mkldnn_reuse.h 16.3 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"
28
#include "paddle/phi/backends/onednn/onednn_reuse.h"
J
Jacek Czaja 已提交
29 30 31 32

namespace paddle {
namespace platform {

33
using framework::DataLayout;
34

J
Jacek Czaja 已提交
35
using user_function = std::function<std::shared_ptr<float>(const float*)>;
36
using memory = dnnl::memory;
J
Jacek Czaja 已提交
37

38 39
template <typename T,
          typename TForward,
40 41
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
42 43
using MKLDNNHandlerT =
    phi::funcs::OneDNNHandlerT<T, TForward, TBackward, TBackward_params>;
44

45 46
template <typename T,
          typename TForward,
47 48
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
49 50
using MKLDNNHandlerNoCachingT = phi::funcs::
    OneDNNHandlerNoCachingT<T, TForward, TBackward, TBackward_params>;
51

52
template <typename T>
53
using ReductionMKLDNNHandler = phi::funcs::ReductionOneDNNHandler<T>;
54

55
template <typename T>
56
using BroadcastDataMKLDNNHandler = phi::funcs::BroadcastDataOneDNNHandler<T>;
57

58 59
template <typename T>
using BinaryMKLDNNHandler = phi::funcs::BinaryOneDNNHandler<T>;
60

61
static void AppendActivation(const framework::ExecutionContext& ctx,
62
                             dnnl::post_ops& post_ops,  // NOLINT
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
                             float activation_scale = 1.0f) {
  const auto invalid_attribute =
      ctx.HasAttr("fuse_activation")
          ? ctx.Attr<std::string>("fuse_activation").empty()
          : true;
  if (invalid_attribute) return;

  const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
  const auto fuse_alpha =
      ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
  const auto fuse_beta =
      ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

  if (fuse_activation == "hard_sigmoid") {
    post_ops.append_eltwise(activation_scale,
                            dnnl::algorithm::eltwise_linear,
                            fuse_alpha,
                            fuse_beta);
    post_ops.append_eltwise(
        activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
  } else {
    const std::unordered_map<std::string, dnnl::algorithm> activation_map = {
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"mish", dnnl::algorithm::eltwise_mish},
        {"relu", dnnl::algorithm::eltwise_relu},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"tanh", dnnl::algorithm::eltwise_tanh}};

    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        platform::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
  }
}

114
template <typename T>
115 116 117 118 119 120 121 122 123 124
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

template <typename XT, typename YT, typename OT>
125
class MatMulV2MKLDNNHandler
126
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
127
 public:
128 129
  MatMulV2MKLDNNHandler(const framework::ExecutionContext& ctx,
                        const dnnl::engine engine,
130
                        paddle::platform::Place cpu_place,
131 132 133 134
                        const std::vector<int64_t>& x_org_dims,
                        bool trans_x,
                        const std::vector<int64_t>& y_org_dims,
                        bool trans_y,
135 136 137
                        bool is_output_fused,
                        const std::vector<int64_t>& x_strides_override,
                        const std::vector<int64_t>& y_strides_override)
138 139
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!x_strides_override.empty()) {
      x_strides = x_strides_override;
    } else {
      if (!trans_x) {
        x_strides.insert(x_strides.end(), {M * K, K, 1});
      } else {
        x_strides.insert(x_strides.end(), {M * K, 1, M});
      }
    }

    if (!y_strides_override.empty()) {
      y_strides = y_strides_override;
    } else {
      if (!trans_y) {
        y_strides.insert(y_strides.end(), {N * K, N, 1});
      } else {
        y_strides.insert(y_strides.end(), {N * K, 1, K});
      }
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      if (x_strides_override.empty()) {
        x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      }
      if (y_strides_override.empty()) {
        y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      }
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

199 200
    // TODO(jczaja): Why not for int8??
    if (!IsInt8<OT>() && is_output_fused) {
201 202 203
      out_strides = FakeTransposeStrides(out_ddims);
    }

204 205 206
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<OT>(), out_strides);
207

208 209 210 211 212
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);

    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
  }

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  float ComputeOutputScale(const framework::ExecutionContext& ctx) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
    if (ctx.HasAttr("Scale_x") && ctx.HasAttr("Scale_y") &&
        ctx.HasAttr("Scale_out")) {
      float scale_x = ctx.Attr<float>("Scale_x");
      float scale_y = ctx.Attr<float>("Scale_y");
      bool force_fp32_out = ctx.HasAttr("force_fp32_output")
                                ? ctx.Attr<bool>("force_fp32_output")
                                : false;
      float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
      alpha *= scale_out / (scale_x * scale_y);
    }
    return alpha;
  }

228 229 230 231 232
  dnnl::primitive_attr CreateMatmulAttrs(
      const framework::ExecutionContext& ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

233 234 235
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
236 237
    }

238
    if (ctx.HasInput("ResidualData")) {
239
      auto* residual_data = ctx.Input<phi::DenseTensor>("ResidualData");
240 241
      auto residual_data_tz = phi::vectorize(residual_data->dims());
      auto residual_data_md = memory::desc(residual_data_tz,
242 243
                                           MKLDNNGetDataType<OT>(),
                                           dnnl::memory::format_tag::any);
244 245
      post_operations.append_binary(dnnl::algorithm::binary_add,
                                    residual_data_md);
246 247 248 249
      if (ctx.HasAttr("Scale_in_eltwise")) {
        float sum_scale = scale_out / ctx.Attr<float>("Scale_in_eltwise");
        post_operations.append_sum(sum_scale);
      }
250 251
    }

