reducer.cc 47.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/reducer.h"
16 17
#include "paddle/phi/backends/device_guard.h"
#include "paddle/phi/backends/device_manager.h"
18
#include "paddle/phi/core/flags.h"
19

20
DECLARE_bool(use_stream_safe_cuda_allocator);
21
PHI_DECLARE_string(allocator_strategy);
22

23 24 25
namespace paddle {
namespace distributed {

26 27 28 29 30
static bool IsStreamSafeAllocator() {
  return FLAGS_allocator_strategy == "auto_growth" &&
         FLAGS_use_stream_safe_cuda_allocator;
}

31 32 33 34 35 36 37 38
static Backend TransToBackend(platform::Place place) {
  static const std::map<phi::AllocationType, Backend> type_backend = {
      {phi::AllocationType::GPU, Backend::GPU},
      {phi::AllocationType::CPU, Backend::CPU},
  };

  phi::AllocationType type = place.GetType();
  auto it = type_backend.find(type);
39 40
  PADDLE_ENFORCE_EQ(it != type_backend.end(),
                    true,
41 42 43 44 45
                    platform::errors::InvalidArgument(
                        "Place type (%s) is not supported. ", place));
  return it->second;
}

46 47 48 49 50 51
std::vector<std::vector<size_t>> Eager_AssignGroupBySize(
    const std::vector<Tensor> tensors,
    const std::vector<bool> &is_sparse_gradient,
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
  PADDLE_ENFORCE_EQ(
52 53
      tensors.size(),
      is_sparse_gradient.size(),
54 55 56
      platform::errors::PreconditionNotMet(
          "tensors len must be equal to is_sparse_gradient len, but "
          "[%lu] != [%lu]",
57 58
          tensors.size(),
          is_sparse_gradient.size()));
59 60 61 62 63 64 65 66 67 68 69 70
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };

71 72
  PADDLE_ENFORCE_EQ(true,
                    check_perm(tensor_indices),
73 74 75 76 77 78 79 80
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
81
  std::map<phi::DataType, size_t> group_limit_index;
82 83 84

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
85
  std::map<phi::DataType, std::pair<std::vector<size_t>, size_t>> next_group;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

  for (size_t i = 0; i < tensors.size(); ++i) {
    const auto &var = tensors[i];

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
      // we keep sparse var a single group
      res.push_back({tensor_real_index});
      continue;
    }

    const auto &var_dtype = var.dtype();
    VLOG(3) << "var[" << var.name() << "] 's type is " << var_dtype;
    auto &group_info = next_group[var_dtype];

    int64_t var_size = -1;

    if (var.is_dense_tensor()) {
      var_size =
          std::dynamic_pointer_cast<phi::DenseTensor>(var.impl())->numel();
    } else {
      VLOG(3) << "var " << var.name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }

    group_info.first.push_back(tensor_real_index);
117
    group_info.second += phi::SizeOf(var_dtype) * var_size;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    // group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
144 145
        group_index.empty(),
        true,
146 147 148 149
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
  if (tensor_indices.empty()) {
150 151
    std::sort(res.begin(),
              res.end(),
152 153 154 155 156 157 158
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
  return res;
}

159
template <typename DeviceContext, typename T>
160 161 162 163 164 165 166 167 168 169 170 171 172
struct ConcatTensorsForAllReduce {
  void operator()(const DeviceContext &context,
                  const std::vector<phi::DenseTensor> &dense_tensors_,
                  Tensor *p_dense_contents) {
    operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
    concat_functor_(
        context,
        dense_tensors_,
        0,
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get());
  }
};
173 174

template <typename DeviceContext, typename T>
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
struct SplitTensorsForAllReduce {
  void operator()(const DeviceContext &context,
                  Tensor *p_dense_contents,
                  std::vector<phi::DenseTensor> *p_dense_tensors) {
    auto *in =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    std::vector<phi::DenseTensor *> outs;
    std::vector<const phi::DenseTensor *> shape_refer;

    outs.reserve(p_dense_tensors->size());
    shape_refer.reserve(p_dense_tensors->size());

    for (auto &tensor : *p_dense_tensors) {
      outs.emplace_back(&tensor);
      shape_refer.emplace_back(&tensor);
    }
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
};

#ifdef PADDLE_WITH_CUSTOM_DEVICE
// note(wangran16): A temporary solution for all backends.
template <typename T>
struct ConcatTensorsForAllReduce<platform::CustomDeviceContext, T> {
  void operator()(const platform::CustomDeviceContext &context,
                  const std::vector<phi::DenseTensor> &dense_tensors_,
                  Tensor *p_dense_contents) {
    phi::DeviceGuard guard(context.GetPlace());
    auto *out =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    uint8_t *out_data = reinterpret_cast<uint8_t *>(out->data<T>());
    auto *device = phi::DeviceManager::GetDeviceWithPlace(context.GetPlace());
R
ronnywang 已提交
211
    phi::stream::Stream stream(context.GetPlace(), context.stream());
212 213 214 215 216 217

    size_t offset = 0;
    for (const auto &tensor : dense_tensors_) {
      const uint8_t *in_data =
          reinterpret_cast<const uint8_t *>(tensor.data<T>());
      auto sz = tensor.numel() * sizeof(T);
R
ronnywang 已提交
218
      device->MemoryCopyD2D(out_data + offset, in_data, sz, &stream);
219 220
      offset += sz;
    }
221
  }
222 223 224 225 226 227 228 229 230 231 232 233
};

