executor.cc 23.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
16
#include <memory>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/feed_fetch_method.h"
D
dongdaxiang 已提交
18 19
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
Z
Zeng Jinle 已提交
20
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
21
#include "paddle/fluid/operators/controlflow/recurrent_op_helper.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
24
#include "paddle/fluid/platform/profiler.h"
25
#include "paddle/fluid/platform/profiler/event_tracing.h"
26 27 28
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
29
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yang Yu 已提交
30

D
dzhwinter 已提交
31
DECLARE_bool(benchmark);
32
DECLARE_bool(use_mkldnn);
Q
qijun 已提交
33 34 35

namespace paddle {
namespace framework {
X
Xin Pan 已提交
36 37 38 39 40
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
41

Q
Qiao Longfei 已提交
42
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
43 44 45 46 47
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
Z
Zeng Jinle 已提交
48 49 50
  // If gc is enabled and block size > 1
  if (prog_.Size() > 1) {
    operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
51 52 53
        prog_, block_id_, ops_);
    operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(prog_, block_id_,
                                                               ops_);
Z
Zeng Jinle 已提交
54
    operators::PrepareSafeEagerDeletionOnRecurrentOpAndRecurrentGradOp(
55
        prog_, block_id_, ops_);
Z
Zeng Jinle 已提交
56
  }
57 58 59 60 61 62

  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
  }

S
sneaxiy 已提交
63
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
64
}
Y
Yu Yang 已提交
65

Q
Qiao Longfei 已提交
66
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
67
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
68
}
Y
Yu Yang 已提交
69

D
dzhwinter 已提交
70
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
71

72 73
Executor::~Executor() {
#ifdef PADDLE_WITH_MKLDNN
74
  // Clear mkl-dnn cache,
75
  // this is needed to have mkl-dnn unit tests working
76
  platform::ClearMKLDNNCache(place_, this);
77 78 79
#endif
}

Y
Yancey1989 已提交
80
void Executor::Close() {
T
tangwei12 已提交
81 82 83 84 85 86 87
  // #ifdef PADDLE_WITH_DISTRIBUTE
  //   // TODO(typhoonzero): complete message will need to use real trainer_id,
  //   // except 0.
  //   auto client =
  //       paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  //   client->SendComplete();
  // #endif
Y
Yancey1989 已提交
88
}
W
Wu Yi 已提交
89

L
Liu Yiqun 已提交
90 91
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
92
  VLOG(3) << "Creating Variables for block " << block_id;
L
Liu Yiqun 已提交
93
  auto& global_block = pdesc.Block(block_id);
94 95 96 97 98 99 100 101 102 103 104 105
  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }
  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
S
Steffy-zxf 已提交
106 107

        VLOG(3) << "Initialize Variable " << var->Name();
108
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
109
        VLOG(3) << "Create Variable " << var->Name()
S
Steffy-zxf 已提交
110 111
                << " global, which pointer is " << ptr << " type is "
                << static_cast<int>(var->GetType());
112 113
      } else {
        auto* ptr = scope->Var(var->Name());
114
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
115
        VLOG(3) << "Create Variable " << var->Name()
S
Steffy-zxf 已提交
116 117
                << " locally, which pointer is " << ptr << "Variable Type "
                << static_cast<int>(var->GetType());
118 119 120 121 122
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
123
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
124 125
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
126 127 128 129
    }
  }
}

130 131 132
std::shared_ptr<TrainerBase> Executor::InitForDataset(
    const ProgramDesc& main_program, const std::string& trainer_desc_str,
    Scope* scope, Dataset* dataset) {
133
  VLOG(3) << "Start to InitForDataset in executor";
D
dongdaxiang 已提交
134
  TrainerDesc trainer_desc;
H
hutuxian 已提交
135
  bool success = trainer_desc.ParseFromString(trainer_desc_str);
136 137 138 139
  PADDLE_ENFORCE_EQ(success, true,
                    platform::errors::PreconditionNotMet(
                        "Fail to parse TrainerDesc from string:\n%s",
                        trainer_desc_str.c_str()));
D
dongdaxiang 已提交
140 141 142 143 144 145 146 147
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
148
  trainer->SetScope(scope);
D
dongdaxiang 已提交
149 150 151 152 153
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
154 155 156 157
  return trainer;
}

void Executor::RunFromDataset(std::shared_ptr<TrainerBase> trainer) {
158 159 160
  PADDLE_ENFORCE_NOT_NULL(
      trainer, platform::errors::InvalidArgument(
                   "Trainer is nullptr, invoke InitForDataset first"));
D
dongdaxiang 已提交
161 162 163
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
D
Dong Daxiang 已提交
164 165 166
}

void Executor::ReleaseTrainer(std::shared_ptr<TrainerBase> trainer) {
D
dongdaxiang 已提交
167 168 169
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
}
D
dongdaxiang 已提交
170

