jit.py 61.3 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
from __future__ import print_function

18 19
import os
import pickle
20
import warnings
21
import functools
22
from collections import OrderedDict
23
import inspect
M
Ming-Xu Huang 已提交
24
import threading
25 26

import six
27
import paddle
J
Jiabin Yang 已提交
28
from paddle.fluid import core, dygraph
29 30
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
31
from paddle.fluid.layers.utils import flatten, pack_sequence_as
32
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
33
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
34
from paddle.fluid.dygraph.dygraph_to_static.convert_call_func import ConversionOptions, CONVERSION_OPTIONS
35
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
36
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticFunction, unwrap_decorators
37
from paddle.fluid.dygraph.io import TranslatedLayer, INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
38 39
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
0
0x45f 已提交
40
from paddle.fluid.framework import Block, ParamBase, Program, Variable, Parameter, EagerParamBase
41
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
J
Jiabin Yang 已提交
42
from paddle.fluid.framework import dygraph_only, _non_static_mode
43
from paddle.fluid.wrapped_decorator import wrap_decorator
44

45 46
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
47
    'set_verbosity', 'save', 'load', 'not_to_static'
48
]
49 50 51 52 53 54 55 56 57 58


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


59
def _extract_vars(inputs, result_list, err_tag='inputs'):
60
    if isinstance(inputs, Variable):
61
        result_list.append(inputs)
62
    elif isinstance(inputs, (list, tuple)):
63
        for var in inputs:
64
            _extract_vars(var, result_list, err_tag)
65 66
    else:
        raise TypeError(
67 68
            "The type of 'each element of {}' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}."
            .format(err_tag, type(inputs)))
69 70


71
def extract_vars(inputs, err_tag='inputs'):
72
    result_list = []
73
    _extract_vars(inputs, result_list, err_tag)
74 75 76
    return result_list


77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
126 127
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
J
Jiabin Yang 已提交
128
        if _non_static_mode() or not program_translator.enable_to_static:
129
            logging_utils.warn(
130
                "The decorator 'dygraph_to_static_func' doesn't work in "
131
                "dygraph mode or set ProgramTranslator.enable to False. "
132 133 134 135
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
136 137 138 139

    return __impl__


140
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
141

142

143 144 145 146 147 148
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
149
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
150 151 152 153 154 155 156 157 158 159 160 161 162
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


163
def declarative(function=None, input_spec=None, build_strategy=None):
164 165 166
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
167 168 169 170
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
171

172
    Args:
173
        function (callable): callable imperative function.
174
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
175
            information of each input Tensor.
176 177 178 179 180 181
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.

182

183
    Returns:
184
        Tensor(s): containing the numerical result.
185

186 187
    Examples:
        .. code-block:: python
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
203

204
    """
205

206 207
    def decorated(python_func):
        """
208
        Decorates a python function into a StaticFunction object.
209 210 211
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
212

213
        # Step 2. copy some attributes from original python function.
214 215 216 217 218
        static_layer = copy_decorator_attrs(original_func=python_func,
                                            decorated_obj=StaticFunction(
                                                function=python_func,
                                                input_spec=input_spec,
                                                build_strategy=build_strategy))
219 220

        return static_layer
221

222 223 224
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
225 226
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}"
            .format(type(build_strategy).__name__))
227

228 229
    # for usage: `declarative(foo, ...)`
    if function is not None:
230
        if isinstance(function, Layer):
231
            if isinstance(function.forward, StaticFunction):
232
                class_name = function.__class__.__name__
233
                logging_utils.warn(
234 235
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one."
                    .format(class_name))
236 237 238 239
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
240

241 242
    # for usage: `@declarative`
    return decorated
243 244


245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


285
class _SaveLoadConfig(object):
286

287 288 289 290 291
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
292 293
        # used for `paddle.load`
        self._keep_name_table = False
294 295 296 297

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

298 299
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
300 301 302 303 304
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
305
        self.with_hook = False
306 307 308 309 310 311 312