template <typename T>
struct SplitTensorsForAllReduce<platform::CustomDeviceContext, T> {
  void operator()(const platform::CustomDeviceContext &context,
                  Tensor *p_dense_contents,
                  std::vector<phi::DenseTensor> *p_dense_tensors) {
    auto *in =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    uint8_t *in_data = reinterpret_cast<uint8_t *>(in->data<T>());
    auto *device = phi::DeviceManager::GetDeviceWithPlace(context.GetPlace());
R
ronnywang 已提交
234
    phi::stream::Stream stream(context.GetPlace(), context.stream());
235 236 237 238 239

    size_t offset = 0;
    for (auto &tensor : *p_dense_tensors) {
      uint8_t *out_data = reinterpret_cast<uint8_t *>(tensor.data<T>());
      auto sz = tensor.numel() * sizeof(T);
R
ronnywang 已提交
240
      device->MemoryCopyD2D(out_data, in_data + offset, sz, &stream);
241 242 243 244 245
      offset += sz;
    }
  }
};
#endif
246 247 248 249 250 251

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<phi::DenseTensor> &dense_tensors_,
252 253
    Tensor *p_dense_contents,
    phi::DataType type) {
254 255
  switch (type) {
    case phi::DataType::FLOAT16:
256
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>()(
257 258 259
          context, dense_tensors_, p_dense_contents);
      break;
    case phi::DataType::FLOAT32:
260
      ConcatTensorsForAllReduce<DeviceContext, float>()(
261
          context, dense_tensors_, p_dense_contents);
262 263
      break;
    case phi::DataType::FLOAT64:
264
      ConcatTensorsForAllReduce<DeviceContext, double>()(
265
          context, dense_tensors_, p_dense_contents);
266
      break;
267 268 269 270
    case phi::DataType::BFLOAT16:
      ConcatTensorsForAllReduce<DeviceContext, platform::bfloat16>()(
          context, dense_tensors_, p_dense_contents);
      break;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          type));
  }
}

// context is used to select the stream for split
template <typename DeviceContext>
static void SplitTensorsWithType(const DeviceContext &context,
                                 Tensor *p_dense_contents,
                                 std::vector<phi::DenseTensor> *p_dense_tensors,
                                 phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT16:
287
      SplitTensorsForAllReduce<DeviceContext, platform::float16>()(
288 289 290
          context, p_dense_contents, p_dense_tensors);
      break;
    case phi::DataType::FLOAT32:
291
      SplitTensorsForAllReduce<DeviceContext, float>()(
292
          context, p_dense_contents, p_dense_tensors);
293 294
      break;
    case phi::DataType::FLOAT64:
295
      SplitTensorsForAllReduce<DeviceContext, double>()(
296
          context, p_dense_contents, p_dense_tensors);
297
      break;
298 299 300 301
    case phi::DataType::BFLOAT16:
      SplitTensorsForAllReduce<DeviceContext, platform::bfloat16>()(
          context, p_dense_contents, p_dense_tensors);
      break;
302 303 304 305 306 307 308 309
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          type));
  }
}

J
james 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
#ifdef PADDLE_WITH_XPU_BKCL
// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    const std::vector<phi::DenseTensor> &dense_tensors_,
    Tensor *p_dense_contents,
    phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>()(
          context, dense_tensors_, p_dense_contents);
      break;
    case phi::DataType::FLOAT16:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext,
                                platform::float16>()(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          type));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    Tensor *p_dense_contents,
    std::vector<phi::DenseTensor> *p_dense_tensors,
    phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>()(
          context, p_dense_contents, p_dense_tensors);
      break;
    case phi::DataType::FLOAT16:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, platform::float16>()(
          context, p_dense_contents, p_dense_tensors);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          type));
  }
}
#endif

361
void EagerGroup::ConcatTensors(const platform::Place &place) {
362 363 364
  dense_contents_ =
      paddle::experimental::empty(IntArray({all_length_}), dtype_, place);

365 366
  if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
367
    auto *default_ctx = static_cast<phi::GPUContext *>(
368
        platform::DeviceContextPool::Instance().Get(place));
369 370
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
371 372 373 374
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
375 376 377 378 379 380 381 382 383 384 385 386
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto *default_ctx = static_cast<platform::CustomDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
J
james 已提交
387 388 389 390 391 392 393 394 395 396 397
#endif
  } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto *default_ctx = static_cast<paddle::platform::XPUDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
398 399
#endif
  } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
400
    auto *default_ctx = static_cast<phi::CPUContext *>(
401
        platform::DeviceContextPool::Instance().Get(place));
402 403
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
404 405 406 407 408 409
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

