executor.cc 14.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
Y
Yang Yang 已提交
16

17
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
18 19 20 21 22 23
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
24
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
25

D
dzhwinter 已提交
26
DECLARE_bool(benchmark);
Y
Yang Yu 已提交
27 28 29
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
qijun 已提交
30 31 32

namespace paddle {
namespace framework {
X
Xin Pan 已提交
33 34 35 36 37
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
38

Q
Qiao Longfei 已提交
39 40 41
ExecutorPrepareContext::ExecutorPrepareContext(
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}
Y
Yu Yang 已提交
42

Q
Qiao Longfei 已提交
43 44 45
ExecutorPrepareContext::~ExecutorPrepareContext() {
  VLOG(5) << "destroy ExecutorPrepareContext";
}
Y
Yu Yang 已提交
46

D
dzhwinter 已提交
47
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
48

Y
Stash  
Yu Yang 已提交
49
void InitializeVariable(Variable* var, proto::VarType::Type var_type) {
50
  if (var_type == proto::VarType::LOD_TENSOR) {
Q
QI JUN 已提交
51
    var->GetMutable<LoDTensor>();
52
  } else if (var_type == proto::VarType::SELECTED_ROWS) {
Q
QI JUN 已提交
53
    var->GetMutable<SelectedRows>();
54
  } else if (var_type == proto::VarType::FEED_MINIBATCH) {
Q
QI JUN 已提交
55
    var->GetMutable<FeedFetchList>();
56
  } else if (var_type == proto::VarType::FETCH_LIST) {
Q
QI JUN 已提交
57
    var->GetMutable<FeedFetchList>();
58
  } else if (var_type == proto::VarType::STEP_SCOPES) {
Y
Yu Yang 已提交
59
    var->GetMutable<std::vector<framework::Scope>>();
60
  } else if (var_type == proto::VarType::LOD_RANK_TABLE) {
Y
Yu Yang 已提交
61
    var->GetMutable<LoDRankTable>();
62
  } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yu Yang 已提交
63
    var->GetMutable<LoDTensorArray>();
64
  } else if (var_type == proto::VarType::PLACE_LIST) {
Y
Yang Yu 已提交
65
    var->GetMutable<platform::PlaceList>();
66
  } else if (var_type == proto::VarType::READER) {
F
fengjiayi 已提交
67
    var->GetMutable<ReaderHolder>();
68 69
  } else if (var_type == proto::VarType::CHANNEL) {
    var->GetMutable<ChannelHolder>();
T
typhoonzero 已提交
70 71
  } else if (var_type == proto::VarType::RAW) {
    // GetMutable will be called in operator
Q
QI JUN 已提交
72 73
  } else {
    PADDLE_THROW(
Y
Yu Yang 已提交
74
        "Variable type %d is not in "
F
fengjiayi 已提交
75
        "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
T
typhoonzero 已提交
76
        "LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]",
Y
Yu Yang 已提交
77
        var_type);
Q
QI JUN 已提交
78 79 80
  }
}

Y
Yang Yu 已提交
81 82
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
Y
Yang Yu 已提交
83
  if (tensor.memory_size() == 0) {
Y
Yang Yu 已提交
84 85
    return;
  }
L
Liu Yiqun 已提交
86 87
  if (tensor.type().hash_code() != typeid(float).hash_code() &&   // NOLINT
      tensor.type().hash_code() != typeid(double).hash_code()) {  // NOLINT
Y
Yang Yu 已提交
88 89
    return;
  }
Y
Yi Wang 已提交
90 91 92 93
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
Y
Yang Yu 已提交
94 95
}

L
Liu Yiqun 已提交
96 97 98
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
99 100 101 102 103 104 105 106 107 108 109 110 111 112

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
113
        InitializeVariable(ptr, var->GetType());
114 115 116 117
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
      } else {
        auto* ptr = scope->Var(var->Name());
118
        InitializeVariable(ptr, var->GetType());
119 120 121 122 123 124 125
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
126
      InitializeVariable(ptr, var->GetType());
127 128 129 130 131 132
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
    }
  }
}

Y
Yu Yang 已提交
133
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
134
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
135
  platform::RecordBlock b(block_id);
Q
Qiao Longfei 已提交
136 137
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
138 139
}

140 141 142 143 144 145 146
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
147
    const BlockDesc& block,
L
Liu Yiqun 已提交
148
    const std::map<std::string, const LoDTensor*>& feed_targets,
149 150
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
151
  for (auto* op : block.AllOps()) {
152 153
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
154
      // The input variable's name of feed_op should be feed_holder_name.
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