252 253 254 255
    AppendActivation(ctx, post_operations);

    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
  }

  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

276
  std::shared_ptr<memory> AcquireWeightsMemory(const phi::DenseTensor* input) {
277
    const YT* input_data = input->data<YT>();
278
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
279 280 281
                                            to_void_cast<YT>(input_data));
  }

282
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor* output) {
283 284 285
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
286 287 288 289
    // pointer for every new batch. Hence phi::DenseTensor size is bigger that
    // dst memory primitive size. So would we request less memory that is there
    // and it triggers an assertion.  So as there is no 'any' format here we can
    // leave default size of phi::DenseTensor as computed in ComputeInferShape
290 291
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
292 293 294
  }
};

295 296 297
static std::unordered_map<std::string, std::string> GetAttributeMap(
    std::string act_type) {
  std::unordered_map<std::string, std::string> attr_map;
298
  if (act_type == "swish") {
299
    attr_map.emplace("beta", "fuse_alpha");
300
  } else if (act_type == "relu6") {
301
    attr_map.emplace("threshold", "fuse_alpha");
302
  } else if (act_type == "hard_sigmoid") {
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    attr_map.emplace("slope", "fuse_alpha");
    attr_map.emplace("offset", "fuse_beta");
  } else if (act_type == "clip") {
    attr_map.emplace("min", "fuse_alpha");
    attr_map.emplace("max", "fuse_beta");
  } else {
    attr_map.emplace("alpha", "fuse_alpha");
    attr_map.emplace("beta", "fuse_beta");
  }
  return attr_map;
}

static std::vector<std::string> GetSupportedActivations() {
  return std::vector<std::string>{"abs",
                                  "clip",
                                  "gelu",
                                  "hard_sigmoid",
                                  "hard_swish",
                                  "leaky_relu",
                                  "mish",
                                  "relu",
                                  "relu6",
                                  "sigmoid",
                                  "sqrt",
                                  "swish",
                                  "tanh"};
329 330
}

331
class ReorderMKLDNNHandler {
332
 public:
A
Adam 已提交
333
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
334
                       framework::proto::VarType::Type vtype,
335 336
                       dnnl::memory::data_type dtype,
                       dnnl::engine engine)
337
      : dims_(dims),
338
        vtype_(vtype),
339 340
        vtype_dst_(vtype),
        dtype_(dtype),
341 342
        dtype_dst_(dtype),
        engine_(engine) {}
343 344 345

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
346
                       dnnl::memory::data_type dtype,
347
                       framework::proto::VarType::Type vtype_dst,
348 349
                       dnnl::memory::data_type dtype_dst,
                       dnnl::engine engine)
350
      : dims_(dims),
351 352 353
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
354 355
        dtype_dst_(dtype_dst),
        engine_(engine) {}
356

357 358 359 360 361
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const dnnl::memory::desc& md,
                                                 void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

362 363 364 365
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const MKLDNNMemoryFormat& fmt,
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
366 367
  }

368
  std::shared_ptr<dnnl::memory> AcquireSubmemory(
369 370
      const std::vector<int64_t>& dims,
      const std::vector<int64_t>& offset,
371
      const std::shared_ptr<dnnl::memory>& mem_p) {
372
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
373 374
    auto sub_mem_p = std::make_shared<dnnl::memory>(
        sub_md, engine_, mem_p->get_data_handle());
375 376 377
    return sub_mem_p;
  }

378
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor* output,
379 380
                                                 const MKLDNNMemoryFormat& fmt,
                                                 platform::Place place) {
381
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
382
    auto dst_data = output->mutable_data(
383
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
384
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
385 386
  }

387
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
388
      phi::DenseTensor* output,
389
      const dnnl::memory::desc& src_md,
390 391 392 393 394 395 396 397 398 399 400 401 402 403
      platform::Place place) {
    if (vtype_dst_ == vtype_) {
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), src_md.get_size());
      return std::make_shared<dnnl::memory>(src_md, engine_, dst_data);
    } else {
      auto dst_md = src_md;
      dst_md.data.data_type = static_cast<dnnl_data_type_t>(dtype_dst_);
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
      return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
    }
  }

404
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
405
      phi::DenseTensor* output,
406 407 408
      const std::vector<int64_t>& dims,
      const MKLDNNMemoryFormat& fmt,
      platform::Place place) {
409
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
410
    auto dst_data = output->mutable_data(
411
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
412
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
413 414
  }

415 416 417 418
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
419 420
  }

421 422 423 424
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p,
      const dnnl::primitive_attr& attrs) {
425 426
    return std::make_shared<dnnl::reorder>(
        *(src_memory_p), *(dst_memory_p), attrs);
427 428
  }

429
 private:
A
Adam 已提交
430
  std::vector<int64_t> dims_;
431
  framework::proto::VarType::Type vtype_, vtype_dst_;
432 433
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
434
};
J
Jacek Czaja 已提交
435 436
}  // namespace platform
}  // namespace paddle