64_t>(
        (*src).rows(), *dev_ctx, src_rows_dense_tensor);
1173 1174 1175

    std::vector<Tensor> src_rows_tensors = {src_rows_tensor};
    std::vector<Tensor> dst_rows_tensors = {dst_rows_tensor};
1176 1177 1178 1179 1180 1181 1182 1183 1184
    std::vector<phi::DenseTensor> in;
    std::vector<phi::DenseTensor> out;
    for (auto &t : src_rows_tensors) {
      in.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    for (auto &t : dst_rows_tensors) {
      out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    process_group_->AllGather(in, out)->Synchronize();
1185

H
Huang Jiyi 已提交
1186
    phi::Vector<int64_t> dst_rows_vector(rows_num, 0);
1187 1188 1189
    auto *dst_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_rows_tensor.impl())
            .get();
1190 1191
    framework::TensorToVector<int64_t>(
        *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector);
1192 1193 1194 1195
    dev_ctx->Wait();

    dst_shape[dst_shape.size() - 2] = rows_num;
    auto dst_dense_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
1196 1197
        paddle::experimental::full(
            IntArray(dst_shape), 0, src_value_tensor.dtype(), inner_place_)
1198 1199 1200 1201 1202 1203 1204 1205 1206
            .impl());

    auto dst =
        std::make_shared<phi::SelectedRows>(dst_rows_vector, (*src).height());
    *(dst->mutable_value()) = *dst_dense_tensor;
    Tensor dst_value_tensor(std::make_shared<phi::DenseTensor>(dst->value()));

    std::vector<Tensor> src_value_tensors = {src_value_tensor};
    std::vector<Tensor> dst_value_tensors = {dst_value_tensor};
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
    std::vector<phi::DenseTensor> src_dense;
    std::vector<phi::DenseTensor> dst_dense;
    for (auto &t : src_value_tensors) {
      src_dense.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    for (auto &t : dst_value_tensors) {
      dst_dense.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    process_group_->AllGather(src_dense, dst_dense)->Synchronize();
1218 1219 1220 1221 1222

    src->set_rows(dst_rows_vector);
    *(src->mutable_value()) =
        *(std::dynamic_pointer_cast<phi::DenseTensor>(dst_value_tensor.impl()));
  } else {
1223 1224 1225 1226 1227 1228 1229
    std::vector<Tensor> rows_tensors;
    std::vector<Tensor> values_tensors;

    for (int i = 0; i < size_; ++i) {
      std::vector<int64_t> value_tensor_shape = {
          cpu_rows_num_ptr[i], dst_shape[dst_shape.size() - 1]};
      Tensor rows_tensor = paddle::experimental::full(
1230 1231 1232 1233
          IntArray({static_cast<int64_t>(cpu_rows_num_ptr[i])}),
          0,
          DataType::INT64,
          inner_place_);
1234 1235 1236 1237 1238 1239 1240 1241 1242
      Tensor values_tensor = paddle::experimental::full(
          IntArray(value_tensor_shape), 0, src->value().dtype(), inner_place_);
      std::vector<phi::DenseTensor> rows_dense_vector;
      std::vector<phi::DenseTensor> values_dense_vector;

      if (i == rank_) {
        auto *rows_dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(rows_tensor.impl())
                .get();
1243 1244
        framework::TensorFromVector<int64_t>(
            src_rows, *dev_ctx, rows_dense_tensor);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        values_tensor.set_impl(
            std::make_shared<phi::DenseTensor>(src->value()));
      }
      rows_dense_vector.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(rows_tensor.impl()));
      values_dense_vector.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(values_tensor.impl()));

      auto b_opts = BroadcastOptions();
      b_opts.source_rank = i;
      process_group_->Broadcast(rows_dense_vector, rows_dense_vector, b_opts);
      process_group_
          ->Broadcast(values_dense_vector, values_dense_vector, b_opts)
          ->Wait();
      rows_tensors.push_back(rows_tensor);
      values_tensors.push_back(values_tensor);
    }

    Tensor dst_rows_tensor =
        paddle::experimental::concat(rows_tensors, phi::Scalar(0));
H
Huang Jiyi 已提交
1265
    phi::Vector<int64_t> dst_rows_vector(rows_num, 0);
1266 1267 1268
    auto *dst_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_rows_tensor.impl())
            .get();
1269 1270
    framework::TensorToVector<int64_t>(
        *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector);
1271 1272 1273 1274 1275 1276
    src->set_rows(dst_rows_vector);

    Tensor dst_values_tensor =
        paddle::experimental::concat(values_tensors, phi::Scalar(0));
    *(src->mutable_value()) = *(
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_values_tensor.impl()));
1277 1278 1279
  }
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
std::ostream &operator<<(std::ostream &out, const EagerGroup &group) {
  const auto &tensors_ = group.tensor_indices_;
  out << "numel: " << group.all_length_ << " ;var number: " << tensors_.size()
      << "\n";
  auto begin = tensors_.begin();
  auto end = tensors_.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

1298 1299
}  //  namespace distributed
}  //  namespace paddle