executor.cc 24.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
16
#include <memory>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/feed_fetch_method.h"
D
dongdaxiang 已提交
18 19
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
Z
Zeng Jinle 已提交
20
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
21
#include "paddle/fluid/operators/controlflow/recurrent_op_helper.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
24
#include "paddle/fluid/platform/profiler.h"
25
#include "paddle/fluid/platform/profiler/event_tracing.h"
26 27 28
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
29
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yang Yu 已提交
30

D
dzhwinter 已提交
31
DECLARE_bool(benchmark);
32
DECLARE_bool(use_mkldnn);
Q
qijun 已提交
33 34 35

namespace paddle {
namespace framework {
X
Xin Pan 已提交
36 37 38 39 40
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
41

Q
Qiao Longfei 已提交
42
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
43 44 45 46 47
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
Z
Zeng Jinle 已提交
48 49 50
  // If gc is enabled and block size > 1
  if (prog_.Size() > 1) {
    operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
51 52 53
        prog_, block_id_, ops_);
    operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(prog_, block_id_,
                                                               ops_);
Z
Zeng Jinle 已提交
54
    operators::PrepareSafeEagerDeletionOnRecurrentOpAndRecurrentGradOp(
55
        prog_, block_id_, ops_);
Z
Zeng Jinle 已提交
56
  }
57 58 59 60 61 62

  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
  }

S
sneaxiy 已提交
63
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
64
}
Y
Yu Yang 已提交
65

Q
Qiao Longfei 已提交
66
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
67
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
68
}
Y
Yu Yang 已提交
69

D
dzhwinter 已提交
70
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
71

72 73
Executor::~Executor() {
#ifdef PADDLE_WITH_MKLDNN
74
  // Clear mkl-dnn cache,
75
  // this is needed to have mkl-dnn unit tests working
76
  platform::ClearMKLDNNCache(place_, this);
77 78 79
#endif
}

Y
Yancey1989 已提交
80
void Executor::Close() {
T
tangwei12 已提交
81 82 83 84 85 86 87
  // #ifdef PADDLE_WITH_DISTRIBUTE
  //   // TODO(typhoonzero): complete message will need to use real trainer_id,
  //   // except 0.
  //   auto client =
  //       paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  //   client->SendComplete();
  // #endif
Y
Yancey1989 已提交
88
}
W
Wu Yi 已提交
89

L
Liu Yiqun 已提交
90 91
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
92
  VLOG(3) << "Creating Variables for block " << block_id;
L
Liu Yiqun 已提交
93
  auto& global_block = pdesc.Block(block_id);
94 95 96 97 98 99 100 101 102 103 104 105
  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }
  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
S
Steffy-zxf 已提交
106 107

        VLOG(3) << "Initialize Variable " << var->Name();
108
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
109
        VLOG(3) << "Create Variable " << var->Name()
S
Steffy-zxf 已提交
110 111
                << " global, which pointer is " << ptr << " type is "
                << static_cast<int>(var->GetType());
112 113
      } else {
        auto* ptr = scope->Var(var->Name());
114
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
115
        VLOG(3) << "Create Variable " << var->Name()
S
Steffy-zxf 已提交
116 117
                << " locally, which pointer is " << ptr << "Variable Type "
                << static_cast<int>(var->GetType());
118 119 120 121 122
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
123
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
124 125
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
126 127 128 129
    }
  }
}

130 131 132
std::shared_ptr<TrainerBase> Executor::InitForDataset(
    const ProgramDesc& main_program, const std::string& trainer_desc_str,
    Scope* scope, Dataset* dataset) {
133
  VLOG(3) << "Start to InitForDataset in executor";
D
dongdaxiang 已提交
134
  TrainerDesc trainer_desc;
H
hutuxian 已提交
135
  bool success = trainer_desc.ParseFromString(trainer_desc_str);
136 137 138 139
  PADDLE_ENFORCE_EQ(success, true,
                    platform::errors::PreconditionNotMet(
                        "Fail to parse TrainerDesc from string:\n%s",
                        trainer_desc_str.c_str()));
D
dongdaxiang 已提交
140 141 142 143 144 145 146 147
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
148
  trainer->SetScope(scope);
D
dongdaxiang 已提交
149 150 151 152 153
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
154 155 156 157
  return trainer;
}