    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
313 314
        if spec is None:
            return
315 316
        if not isinstance(spec, list):
            raise TypeError(
317
                "The config `output_spec` should be 'list', but received input type is %s."
318 319 320 321
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
322
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
323 324 325 326 327 328 329 330 331
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
332 333
        if filename is None:
            return
334 335
        if not isinstance(filename, six.string_types):
            raise TypeError(
336
                "The config `model_filename` should be str, but received input's type is %s."
337 338
                % type(filename))
        if len(filename) == 0:
339
            raise ValueError("The config `model_filename` is empty string.")
340 341 342 343 344 345 346 347
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
348 349
        if filename is None:
            return
350 351
        if not isinstance(filename, six.string_types):
            raise TypeError(
352
                "The config `params_filename` should be str, but received input's type is %s."
353 354
                % type(filename))
        if len(filename) == 0:
355
            raise ValueError("The config `params_filename` is empty string.")
356 357
        self._params_filename = filename

358 359 360 361 362 363
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
364 365
        if value is None:
            return
366 367
        if not isinstance(value, bool):
            raise TypeError(
368
                "The config `keep_name_table` should be bool value, but received input's type is %s."
369 370 371
                % type(value))
        self._keep_name_table = value

372

373
def _parse_save_configs(configs):
374
    supported_configs = ['output_spec', "with_hook", "clip_extra"]
375 376 377 378 379 380 381 382 383 384 385

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
386
    inner_config.with_hook = configs.get('with_hook', False)
387
    inner_config.clip_extra = configs.get("clip_extra", False)
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


410 411 412 413 414 415 416 417 418 419
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
420 421 422
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
423 424
    if input_spec is None:
        # no prune
425 426 427 428 429 430 431 432 433
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
            spec for spec in input_spec
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
434 435
        # no prune
        result_list = input_var_names
436
        # if input spec name not in input_var_names, only raise warning
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


460
def _get_output_vars(outputs, output_spec, with_hook=False):
461 462 463 464
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
465 466 467 468
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
469 470
    result_list = []
    output_vars_dict = OrderedDict()
471
    for var in flatten(outputs):
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        raise ValueError("The ``path`` (%s) to load model not exists." % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
533

534
    return model_path, config
535 536


M
Ming-Xu Huang 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


def _run_save_pre_hooks(func):
626

M
Ming-Xu Huang 已提交
627 628 629 630 631 632 633 634 635 636
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


@_run_save_pre_hooks
637
@switch_to_static_graph
638
def save(layer, path, input_spec=None, **configs):
639
    """
640
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
641 642
    format model, which can be used for inference or fine-tuning after loading.

643
    It will save the translated program and all related persistable
644
    variables of input Layer to given ``path`` .
645 646

    ``path`` is the prefix of saved objects, and the saved translated program file
647
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
648
    and here also saved some additional variable description information to a file,
649
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
650 651

    The saved model can be loaded by follow APIs:
652 653
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
654 655
      - Other C++ inference APIs

656 657 658 659
    .. note::
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to 
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

660
    Args:
661
        layer (Layer|function): The Layer or function to be saved.
662
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
663 664 665
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
666
            the original Layer's forward method would be the inputs of the saved model. Default None.
667 668
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
669 670 671
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
672 673 674
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
675

676 677 678 679 680 681
    Returns:
        None

    Examples:
        .. code-block:: python

682
            # example 1: save layer
683
            import numpy as np
684 685 686
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
687

688 689 690
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
691

692 693 694 695 696 697 698
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
699

700 701 702 703
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
704

705 706
                def __len__(self):
                    return self.num_samples
707

708 709
            class LinearNet(nn.Layer):
                def __init__(self):
710
                    super(LinearNet, self).__init__()
711
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
712

713
                @paddle.jit.to_static
714 715 716
                def forward(self, x):
                    return self._linear(x)

717 718 719 720 721 722 723 724 725 726 727 728
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
729

730 731 732 733
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
734

735 736 737 738 739 740 741
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
742

743 744
            # train
            train(layer, loader, loss_fn, adam)
745

746
            # save
747 748
            path = "example_model/linear"
            paddle.jit.save(layer, path)
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
                
            save_function()
771 772
    """

773
    # 1. input build & check
774
    prog_translator = ProgramTranslator()
775
    if not prog_translator.enable_to_static:
776
        raise RuntimeError(
777
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
778
        )
779

780 781
    if not (isinstance(layer, Layer) or inspect.isfunction(layer)
            or isinstance(layer, StaticFunction)):
782
        raise TypeError(
783
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
784
            % type(layer))
785 786 787 788
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
789

790 791
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
792
    # function_spec, so here we save DataParallel._layers instead
793 794 795 796 797 798 799
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

800 801 802 803 804 805 806 807 808 809 810
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
            "file_prefix is empty string.")