410
void EagerGroup::SplitTensors(const platform::DeviceContext &context) {
411
  auto place = context.GetPlace();
412 413
  if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
414
    auto &gpu_context = static_cast<const phi::GPUContext &>(context);
415
    SplitTensorsWithType(
416
        gpu_context, &dense_contents_, &dense_tensors_, dtype_);
417
    if (IsStreamSafeAllocator()) {
418 419 420 421 422 423
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(dense_contents_.impl());
      VLOG(3) << "Free dense_contents_ " << dense_contents_.numel();
      memory::RecordStream(dense_tensor->Holder(), gpu_context.stream());
      dense_contents_.reset();
    }
424 425 426 427
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
428 429 430 431
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    SplitTensorsWithType(
432 433 434 435
        static_cast<const platform::CustomDeviceContext &>(context),
        &dense_contents_,
        &dense_tensors_,
        dtype_);
436 437 438 439 440
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
J
james 已提交
441 442 443 444 445 446 447 448 449 450 451
#endif
  } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto *default_ctx = static_cast<paddle::platform::XPUDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    SplitTensorsWithType(
        *default_ctx, &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
452 453
#endif
  } else if (platform::is_cpu_place(place)) {
454 455 456 457
    SplitTensorsWithType(static_cast<const phi::CPUContext &>(context),
                         &dense_contents_,
                         &dense_tensors_,
                         dtype_);
458 459 460 461 462 463 464 465 466 467 468
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
  }
}

EagerReducer::EagerReducer(
    const std::vector<Tensor> tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
469 470
    const std::vector<size_t> &group_size_limits,
    bool find_unused_parameters)
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    : tensors_(tensors),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
      process_group_(process_group),
      group_size_limits_(group_size_limits),
      find_unused_vars_each_step_(find_unused_parameters) {
  VLOG(3) << "Start construct the Reducer ...";

  nranks_ = process_group_->GetSize();

  // initialize groups
  InitializeGroups(group_indices);

  for (size_t global_var_index = 0; global_var_index < tensors_.size();
       ++global_var_index) {
    auto tensor = tensors_[global_var_index];
    auto reduce_hook = [=](void) -> void {
      this->AddDistHook(global_var_index);
    };

    const auto &grad_node = GetGradNodeFromTensor(&tensor);

    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    const auto &accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    accumulation_grad_node->RegisterReduceHook(
501
        std::make_shared<egr::CppVoidHook>(reduce_hook));
502 503

    gradnode_index_map_[grad_node.get()] = global_var_index;
504 505 506 507
  }

  vars_marked_ready_.resize(tensors_.size(), false);
  local_used_vars_.resize(tensors_.size(), 0);
508 509 510

  if (find_unused_vars_each_step_) {
    global_used_vars_ = paddle::experimental::empty(
511 512
        IntArray({static_cast<int32_t>(tensors_.size())}),
        DataType::INT32,
513
        inner_place_);
514
  }
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
}

std::shared_ptr<egr::GradNodeBase> EagerReducer::GetGradNodeFromTensor(
    Tensor *tensor) {
  auto *autograd_meta = tensor->get_autograd_meta();
  const auto &grad_node =
      static_cast<egr::AutogradMeta *>(autograd_meta)->GetMutableGradNode();
  return grad_node;
}

void EagerReducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";

  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());

  variable_locators_.clear();
  variable_locators_.resize(tensors_.size());

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &tensor_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
540 541
        tensor_indices_.size(),
        0,
542 543 544 545 546 547 548 549 550 551 552
        platform::errors::PreconditionNotMet(
            "The number of group[%d]'s elements is 0.", group_index));

    EagerGroup group;

    // It's just for check the sparse or dense
    auto first_var = tensors_[tensor_indices_.front()];
    if (tensor_indices_.size() == 1 &&
        is_sparse_gradient_[tensor_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_var.dtype();
553
      group.is_sparse_ = true;
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
    } else {
      // process the dense gradient.
      InitializeDenseGroups(tensor_indices_, &group);
    }

    // map tensors to this group by VariableLocator
    size_t inside_group_index = 0;
    for (const auto var_index : tensor_indices_) {
      TensorLocator tensor_locator;
      tensor_locator.group_index = group_index;
      tensor_locator.inside_group_index = inside_group_index++;
      variable_locators_[var_index] = tensor_locator;
    }
    group.tensor_indices_ = std::move(tensor_indices_);
    groups_.emplace_back(std::move(group));

    VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
  }
}

void EagerReducer::InitializeDenseGroups(
    const std::vector<size_t> &tensor_indices_, EagerGroup *p_group) {
  VLOG(3) << "InitializeDenseGroups.";
  int64_t all_length = 0;
  for (size_t index = 0; index < tensor_indices_.size(); ++index) {
    auto tensor_index = tensor_indices_[index];
    auto &tensor = tensors_[tensor_index];
    auto &tensor_name = tensor.name();

583 584
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[tensor_index],
                      false,
585 586 587 588 589
                      platform::errors::PreconditionNotMet(
                          "Tensor %s's GRAD must be Tensor, but received "
                          "GRAD is SelectedRows",
                          tensor_name));

590 591
    PADDLE_ENFORCE_EQ(tensor.initialized(),
                      true,
592 593 594 595
                      platform::errors::PreconditionNotMet(
                          "Tensor %s is not initialized.", tensor_name));
    const auto size = tensor.numel();
    PADDLE_ENFORCE_GT(
596 597
        size,
        0,
598 599
        platform::errors::PreconditionNotMet(
            "The number of tensor %s's elements is 0.", tensor_name));
600 601 602 603 604
    all_length += size;

    p_group->length_.push_back(size);