void Executor::RunFromDataset(std::shared_ptr<TrainerBase> trainer) {
158 159 160
  PADDLE_ENFORCE_NOT_NULL(
      trainer, platform::errors::InvalidArgument(
                   "Trainer is nullptr, invoke InitForDataset first"));
D
dongdaxiang 已提交
161 162 163
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
D
Dong Daxiang 已提交
164 165 166
}

void Executor::ReleaseTrainer(std::shared_ptr<TrainerBase> trainer) {
D
dongdaxiang 已提交
167 168 169
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
}
D
dongdaxiang 已提交
170

Y
Yu Yang 已提交
171
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
172 173
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
174
                   bool force_disable_gc, bool keep_kid_scopes) {
L
liutiexing 已提交
175 176
  platform::RecordEvent record_run("Executor::Run",
                                   platform::TracerEventType::UserDefined, 1);
X
Xin Pan 已提交
177
  platform::RecordBlock b(block_id);
178
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
J
Jacek Czaja 已提交
179
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
180 181
#ifdef PADDLE_WITH_MKLDNN
  platform::AttachPointerHashToMKLDNNKey(this, place_);
J
Jacek Czaja 已提交
182
  platform::RegisterModelLayout(ctx->ops_, place_);
183
#endif
184 185
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars,
                     keep_kid_scopes);
Q
qijun 已提交
186 187
}

188 189 190 191 192 193 194
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
195
    const BlockDesc& block,
L
Liu Yiqun 已提交
196
    const std::map<std::string, const LoDTensor*>& feed_targets,
197 198
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
199
  for (auto* op : block.AllOps()) {
200 201
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
202
      // The input variable's name of feed_op should be feed_holder_name.
203 204 205 206 207
      PADDLE_ENFORCE_EQ(
          op->Input("X")[0], feed_holder_name,
          platform::errors::PreconditionNotMet(
              "Input to feed op should be '%s', but received '%s'.",
              feed_holder_name, op->Input("X")[0]));
208
      std::string feed_target_name = op->Output("Out")[0];
209 210 211 212 213
      PADDLE_ENFORCE_NE(feed_targets.find(feed_target_name), feed_targets.end(),
                        platform::errors::PreconditionNotMet(
                            "Feed operator output name '%s' cannot be found in "
                            "'feed_targets'",
                            feed_target_name));
214 215 216 217 218 219
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
220 221 222 223
        platform::errors::PreconditionNotMet(
            "The number of feed operators should match 'feed_targets', but "
            "received feed_count: %zu, required feed_targets.size(): %zu.",
            feed_count, feed_targets.size()));
224

225
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
226
      // When feed operator are present, so should be feed_holder.
227
      auto var = block.FindVar(feed_holder_name);
228 229 230 231 232 233 234 235 236 237
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::PreconditionNotMet(
              "Block should already have a '%s' variable", feed_holder_name));
      PADDLE_ENFORCE_EQ(
          var->GetType(), proto::VarType::FEED_MINIBATCH,
          platform::errors::PreconditionNotMet(
              "'%s' variable should be 'FEED_MINIBATCH' type, but received "
              "'%s'.",
              feed_holder_name, DataTypeToString(var->GetType())));
238
    }
239 240 241 242 243 244 245 246 247 248 249 250
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
251
    const BlockDesc& block,
252
    const std::map<std::string, FetchType*>& fetch_targets,
253 254
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
255
  for (auto* op : block.AllOps()) {
256 257
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
258
      // The output variable's name of fetch_op should be fetch_holder_name.
259 260 261 262 263
      PADDLE_ENFORCE_EQ(
          op->Output("Out")[0], fetch_holder_name,
          platform::errors::PreconditionNotMet(
              "Output of fetch op should be '%s', but received '%s'.",
              fetch_holder_name, op->Output("Out")[0]));
264
      std::string fetch_target_name = op->Input("X")[0];
265 266 267 268 269 270
      PADDLE_ENFORCE_NE(fetch_targets.find(fetch_target_name),
                        fetch_targets.end(),
                        platform::errors::NotFound(
                            "Fetch operator input name '%s' cannot be found in "
                            "'fetch_targets'.",
                            fetch_target_name));
271 272 273 274 275 276
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
277 278 279 280
        platform::errors::PreconditionNotMet(
            "The number of fetch operators should match 'fetch_targets', but "
            "received fetch_count: %zu, required fetch_targets.size(): %zu.",
            fetch_count, fetch_targets.size()));
281