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
811

812 813
    # avoid change user given input_spec
    inner_input_spec = None
814
    if input_spec is not None:
815 816 817 818 819 820 821 822 823
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
                if isinstance(static_func,
                              StaticFunction) and 'forward' != attr_func:
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
                        % type(input_spec))

824
        if not isinstance(input_spec, (list, tuple)):
825 826 827
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
828
        inner_input_spec = []
829
        for var in flatten(input_spec):
830 831
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
0
0x45f 已提交
832
            elif isinstance(var, (core.VarBase, core.eager.Tensor, Variable)):
833 834 835
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
836 837
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
838

839 840
    # parse configs
    configs = _parse_save_configs(configs)
841
    # whether outermost layer has pre/post hook, if does, we need also save
842
    # these operators in program.
843 844
    with_hook = configs.with_hook

845 846
    scope = core.Scope()
    extra_var_info = dict()
847 848
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
849 850
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
851 852
    else:
        # layer is function
853 854 855
        functions = [
            layer,
        ]
856 857 858 859 860
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
                concrete_program = static_func.concrete_program_specify_input_spec(
861
                    inner_input_spec, with_hook=with_hook)
862 863
            elif 'forward' == attr_func:
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
864
                # inner_input_spec is list[InputSpec], it should be packed with same structure
865 866 867 868
                # as original input_spec here.
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
869 870
                static_forward = declarative(inner_layer.forward,
                                             input_spec=inner_input_spec)
871 872
                concrete_program = static_forward.concrete_program_specify_input_spec(
                    with_hook=with_hook)
873 874 875 876 877 878 879
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue

880 881 882 883 884 885 886 887 888
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
                concrete_program = attr_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            else:
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
889 890
                static_function = declarative(attr_func,
                                              input_spec=inner_input_spec)
891 892 893 894
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
895 896
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'
                        .format(layer))
897 898 899

        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
900
            dygraph_state_dict = inner_layer.to_static_state_dict()
901 902
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
903 904
                dygraph_state_dict = attr_func._class_instance.to_static_state_dict(
                )
905 906

        if dygraph_state_dict:
907 908 909 910 911
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
912
            state_var_dict = dict()
913
            for structured_name, var in six.iteritems(dygraph_state_dict):
914
                state_names_dict[var.name] = structured_name
915
                state_var_dict[var.name] = var
916 917

            # 3. share parameters from Layer to scope & record var info
J
Jiabin Yang 已提交
918 919 920 921 922 923 924 925 926 927 928
            with dygraph.guard():
                for param_or_buffer in concrete_program.parameters:
                    # share to scope
                    if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                        scr_tensor = param_or_buffer.value().get_map_tensor()
                        tgt_var = scope.var(param_or_buffer.name)
                        tgt_var.set_vocab(scr_tensor)
                    else:
                        param_or_buffer_tensor = scope.var(
                            param_or_buffer.name).get_tensor()
                        #src_tensor = param_or_buffer.value().get_tensor()
929 930
                        src_tensor = state_var_dict[
                            param_or_buffer.name].value().get_tensor()
J
Jiabin Yang 已提交
931 932 933 934 935 936 937 938 939 940
                        param_or_buffer_tensor._share_data_with(src_tensor)
                    # record var info
                    if param_or_buffer.name not in extra_var_info:
                        extra_info_dict = dict()
                        if param_or_buffer.name in state_names_dict:
                            extra_info_dict[
                                'structured_name'] = state_names_dict[
                                    param_or_buffer.name]
                        extra_info_dict[
                            'stop_gradient'] = param_or_buffer.stop_gradient
0
0x45f 已提交
941 942
                        if isinstance(param_or_buffer,
                                      (ParamBase, EagerParamBase)):
J
Jiabin Yang 已提交
943 944 945
                            extra_info_dict[
                                'trainable'] = param_or_buffer.trainable
                        extra_var_info[param_or_buffer.name] = extra_info_dict
946 947