    // for concat operator
605
    p_group->origin_shapes_.push_back(IntArray(tensor.shape()));
606 607 608 609 610
    p_group->dense_tensors_.push_back(phi::DenseTensor());

    const auto &dtype = tensor.dtype();
    const auto &inner_place = tensor.impl()->place();
    if (index > 0) {
611 612
      PADDLE_ENFORCE_EQ(dtype,
                        p_group->dtype_,
613 614 615 616 617 618 619 620 621 622
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has unexpected dtype.", tensor_name));
    } else {
      p_group->dtype_ = dtype;
      inner_place_ = inner_place;
    }
  }
  p_group->all_length_ = all_length;
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
void EagerReducer::TraverseBackwardGraph(const std::vector<Tensor> &outputs) {
  std::queue<egr::GradNodeBase *> queue;
  std::set<egr::GradNodeBase *> visited;

  for (const auto &output : outputs) {
    auto *auto_grad_meta =
        static_cast<egr::AutogradMeta *>(output.get_autograd_meta());
    if (!auto_grad_meta) continue;
    auto shared_grad_node = auto_grad_meta->GetMutableGradNode();
    if (shared_grad_node == nullptr || shared_grad_node.get() == nullptr ||
        auto_grad_meta->StopGradient()) {
      continue;
    }
    egr::GradNodeBase *grad_node = shared_grad_node.get();
    queue.emplace(grad_node);
  }

  while (!queue.empty()) {
    egr::GradNodeBase *node = queue.front();
    queue.pop();
643 644 645 646 647 648
    const paddle::small_vector<std::vector<egr::GradSlotMeta>,
                               egr::kSlotSmallVectorSize> &metas =
        node->OutputMeta();
    for (size_t i = 0; i < metas.size(); i++) {
      for (size_t j = 0; j < metas[i].size(); j++) {
        const egr::Edge &edge = metas[i][j].GetEdge();
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        auto next_node_shared = edge.GetMutableGradNode();
        if (!next_node_shared || !next_node_shared.get()) {
          continue;
        }
        auto *next_node = next_node_shared.get();
        const bool was_inserted = visited.insert(next_node).second;
        if (was_inserted) {
          queue.emplace(next_node);
        }
      }
    }
  }

  for (const auto &it : gradnode_index_map_) {
    if (visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "[Rank " << process_group_->GetRank() << "]: "
              << "Tensor " << tensors_[it.second].name() << " at index "
              << it.second << " is marked as unused.";
    }
  }
}

672
void EagerReducer::PrepareForBackward(const std::vector<Tensor> &outputs) {
673
  VLOG(3) << "after forward, then reset count for backward.";
674
  grad_need_hooks_ = true;
675

676 677 678
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](EagerGroup &group) {
    group.pending_ = group.tensor_indices_.size();
679
    group.sparse_contents_ = Tensor();
680 681 682 683 684
  });

  // reinitialize vars_marked_ready_ for next iteration
  vars_marked_ready_.clear();
  vars_marked_ready_.resize(tensors_.size(), false);
685 686

  PADDLE_ENFORCE_EQ(
687 688
      groups_need_finalize_,
      false,
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
      platform::errors::PreconditionNotMet(
          "A serious error has occurred here. Please "
          "set find_unused_parameters=True to traverse backward graph "
          "in each step to prepare reduce in advance. If you have "
          "set, There may be several reasons for this error: "
          "1) Please note that all forward outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph. "
          "2) Used multiple forwards and one backward. You may be able to wrap "
          "multiple forwards in a model."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;

  if (find_unused_vars_once_ || find_unused_vars_each_step_) {
    unused_vars_.clear();
    TraverseBackwardGraph(outputs);
    // only check once in first step
    find_unused_vars_once_ = false;
  }

  if (find_unused_vars_each_step_ && unused_vars_.empty()) {
    LOG_FIRST_N(WARNING, 1)
        << "All parameters are involved in the backward pass. "
           "It is recommended to set find_unused_parameters to False "
           "to improve performance. However, if unused parameters "
           "appear in subsequent iterative training, then an error "
           "will occur. Please make it clear that in the subsequent "
           "training, there will be no parameters that are not used "
           "in the backward pass, and then set find_unused_parameters";
  }

  if (unused_vars_.size() == tensors_.size()) {
    LOG_FIRST_N(WARNING, 1)
        << "There is no parameter in the device involved "
           "in the backward calculation. If there are "
           "parameters on other devices involved in the "
           "backward, then a serious error will occur here.";
  }
731 732 733
}

void EagerReducer::AddDistHook(size_t var_index) {
734 735
  PADDLE_ENFORCE_LT(var_index,
                    variable_locators_.size(),
736 737 738
                    platform::errors::OutOfRange(
                        "Out of bounds variable index. it must be less"
                        "than %d, but it is %d",
739 740
                        variable_locators_.size(),
                        var_index));
741 742

  // gradient synchronization is not required when grad_need_hooks_ is false.
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
  if (!grad_need_hooks_) {
    const auto &var_locator = variable_locators_[var_index];
    const auto group_index = var_locator.group_index;
    const auto inside_group_index = var_locator.inside_group_index;
    auto &group = groups_[group_index];
    auto &group_tensor = group.dense_tensors_[inside_group_index];

    auto *autograd_meta = tensors_[var_index].get_autograd_meta();
    auto &grad_tensor = static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();

    if (!HasGrad(var_index)) {
      group_tensor.ShareDataWith(phi::DenseTensor());
    } else {
      auto grad_dense_tensor =
          *(std::dynamic_pointer_cast<phi::DenseTensor>(grad_tensor.impl()));
      group_tensor.ShareDataWith(grad_dense_tensor);
    }
    return;
  }
762