282
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
283
      // When fetch operator are present, so should be fetch_holder.
284
      auto var = block.FindVar(fetch_holder_name);
285 286 287 288 289 290 291 292 293
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::PreconditionNotMet(
              "Block should already have a '%s' variable.", fetch_holder_name));
      PADDLE_ENFORCE_EQ(
          var->GetType(), proto::VarType::FETCH_LIST,
          platform::errors::PreconditionNotMet(
              "'%s' variable should be 'FETCH_LIST' type, but received '%s'.",
              fetch_holder_name, DataTypeToString(var->GetType())));
294
    }
295 296 297 298 299 300
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
301
                   std::map<std::string, const LoDTensor*>* feed_targets,
302
                   std::map<std::string, FetchType*>* fetch_targets,
W
Wu Yi 已提交
303 304
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
305
                   const std::string& fetch_holder_name) {
L
liutiexing 已提交
306 307
  platform::RecordEvent record_run("Executor::Run",
                                   platform::TracerEventType::UserDefined, 1);
X
Xin Pan 已提交
308
  platform::RecordBlock b(kProgramId);
309
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
310 311 312
#ifdef PADDLE_WITH_MKLDNN
  platform::AttachPointerHashToMKLDNNKey(this, place_);
#endif
313
  bool has_feed_ops =
314
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
315
  bool has_fetch_ops =
316
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
317 318

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
319
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
320
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
321 322
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
323
  }
324 325
  auto* global_block = copy_program->MutableBlock(0);

326
  if (!has_feed_ops) {
327 328
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
329
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
330 331 332
    feed_holder->SetPersistable(true);

    int i = 0;
333
    for (auto& feed_target : (*feed_targets)) {
334
      std::string var_name = feed_target.first;
M
minqiyang 已提交
335
      VLOG(3) << "feed target's name: " << var_name;
336 337 338 339 340 341 342 343 344 345 346 347 348

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

349
  if (!has_fetch_ops) {
350 351
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
352
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
353 354 355
    fetch_holder->SetPersistable(true);

    int i = 0;
356
    for (auto& fetch_target : (*fetch_targets)) {
357
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
358
      VLOG(3) << "fetch target's name: " << var_name;
359 360 361 362 363 364 365 366 367 368 369 370 371

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

372
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
373 374 375
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
376 377
}

Q
Qiao Longfei 已提交
378
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
379
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
380
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
381 382
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
383 384 385 386 387
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size(),
                    platform::errors::InvalidArgument(
                        "Input block id = %d, but it should be less than "
                        "program.size() which is %d",
                        static_cast<size_t>(block_id), program.Size()));
Y
Yu Yang 已提交
388 389 390 391
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
S
sneaxiy 已提交
392
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
393
  return ctx;
Y
Yu Yang 已提交
394 395
}

T
refine  
typhoonzero 已提交
396
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
397
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
398 399
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
400
  PADDLE_ENFORCE_EQ(
S
fix bug  
sneaxiy 已提交
401
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
402 403 404 405
      true,
      platform::errors::InvalidArgument("skip_ref_cnt_vars should be either "
                                        "empty or equals to block number %d",
                                        block_ids.size()));
T
typhoonzero 已提交
406
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
407
  size_t idx = 0;
T
typhoonzero 已提交
408
  for (auto& bid : block_ids) {
409 410 411 412 413
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size(),
                      platform::errors::InvalidArgument(
                          "Input block id = %zu, but it should be less than "
                          "program.size() which is %zu",
                          static_cast<size_t>(bid), program.Size()));
S
sneaxiy 已提交
414
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
415 416 417 418
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
419 420 421 422 423
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
424
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
425
    ++idx;
T
typhoonzero 已提交
426 427 428 429
  }
  return result;
}