170
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
171
      // When feed operator are present, so should be feed_holder.
172 173 174 175 176 177 178
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
179 180 181 182 183 184 185 186 187 188 189 190
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
191 192
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
193 194
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
195
  for (auto* op : block.AllOps()) {
196 197
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
198
      // The output variable's name of fetch_op should be fetch_holder_name.
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

214
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
215
      // When fetch operator are present, so should be fetch_holder.
216 217 218 219 220 221 222
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
223 224 225 226 227 228 229 230
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
                   std::map<std::string, const LoDTensor*>& feed_targets,
                   std::map<std::string, LoDTensor*>& fetch_targets,
231 232
                   bool create_vars, const std::string& feed_holder_name,
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
233
  platform::RecordBlock b(kProgramId);
234 235 236 237 238 239 240 241 242 243
  bool has_feed_ops =
      has_feed_operators(program.Block(0), feed_targets, feed_holder_name);
  bool has_fetch_ops =
      has_fetch_operators(program.Block(0), fetch_targets, fetch_holder_name);

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
  if (!has_feed_ops || !has_fetch_ops) {
    copy_program = std::unique_ptr<ProgramDesc>(new ProgramDesc(program)).get();
  }

244 245
  auto* global_block = copy_program->MutableBlock(0);

246
  if (!has_feed_ops) {
247 248
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
249
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    feed_holder->SetPersistable(true);

    int i = 0;
    for (auto& feed_target : feed_targets) {
      std::string var_name = feed_target.first;
      VLOG(3) << "feed target's name: " << var_name;

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

269
  if (!has_fetch_ops) {
270 271
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
272
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    fetch_holder->SetPersistable(true);

    int i = 0;
    for (auto& fetch_target : fetch_targets) {
      std::string var_name = fetch_target.first;
      VLOG(3) << "fetch target's name: " << var_name;

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

292
  auto ctx = Prepare(*copy_program, 0);
L
Liu Yiqun 已提交
293 294
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets, create_vars,
                     feed_holder_name, fetch_holder_name);
295 296
}

Q
Qiao Longfei 已提交
297 298
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
    const ProgramDesc& program, int block_id) {
Y
Yu Yang 已提交
299 300 301 302 303 304
  auto* ctx = new ExecutorPrepareContext(program, block_id);
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
Q
Qiao Longfei 已提交
305
  return std::unique_ptr<ExecutorPrepareContext>(ctx);
Y
Yu Yang 已提交
306 307
}

T
refine  
typhoonzero 已提交
308
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
T
typhoonzero 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322
    const ProgramDesc& program, const std::vector<int>& block_ids) {
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
  for (auto& bid : block_ids) {
    auto* ctx = new ExecutorPrepareContext(program, bid);
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
  }
  return result;
}

Y
Yu Yang 已提交
323 324 325 326 327 328
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
                                  bool create_local_scope, bool create_vars) {
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
329 330
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
331
  }
Y
Yu Yang 已提交
332 333 334

  for (auto& op : ctx->ops_) {
    VLOG(3) << place_ << " " << op->DebugStringEx(local_scope);
335
    op->Run(*local_scope, place_);
Y
Yang Yang 已提交
336

Y
Yu Yang 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    if (FLAGS_benchmark) {
      VLOG(2) << "Memory used after operator " + op->Type() + " running: "
              << memory::memory_usage(place_);
    }
    if (FLAGS_check_nan_inf) {
      for (auto& vname : op->OutputVars(true)) {
        auto* var = local_scope->FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
        }
      }
    }
  }
  if (create_vars && create_local_scope) {
    scope->DeleteScope(local_scope);
  }
  if (FLAGS_benchmark) {
    VLOG(2) << "-------------------------------------------------------";
    VLOG(2) << "Memory used after deleting local scope: "
            << memory::memory_usage(place_);
    VLOG(2) << "-------------------------------------------------------";
  }
}

362 363 364
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
    std::map<std::string, const LoDTensor*>& feed_targets,
L
Liu Yiqun 已提交
365 366
    std::map<std::string, LoDTensor*>& fetch_targets, bool create_vars,
    const std::string& feed_holder_name, const std::string& fetch_holder_name) {
367 368
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

369 370 371 372 373 374 375
  PADDLE_ENFORCE(
      has_feed_operators(global_block, feed_targets, feed_holder_name),
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
      has_fetch_operators(global_block, fetch_targets, fetch_holder_name),
      "Program in the prepared context should has fetch_ops.");

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      SetFeedVariable(scope, *feed_targets[feed_target_name], feed_holder_name,
                      idx);
    }
  }

  RunPreparedContext(ctx, scope, create_vars, create_vars);

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      *fetch_targets[fetch_target_name] =
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

Q
qijun 已提交
399 400
}  // namespace framework
}  // namespace paddle