763 764
  VLOG(3) << "Tensor[" << var_index << "] [" << tensors_[var_index].name()
          << "@Grad] arrived and triggered disthook";
765 766 767

  local_used_vars_[var_index] = 1;

768 769 770 771 772 773
  if (!has_marked_unused_vars_) {
    has_marked_unused_vars_ = true;
    for (const auto unused_index : unused_vars_) {
      MarkVarReady(unused_index, false);
    }
  }
774 775 776 777 778
  MarkVarReady(var_index, true);
}

void EagerReducer::MarkVarReady(const size_t var_index,
                                const bool is_used_var) {
779 780 781 782 783 784 785 786 787 788 789 790 791
  VLOG(3) << "Tensor[" << var_index << "][" << tensors_[var_index].name()
          << "] is marked ready.";
  // error happened, if the var is ready before.
  if (vars_marked_ready_[var_index]) {
    auto error_info = string::Sprintf(
        "Error happened, when parameter[%d][%s] has been ready before. "
        "Please set find_unused_parameters=True to traverse backward graph "
        "in each step to prepare reduce in advance. If you have set, "
        "there may be several reasons for this error: "
        "1) In multiple reentrant backward phase, some parameters are reused."
        "2) Using model parameters outside of forward function. Please "
        "make sure that model parameters are not shared in concurrent "
        "forward-backward passes.",
792 793
        var_index,
        tensors_[var_index].name());
794

795 796
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      false,
797 798 799 800 801 802 803 804 805 806 807
                      platform::errors::PreconditionNotMet(error_info));

    error_info +=
        "3) Unused parameters retrieval is incorrect. "
        "The return value of forward will be used to retrieve"
        " the unused parameters of the entire model. These "
        "gradients of unused parameters will not be synchronized "
        "between multiple cards. However, if the unused "
        "parameters participate in the backward calculation "
        "again at a later time (e.g. after the forward function, "
        "the loss calculation uses the unused "
C
chenxujun 已提交
808
        "parameters of the forward and trigger backward), "
809 810
        "its gradient will be wrong.";

811 812
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      true,
813 814 815 816 817 818
                      platform::errors::PreconditionNotMet(error_info));
  } else {
    vars_marked_ready_[var_index] = true;
  }
  groups_need_finalize_ = true;

819 820 821 822 823 824
  const auto &var_locator = variable_locators_[var_index];
  const auto group_index = var_locator.group_index;
  const auto inside_group_index = var_locator.inside_group_index;

  auto &group = groups_[group_index];
  auto &group_tensor = group.dense_tensors_[inside_group_index];
825

826
  if (!group.is_sparse_) {
827
    const auto length = group.length_[inside_group_index];
828 829 830 831
    if (is_used_var) {
      auto *autograd_meta = tensors_[var_index].get_autograd_meta();
      auto &grad_tensor =
          static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();
832 833
      group_tensor
          .ShareDataWith(*(
834 835
              std::dynamic_pointer_cast<phi::DenseTensor>(grad_tensor.impl())))
          .Resize({grad_tensor.numel()});
836
    } else {
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
      // TODO(shenliang03): maybe save the memory by avoiding tensor
      // construction
      if (!group_tensor.initialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
        group_tensor.mutable_data(inner_place_, group.dtype_);
      }
      if (HasGrad(var_index)) {
        VLOG(3) << "Tensor[" << tensors_[var_index].name() << "] has grad";
        auto grad_tensor = egr::EagerUtils::mutable_grad(tensors_[var_index]);
        group_tensor
            .ShareDataWith(*(std::dynamic_pointer_cast<phi::DenseTensor>(
                grad_tensor->impl())))
            .Resize({length});
      } else {
        VLOG(3) << "Tensor[" << tensors_[var_index].name()
                << "] doesn't have grad";
        auto *dev_ctx =
            platform::DeviceContextPool::Instance().Get(inner_place_);
        group_tensor.Resize({static_cast<int64_t>(length)});
        phi::funcs::set_constant(*dev_ctx, &group_tensor, 0.0);
      }
858
    }
859 860 861 862 863 864
  } else {
    auto *autograd_meta = tensors_[var_index].get_autograd_meta();
    auto &grad_tensor = static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();

    // process sparse group
    PADDLE_ENFORCE_EQ(
865 866
        HasGrad(var_index),
        true,
867 868 869 870 871 872
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] should have gradient. "
            "Currently, DataParallel does not support sparse "
            "parameters without generating gradients during training. "
            "For example, if is_sparese=True is used in Embedding, "
            "the current step of this parameter cannot generate gradient "
C
chenxujun 已提交
873
            "because of stop_gradient/detach, where error will occur.",
874 875
            var_index,
            tensors_[var_index].name()));
876 877 878