430 431 432 433 434
void Executor::RunPartialPreparedContext(ExecutorPrepareContext* ctx,
                                         Scope* scope, int64_t start_op_index,
                                         int64_t end_op_index,
                                         bool create_local_scope,
                                         bool create_vars, bool keep_kids) {
L
liutiexing 已提交
435 436
  platform::RecordEvent record_run("Executor::RunPartialPreparedContext",
                                   platform::TracerEventType::UserDefined, 1);
437
  platform::RecordBlock b(kProgramId);
438 439
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope shouldn't be null"));
Y
Yu Yang 已提交
440 441 442 443
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
444 445
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
446
  }
Y
Yu Yang 已提交
447

S
sneaxiy 已提交
448
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
449
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
450
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
451
    if (platform::is_gpu_place(place_)) {
452
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
fix bug  
sneaxiy 已提交
453
      if (IsFastEagerDeletionModeEnabled()) {
454
        gc.reset(new UnsafeFastGPUGarbageCollector(place_, max_memory_size));
S
fix bug  
sneaxiy 已提交
455
      } else {
456
        gc.reset(new DefaultStreamGarbageCollector(place_, max_memory_size));
S
fix bug  
sneaxiy 已提交
457
      }
458 459 460
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("No GPU gc found in CPU/XPU paddle"));
S
sneaxiy 已提交
461
#endif
462
    } else if (platform::is_cpu_place(place_)) {
463
      gc.reset(new CPUGarbageCollector(place_, max_memory_size));
464 465
    } else if (platform::is_xpu_place(place_)) {
#ifdef PADDLE_WITH_XPU
466
      gc.reset(new XPUGarbageCollector(place_, max_memory_size));
467 468 469
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("No XPU gc found in CPU/GPU paddle"));
J
jianghaicheng 已提交
470 471 472
#endif
    } else if (platform::is_ipu_place(place_)) {
#ifdef PADDLE_WITH_IPU
473
      gc.reset(new IPUGarbageCollector(place_, max_memory_size));
J
jianghaicheng 已提交
474 475 476
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("No IPU gc found in CPU/IPU paddle"));
477 478 479
#endif
    } else if (platform::is_npu_place(place_)) {
#ifdef PADDLE_WITH_ASCEND_CL
480 481
      if (IsFastEagerDeletionModeEnabled()) {
        VLOG(4) << "Use unsafe fast gc for NPU.";
482
        gc.reset(new NPUUnsafeFastGarbageCollector(place_, max_memory_size));
483 484 485 486 487 488
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Please set FLAGS_fast_eager_deletion_mode=true to use "
            "GarbageCollector on NPU."));
        // TODO(zhiqiu): fix bugs and enable NPUDefaultStreamGarbageCollector.
        VLOG(4) << "Use default stream gc for NPU.";
489
        gc.reset(new NPUDefaultStreamGarbageCollector(place_, max_memory_size));
490
      }
491
#else
492 493
      PADDLE_THROW(
          platform::errors::Unimplemented("No NPU gc found in CPU/NPU paddle"));
F
fwenguang 已提交
494 495 496 497
#endif
    } else if (platform::is_mlu_place(place_)) {
#ifdef PADDLE_WITH_MLU
      if (IsFastEagerDeletionModeEnabled()) {
498
        gc.reset(new MLUUnsafeFastGarbageCollector(place_, max_memory_size));
F
fwenguang 已提交
499
      } else {
500
        gc.reset(new MLUDefaultStreamGarbageCollector(place_, max_memory_size));
F
fwenguang 已提交
501 502 503 504
      }
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("No MLU gc found in CPU/MLU paddle"));
505 506 507 508 509 510 511 512 513 514 515 516 517 518
#endif
    } else if (platform::is_custom_place(place_)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      if (IsFastEagerDeletionModeEnabled()) {
        VLOG(4) << "Use unsafe fast gc for " << place_ << ".";
        gc.reset(new CustomDeviceUnsafeFastGarbageCollector(place_,
                                                            max_memory_size));
      } else {
        VLOG(4) << "Use default stream gc for " << place_ << ".";
        gc.reset(
            new CustomDefaultStreamGarbageCollector(place_, max_memory_size));
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented("No CustomDevice gc found"));
S
sneaxiy 已提交
519
#endif
520
    }
S
sneaxiy 已提交
521 522
  }