        # 4. build input & output of save_infernece_model
948 949 950 951 952 953 954 955 956 957 958 959
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
        input_var_names = _get_input_var_names(concrete_program.inputs,
                                               inner_input_spec)

        # NOTE(chenweihang): [ Get output variables ]
960 961
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
962
        # var name of output, and we don't recommended to use output_spec
963 964
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
965
        output_vars = _get_output_vars(concrete_program.outputs,
966
                                       configs.output_spec, with_hook)
967 968 969 970 971 972 973

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
974
        # so we don't support set model_filename & params_filename
975
        if 'forward' == attr_func or not isinstance(layer, Layer):
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
            params_filename = file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
992
                program_only=configs._program_only,
993
                clip_extra=configs.clip_extra)
994 995 996 997 998 999 1000 1001

    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1002 1003
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1004 1005
    # configure redundant information to proceed.
    #
1006 1007
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1008 1009
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1010 1011 1012 1013 1014 1015 1016 1017

    # "layer" can only be Layer or function or StaticFunction.

    contain_parameter = False
    for var in concrete_program.main_program.list_vars():
        contain_parameter |= isinstance(var, Parameter)

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1018 1019 1020 1021
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1022 1023 1024


@dygraph_only
1025
def load(path, **configs):
1026 1027 1028
    """
    :api_attr: imperative

1029 1030
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1031
    then performing inference or fine-tune training.
1032 1033

    .. note::
1034
        If you load model saved by ``paddle.static.save_inference_model`` ,
1035 1036
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1037
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1038 1039 1040 1041
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1042
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1043 1044
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1045 1046
            DO NOT use them. Default None.
            The following options are currently supported:
1047 1048 1049 1050
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1051 1052
            by default.

1053 1054 1055 1056 1057

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1058
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1059 1060 1061 1062

        .. code-block:: python

            import numpy as np
1063 1064 1065
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1066

1067 1068 1069
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1070

1071 1072
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1073

1074 1075 1076 1077
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1078

1079 1080 1081 1082
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1083

1084 1085 1086 1087 1088
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1089
                    super(LinearNet, self).__init__()
1090
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1091

1092
                @paddle.jit.to_static
1093 1094 1095
                def forward(self, x):
                    return self._linear(x)

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1107
            # 1. train & save model.
1108

1109
            # create network
1110 1111 1112 1113
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1114
            # create data loader
1115 1116 1117 1118 1119 1120
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1121

1122 1123
            # train
            train(layer, loader, loss_fn, adam)
1124

1125
            # save
1126 1127
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1128

1129
            # 2. load model
1130

1131
            # load
1132
            loaded_layer = paddle.jit.load(path)
1133 1134

            # inference
1135 1136 1137
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1138 1139

            # fine-tune
1140 1141 1142
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1143 1144


1145
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1146 1147 1148 1149

        .. code-block:: python

            import numpy as np
1150
            import paddle
1151
            import paddle.static as static
1152 1153
            import paddle.nn as nn
            import paddle.optimizer as opt
1154
            import paddle.nn.functional as F
1155

1156 1157 1158
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1159

1160 1161 1162 1163 1164 1165 1166
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1167

1168 1169 1170 1171
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1172

1173 1174
                def __len__(self):
                    return self.num_samples
1175

1176 1177
            paddle.enable_static()

1178 1179
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1180
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1181 1182
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1183

1184
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1185 1186
            optimizer.minimize(avg_loss)

1187 1188 1189
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1190

1191 1192 1193 1194 1195
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1196
                batch_size=BATCH_SIZE,
1197 1198
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1199
                return_list=False,
1200
                num_workers=2)
1201 1202 1203 1204

            # 1. train and save inference model
            for data in loader():
                exe.run(
1205
                    static.default_main_program(),
1206
                    feed=data,
1207 1208 1209
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1210
            paddle.fluid.io.save_inference_model(
1211 1212 1213
                model_path, ["image"], [pred], exe)

            # 2. load model
1214 1215

            # enable dygraph mode
1216 1217 1218 1219
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1220

1221 1222 1223
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1224 1225
            pred = fc(x)

1226
            # fine-tune
1227
            fc.train()
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1245
    """
1246 1247 1248 1249
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1250
    return TranslatedLayer._construct(model_path, config)
1251 1252