    // need to check tensor type
    PADDLE_ENFORCE_EQ(
879 880
        grad_tensor.is_selected_rows(),
        true,
881 882 883 884 885 886 887 888 889
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] must have a selectedrows gradient. "
            "Before forward pass, the parameter type is inferred to be "
            "SelectedRows, but after backward pass, its actual type becomes "
            "LodTensor. It is currently not supported by DataParallel. "
            "For example, if sparse embedding is used, and the weight of "
            "embedding is shared with subsequent dense parameters, then "
            "the parameter gradient of the embedding will be converted "
            "to dense parameters.",
890 891
            var_index,
            tensors_[var_index].name()));
892 893

    group.sparse_contents_.set_impl(grad_tensor.impl());
894
  }
895 896 897 898 899

  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }
900 901 902 903

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
904 905 906 907 908 909
}

void EagerReducer::MarkGroupReady(size_t group_index) {
  VLOG(3) << "Group[" << group_index << "] is ready";

  PADDLE_ENFORCE_GE(
910 911
      group_index,
      next_group_,
912 913 914 915
      platform::errors::PreconditionNotMet(
          "The index of the incoming group must be greater "
          "than or equal to the previously synchronized group index, "
          "expect it to greater than or equal to %d, but got %d.",
916 917
          next_group_,
          group_index));
918 919 920 921 922 923 924 925 926

  if (group_index > next_group_) {
    VLOG(3) << "It will adjust the order of group in next batch automatically";
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
    UNUSED auto &group = groups_[next_group_];
927 928 929 930
    if (group.is_sparse_) {
      AllReduceSparse(&group, next_group_);
    } else {
      FusedAllReduceSchedule(&group, next_group_);
931
    }
932 933 934
  }
}

935 936
bool EagerReducer::HasGrad(size_t var_index) {
  auto grad = egr::EagerUtils::mutable_grad(tensors_[var_index]);
937
  if (grad && grad->initialized()) {
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
    return true;
  } else {
    return false;
  }
}

void EagerReducer::ProcessUnusedDenseVars() {
  // The calculation stream must be used here to
  // avoid conflicts with communication.
  VLOG(3) << "Local used vars : "
          << string::join_strings(local_used_vars_, ',');

  const auto *dev_ctx =
      platform::DeviceContextPool::Instance().Get(inner_place_);
  auto *global_used_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(global_used_vars_.impl())
          .get();
955 956
  framework::TensorFromVector<int32_t>(
      local_used_vars_, *dev_ctx, global_used_tensor);
957 958 959 960

  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;
  std::vector<Tensor> reduce_tensors = {global_used_vars_};
961 962 963 964 965
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  process_group_->AllReduce(in_out, in_out, opts)->Synchronize();
966

967 968
  framework::TensorToVector<int>(
      *global_used_tensor, *dev_ctx, &local_used_vars_);
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
  dev_ctx->Wait();

  // sync compute stream to get global used var message,
  // but maybe affect speed performance
  VLOG(3) << "Global used vars : "
          << string::join_strings(local_used_vars_, ',');

  for (const auto var_index : unused_vars_) {
    const bool global_unused = (local_used_vars_[var_index] == 0);

    // global used but local unused, set grad
    VLOG(3) << "[Rank " << process_group_->GetRank() << "]: "
            << "Var [" << var_index << "] [" << tensors_[var_index].name()
            << "] global_unused: " << global_unused
            << "  has grad: " << HasGrad(var_index);

    if (!global_unused) {
      VLOG(3) << "Set Tensor[" << var_index << "]'s Grad for [Rank "
              << process_group_->GetRank() << "]";
      const auto &var_locator = variable_locators_[var_index];
      const auto group_index = var_locator.group_index;
      const auto &group = groups_[group_index];
      const auto inside_group_index = var_locator.inside_group_index;
      auto &src_tensor = group.dense_tensors_[inside_group_index];

994 995 996 997 998
      // sparse no need to check and no support find_unused_parameters
      if (group.is_sparse_) {
        continue;
      }

999 1000
      // NOTE(haohongxiang): Calling SetFakeEmpty here is to make sure that
      // gradient accumulation can continue normally after clear_gradients()
C
chenxujun 已提交
1001
      // especially in cases including complex control flow.
1002 1003 1004 1005
      std::static_pointer_cast<egr::GradNodeAccumulation>(
          GetGradNodeFromTensor(&tensors_[var_index]))
          ->SetFakeEmpty(false);

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
      Tensor grad_value(std::make_shared<phi::DenseTensor>(src_tensor));

      auto dest_var_base = tensors_[var_index];
      auto grad_tensor = egr::EagerUtils::mutable_grad(dest_var_base);
      grad_tensor->copy_(grad_value, inner_place_, true);
      grad_tensor->reshape(dest_var_base.shape());
    }
  }
}

void EagerReducer::FinalizeBackward() {
  groups_need_finalize_ = false;
1018
  grad_need_hooks_ = false;
1019
  for (auto &group : groups_) {
1020
    if (!group.is_sparse_) {
1021
      group.task->Synchronize();
1022 1023 1024 1025 1026
      if (!IsStreamSafeAllocator()) {
        auto *default_ctx =
            platform::DeviceContextPool::Instance().Get(inner_place_);
        group.SplitTensors(*default_ctx);
      }
1027
    }
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
  }

  if (find_unused_vars_each_step_) {
    ProcessUnusedDenseVars();
    local_used_vars_.clear();
    local_used_vars_.resize(tensors_.size(), 0);
    VLOG(3) << "ProcessUnusedDenseVars is finished.";
  }