523 524
  for (int64_t i = start_op_index; i < end_op_index; ++i) {
    auto& op = ctx->ops_[i];
525
    op->Run(*local_scope, place_);
S
fix bug  
sneaxiy 已提交
526
    if (gc) {
L
liutiexing 已提交
527 528
      platform::RecordEvent record("CheckGC",
                                   platform::TracerEventType::UserDefined, 10);
S
sneaxiy 已提交
529
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
530
    }
Y
Yu Yang 已提交
531
  }
S
sneaxiy 已提交
532

L
Leo Chen 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
  auto callback = [scope, local_scope, keep_kids]() {
    if (local_scope != scope) {
      VLOG(4) << "Delete scope: " << local_scope;
      scope->DeleteScope(local_scope);
    } else {
      if (!keep_kids) {
        VLOG(4) << "Drop kids: " << scope;
        // By default, we should delete all kid scopes after run executor
        // because
        // some operators may create local scope when running, such as while_op.
        // But when while_op also create a local executor to run it's sub block,
        // the sub scopes it created should not be dropped immediately, because
        // while_grad_op will use some variables created during while_op run, so
        // we need to keep the kids and wait for the outer executor to drop
        // them.

        scope->DropKids();
      }
      VLOG(4) << "Keep kids: " << scope;
    }
  };
S
sneaxiy 已提交
554

L
Leo Chen 已提交
555 556 557
  if (gc) {
    VLOG(4) << "Async deleting scope";
    gc->DirectClearCallback(callback);
558
  } else {
L
Leo Chen 已提交
559 560 561
    VLOG(4) << "Sync deleting scope";
    platform::DeviceContextPool::Instance().Get(place_)->Wait();
    callback();
Y
Yu Yang 已提交
562 563 564
  }
}

565 566 567 568 569 570 571 572 573
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
  int64_t start_op_index = 0;
  int64_t end_op_index = ctx->ops_.size();
  RunPartialPreparedContext(ctx, scope, start_op_index, end_op_index,
                            create_local_scope, create_vars, keep_kids);
}

574 575
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
576
    std::map<std::string, const LoDTensor*>* feed_targets,
577
    std::map<std::string, FetchType*>* fetch_targets, bool create_local_scope,
W
Wu Yi 已提交
578 579
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
580 581
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

582 583 584 585 586
  PADDLE_ENFORCE_EQ(
      has_feed_operators(global_block, *feed_targets, feed_holder_name), true,
      platform::errors::PreconditionNotMet(
          "Program in ExecutorPrepareContext should has feed_ops."));
  PADDLE_ENFORCE_EQ(
587
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
588 589
      true, platform::errors::PreconditionNotMet(
                "Program in the prepared context should has fetch_ops."));
590

591 592 593 594
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
595
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
596 597
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
598 599 600
    }
  }

W
Wu Yi 已提交
601
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
602 603 604 605 606

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
607
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
608
      *(*fetch_targets)[fetch_target_name] =
609 610 611 612 613
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

614 615
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
616
  VLOG(3) << "use_mkldnn=True";
617 618 619 620 621 622 623 624
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
625 626 627
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
628 629
#endif
}
Q
qijun 已提交
630 631
}  // namespace framework
}  // namespace paddle