1253
@dygraph_only
Z
Zeng Jinle 已提交
1254 1255 1256 1257 1258
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1259
    assert isinstance(layer, Layer)
1260 1261 1262 1263 1264 1265 1266 1267 1268

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1269
        original_outputs = layer(*inputs)
1270 1271 1272 1273
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1274
        out_vars = extract_vars(outputs, err_tag='outputs')
1275

1276
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1277
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1278 1279 1280 1281 1282
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1283
    return original_outputs, program, feed_names, fetch_names, parameters
1284 1285 1286 1287


class TracedLayer(object):
    """
1288
    :api_attr: imperative
1289

1290 1291 1292 1293 1294
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1295 1296 1297 1298

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1299 1300

    All TracedLayer objects should not be created by constructor and should
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1312
        self._params = parameters
1313 1314 1315 1316 1317

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1318
            src_tensor = p.value().get_tensor()
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1342
        This method is the only allowed method to create TracedLayer object.
1343 1344 1345 1346
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1347
            layer (paddle.nn.Layer): the layer object to be traced.
1348 1349
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1350 1351

        Returns:
1352
            tuple: A tuple of 2 items, whose the first item is the output of
1353 1354
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1355

1356
        Examples:
1357 1358
            .. code-block:: python:

1359
                import paddle
1360

1361
                class ExampleLayer(paddle.nn.Layer):
1362 1363
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1364
                        self._fc = paddle.nn.Linear(3, 10)
1365 1366 1367 1368

                    def forward(self, input):
                        return self._fc(input)

1369

1370 1371 1372 1373 1374 1375
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1376

1377 1378
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1379

1380 1381
                # save the static graph model for inference
                static_layer.save_inference_model(dirname='./saved_infer_model')
1382

1383
        """
1384 1385 1386 1387
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1388 1389
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1390 1391 1392 1393 1394 1395 1396
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1397
            build_strategy (BuildStrategy, optional): build strategy of
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1408
                import paddle
1409

1410
                class ExampleLayer(paddle.nn.Layer):
1411 1412
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1413
                        self._fc = paddle.nn.Linear(3, 10)
1414 1415 1416 1417

                    def forward(self, input):
                        return self._fc(input)

1418 1419 1420 1421
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1422

1423 1424
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1425

1426 1427
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1428

1429 1430
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1431 1432 1433

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1434 1435 1436 1437 1438 1439 1440 1441
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
J
Jiabin Yang 已提交
1458
        if _non_static_mode():
1459
            for x, name in zip(inputs, self._feed_names):
1460
                feed_dict[name] = x.value().get_tensor()
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1481
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1482
        """
1483 1484
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1485

1486 1487 1488
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1489
        Args:
1490
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1491
            feed (list[int], optional): the input variable indices of the saved
1492
                inference model. If None, all input variables of the
1493 1494 1495 1496 1497 1498
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1499
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1500 1501

        Returns:
1502
            None
1503 1504 1505 1506 1507

        Examples:
            .. code-block:: python:

                import numpy as np
1508
                import paddle
1509

1510
                class ExampleLayer(paddle.nn.Layer):
1511 1512
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1513
                        self._fc = paddle.nn.Linear(3, 10)
1514 1515 1516 1517

                    def forward(self, input):
                        return self._fc(input)

1518 1519
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1520 1521
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1522

1523 1524
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1525

1526 1527 1528 1529
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1530
                                                    exe)
1531 1532 1533

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1534
        """
1535
        check_type(path, "path", str,
1536 1537 1538 1539 1540
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
1541 1542 1543
                check_type(
                    f, "each element of feed", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1544 1545 1546 1547
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
1548 1549 1550
                check_type(
                    f, "each element of fetch", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1551
        clip_extra = kwargs.get('clip_extra', False)
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
                "file_prefix is empty string.")

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1564
        from paddle.fluid.io import save_inference_model
1565 1566 1567 1568 1569

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1570
            return [all_vars[idx] for idx in partial_vars]
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1581 1582 1583
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1584 1585 1586 1587 1588 1589 1590 1591
            save_inference_model(dirname=dirname,
                                 feeded_var_names=feeded_var_names,
                                 target_vars=target_vars,
                                 executor=self._exe,
                                 main_program=self._program.clone(),
                                 model_filename=model_filename,
                                 params_filename=params_filename,
                                 clip_extra=clip_extra)