  VLOG(3) << "In the batch, Reducer is finished.";
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
void EagerReducer::FusedAllReduceSchedule(EagerGroup *group,
                                          const int curr_group_index) {
  // The overall timeline: concat > div_nranks > allreduce > split
  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;

  VLOG(3) << "group [" << curr_group_index << "] start fused_allreduce.";

  // concat tensors
  group->ConcatTensors(inner_place_);

  // div nranks
1052 1053
  paddle::experimental::scale_(
      group->dense_contents_, 1.0 / nranks_, 0.0, false);
1054 1055 1056

  // all_reduce
  std::vector<Tensor> reduce_tensors = {group->dense_contents_};
1057 1058 1059 1060 1061
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  group->task = process_group_->AllReduce(in_out, in_out, opts);
1062

1063
  auto *context = process_group_->GetDeviceContext(inner_place_);
1064 1065 1066 1067 1068 1069 1070 1071 1072

  if (IsStreamSafeAllocator()) {
    // NOTE(shenliang03): The best_fit allocator strategy is multi-stream
    // insecure. In the Split operator, additional memory will be applied for
    // calculation, and if it is asynchronous, an illegal memory access may be
    // encountered.
    group->SplitTensors(*context);
    group->task->UpdateWaitChain(*context);
  }
1073 1074
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
void EagerReducer::AllReduceSparse(EagerGroup *group,
                                   const int curr_group_index) {
  // div nranks
  Tensor sparse_tensor(group->sparse_contents_);
  paddle::experimental::scale_(sparse_tensor, 1.0 / nranks_, 0.0, false);

  VLOG(3) << "sparse_group [" << curr_group_index << "] start allreduce.";

  auto *dev_ctx = platform::DeviceContextPool::Instance().Get(inner_place_);
  if (platform::is_gpu_place(inner_place_)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
1086
    dev_ctx = static_cast<phi::GPUContext *>(
1087 1088 1089 1090 1091
        platform::DeviceContextPool::Instance().Get(inner_place_));
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
#endif
  } else if (platform::is_custom_place(inner_place_)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    dev_ctx = static_cast<platform::CustomDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(inner_place_));
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
1102 1103
#endif
  } else if (platform::is_cpu_place(inner_place_)) {
L
Leo Chen 已提交
1104
    dev_ctx = static_cast<phi::CPUContext *>(
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        platform::DeviceContextPool::Instance().Get(inner_place_));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", inner_place_));
  }

  auto src = std::dynamic_pointer_cast<phi::SelectedRows>(
      group->sparse_contents_.impl());
  const auto &src_rows = src->rows();

  const auto &rank_ = process_group_->GetRank();
  const auto &size_ = process_group_->GetSize();

H
Huang Jiyi 已提交
1118
  phi::Vector<int64_t> rows_num_vector(size_);
1119 1120 1121 1122 1123 1124
  rows_num_vector[rank_] = static_cast<int64_t>(src_rows.size());

  Tensor rows_num_tensor = paddle::experimental::empty(
      IntArray({static_cast<int64_t>(size_)}), DataType::INT64, inner_place_);
  auto *rows_num_dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(rows_num_tensor.impl()).get();
1125 1126
  framework::TensorFromVector<int64_t>(
      rows_num_vector, *dev_ctx, rows_num_dense_tensor);
1127 1128 1129 1130

  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;
  std::vector<Tensor> reduce_tensors = {rows_num_tensor};
1131 1132 1133 1134 1135
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  process_group_->AllReduce(in_out, in_out, opts)->Synchronize();
1136

1137 1138
  framework::TensorToVector<int64_t>(
      *rows_num_dense_tensor, *dev_ctx, &rows_num_vector);
1139 1140 1141
  dev_ctx->Wait();

  const auto *cpu_rows_num_ptr = rows_num_vector.data();
1142 1143
  auto rows_num = std::accumulate(
      cpu_rows_num_ptr, cpu_rows_num_ptr + size_, static_cast<int64_t>(0));
1144 1145 1146 1147 1148 1149 1150

  VLOG(3) << "Gather rows: " << string::join_strings(rows_num_vector, ',')
          << ", total rows number: " << rows_num
          << ", height: " << src->height();

  dev_ctx->Wait();

1151 1152 1153
  Tensor src_value_tensor(std::make_shared<phi::DenseTensor>(src->value()));
  std::vector<int64_t> dst_shape = src_value_tensor.shape();

1154 1155 1156
  if (std::all_of(cpu_rows_num_ptr, cpu_rows_num_ptr + size_, [&](int64_t row) {
        return row == cpu_rows_num_ptr[0];
      })) {
1157 1158 1159 1160 1161 1162 1163
    // During sparse communication, the number of each card is same.
    // allgather is used to speed up the allreduce by replacing broadcast.

    VLOG(3) << "allgather replaces broadcast to speed up in sparse allreduce";

    Tensor dst_rows_tensor =
        paddle::experimental::empty(IntArray({static_cast<int64_t>(rows_num)}),
1164 1165
                                    DataType::INT64,
                                    inner_place_);
1166
    Tensor src_rows_tensor = paddle::experimental::empty(
1167 1168
        IntArray({static_cast<int64_t>((*src).rows().size())}),
        DataType::INT64,
1169 1170 1171 1172
        inner_place_);
    auto *src_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(src_rows_tensor.impl())
            .get();
1173 1174
    framework::TensorFromVector<int64_t>(
        (*src).rows(), *dev_ctx, src_rows_dense_tensor);
1175 1176 1177

    std::vector<Tensor> src_rows_tensors = {src_rows_tensor};
    std::vector<Tensor> dst_rows_tensors = {dst_rows_tensor};
1178 1179 1180 1181 1182 1183 1184 1185 1186
    std::vector<phi::DenseTensor> in;
    std::vector<phi::DenseTensor> out;
    for (auto &t : src_rows_tensors) {
      in.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    for (auto &t : dst_rows_tensors) {
      out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    process_group_->AllGather(in, out)->Synchronize();
1187

H
Huang Jiyi 已提交
1188
    phi::Vector<int64_t> dst_rows_vector(rows_num, 0);
1189 1190 1191
    auto *dst_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_rows_tensor.impl())
            .get();
1192 1193
    framework::TensorToVector<int64_t>(
        *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector);
1194 1195 1196 1197
    dev_ctx->Wait();

    dst_shape[dst_shape.size() - 2] = rows_num;
    auto dst_dense_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
1198 1199
        paddle::experimental::full(
            IntArray(dst_shape), 0, src_value_tensor.dtype(), inner_place_)
1200 1201 1202 1203 1204 1205 1206 1207 1208
            .impl());

    auto dst =
        std::make_shared<phi::SelectedRows>(dst_rows_vector, (*src).height());
    *(dst->mutable_value()) = *dst_dense_tensor;
    Tensor dst_value_tensor(std::make_shared<phi::DenseTensor>(dst->value()));

    std::vector<Tensor> src_value_tensors = {src_value_tensor};
    std::vector<Tensor> dst_value_tensors = {dst_value_tensor};
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    std::vector<phi::DenseTensor> src_dense;
    std::vector<phi::DenseTensor> dst_dense;
    for (auto &t : src_value_tensors) {
      src_dense.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    for (auto &t : dst_value_tensors) {
      dst_dense.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    process_group_->AllGather(src_dense, dst_dense)->Synchronize();
1220 1221 1222 1223 1224

    src->set_rows(dst_rows_vector);
    *(src->mutable_value()) =
        *(std::dynamic_pointer_cast<phi::DenseTensor>(dst_value_tensor.impl()));
  } else {
1225 1226 1227 1228 1229 1230 1231
    std::vector<Tensor> rows_tensors;
    std::vector<Tensor> values_tensors;

    for (int i = 0; i < size_; ++i) {
      std::vector<int64_t> value_tensor_shape = {
          cpu_rows_num_ptr[i], dst_shape[dst_shape.size() - 1]};
      Tensor rows_tensor = paddle::experimental::full(
1232 1233 1234 1235
          IntArray({static_cast<int64_t>(cpu_rows_num_ptr[i])}),
          0,
          DataType::INT64,
          inner_place_);
1236 1237 1238 1239 1240 1241 1242 1243 1244
      Tensor values_tensor = paddle::experimental::full(
          IntArray(value_tensor_shape), 0, src->value().dtype(), inner_place_);
      std::vector<phi::DenseTensor> rows_dense_vector;
      std::vector<phi::DenseTensor> values_dense_vector;

      if (i == rank_) {
        auto *rows_dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(rows_tensor.impl())
                .get();
1245 1246
        framework::TensorFromVector<int64_t>(
            src_rows, *dev_ctx, rows_dense_tensor);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
        values_tensor.set_impl(
            std::make_shared<phi::DenseTensor>(src->value()));
      }
      rows_dense_vector.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(rows_tensor.impl()));
      values_dense_vector.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(values_tensor.impl()));

      auto b_opts = BroadcastOptions();
      b_opts.source_rank = i;
      process_group_->Broadcast(rows_dense_vector, rows_dense_vector, b_opts);
      process_group_
          ->Broadcast(values_dense_vector, values_dense_vector, b_opts)
          ->Wait();
      rows_tensors.push_back(rows_tensor);
      values_tensors.push_back(values_tensor);
    }

    Tensor dst_rows_tensor =
        paddle::experimental::concat(rows_tensors, phi::Scalar(0));
H
Huang Jiyi 已提交
1267
    phi::Vector<int64_t> dst_rows_vector(rows_num, 0);
1268 1269 1270
    auto *dst_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_rows_tensor.impl())
            .get();
1271 1272
    framework::TensorToVector<int64_t>(
        *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector);
1273 1274 1275 1276 1277 1278
    src->set_rows(dst_rows_vector);

    Tensor dst_values_tensor =
        paddle::experimental::concat(values_tensors, phi::Scalar(0));
    *(src->mutable_value()) = *(
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_values_tensor.impl()));
1279 1280 1281
  }
}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
std::ostream &operator<<(std::ostream &out, const EagerGroup &group) {
  const auto &tensors_ = group.tensor_indices_;
  out << "numel: " << group.all_length_ << " ;var number: " << tensors_.size()
      << "\n";
  auto begin = tensors_.begin();
  auto end = tensors_.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

1300 1301
}  //  namespace distributed
}  //  namespace paddle