Y
Yu Yang 已提交
171
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
172 173
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
174
                   bool force_disable_gc, bool keep_kid_scopes) {
X
Xin Pan 已提交
175
  platform::RecordBlock b(block_id);
176
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
J
Jacek Czaja 已提交
177
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
178 179
#ifdef PADDLE_WITH_MKLDNN
  platform::AttachPointerHashToMKLDNNKey(this, place_);
J
Jacek Czaja 已提交
180
  platform::RegisterModelLayout(ctx->ops_, place_);
181
#endif
182 183
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars,
                     keep_kid_scopes);
Q
qijun 已提交
184 185
}

186 187 188 189 190 191 192
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
193
    const BlockDesc& block,
L
Liu Yiqun 已提交
194
    const std::map<std::string, const LoDTensor*>& feed_targets,
195 196
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
197
  for (auto* op : block.AllOps()) {
198 199
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
200
      // The input variable's name of feed_op should be feed_holder_name.
201 202 203 204 205
      PADDLE_ENFORCE_EQ(
          op->Input("X")[0], feed_holder_name,
          platform::errors::PreconditionNotMet(
              "Input to feed op should be '%s', but received '%s'.",
              feed_holder_name, op->Input("X")[0]));
206
      std::string feed_target_name = op->Output("Out")[0];
207 208 209 210 211
      PADDLE_ENFORCE_NE(feed_targets.find(feed_target_name), feed_targets.end(),
                        platform::errors::PreconditionNotMet(
                            "Feed operator output name '%s' cannot be found in "
                            "'feed_targets'",
                            feed_target_name));
212 213 214 215 216 217
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
218 219 220 221
        platform::errors::PreconditionNotMet(
            "The number of feed operators should match 'feed_targets', but "
            "received feed_count: %zu, required feed_targets.size(): %zu.",
            feed_count, feed_targets.size()));
222

223
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
224
      // When feed operator are present, so should be feed_holder.
225
      auto var = block.FindVar(feed_holder_name);
226 227 228 229 230 231 232 233 234 235
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::PreconditionNotMet(
              "Block should already have a '%s' variable", feed_holder_name));
      PADDLE_ENFORCE_EQ(
          var->GetType(), proto::VarType::FEED_MINIBATCH,
          platform::errors::PreconditionNotMet(
              "'%s' variable should be 'FEED_MINIBATCH' type, but received "
              "'%s'.",
              feed_holder_name, DataTypeToString(var->GetType())));
236
    }
237 238 239 240 241 242 243 244 245 246 247 248
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
249
    const BlockDesc& block,
250
    const std::map<std::string, FetchType*>& fetch_targets,
251 252
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
253
  for (auto* op : block.AllOps()) {
254 255
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
256
      // The output variable's name of fetch_op should be fetch_holder_name.
257 258 259 260 261
      PADDLE_ENFORCE_EQ(
          op->Output("Out")[0], fetch_holder_name,
          platform::errors::PreconditionNotMet(
              "Output of fetch op should be '%s', but received '%s'.",
              fetch_holder_name, op->Output("Out")[0]));
262
      std::string fetch_target_name = op->Input("X")[0];
263 264 265 266 267 268
      PADDLE_ENFORCE_NE(fetch_targets.find(fetch_target_name),
                        fetch_targets.end(),
                        platform::errors::NotFound(
                            "Fetch operator input name '%s' cannot be found in "
                            "'fetch_targets'.",
                            fetch_target_name));
269 270 271 272 273 274
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
275 276 277 278
        platform::errors::PreconditionNotMet(
            "The number of fetch operators should match 'fetch_targets', but "
            "received fetch_count: %zu, required fetch_targets.size(): %zu.",
            fetch_count, fetch_targets.size()));
279

280
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
281
      // When fetch operator are present, so should be fetch_holder.
282
      auto var = block.FindVar(fetch_holder_name);
283 284 285 286 287 288 289 290 291
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::PreconditionNotMet(
              "Block should already have a '%s' variable.", fetch_holder_name));
      PADDLE_ENFORCE_EQ(
          var->GetType(), proto::VarType::FETCH_LIST,
          platform::errors::PreconditionNotMet(
              "'%s' variable should be 'FETCH_LIST' type, but received '%s'.",
              fetch_holder_name, DataTypeToString(var->GetType())));
292
    }
293 294 295 296 297 298
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
299
                   std::map<std::string, const LoDTensor*>* feed_targets,
300
                   std::map<std::string, FetchType*>* fetch_targets,
W
Wu Yi 已提交
301 302
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
303
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
304
  platform::RecordBlock b(kProgramId);
305
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
306 307 308
#ifdef PADDLE_WITH_MKLDNN
  platform::AttachPointerHashToMKLDNNKey(this, place_);
#endif
309
  bool has_feed_ops =
310
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
311
  bool has_fetch_ops =
312
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
313 314

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
315
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
316
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
317 318
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
319
  }
320 321
  auto* global_block = copy_program->MutableBlock(0);

322
  if (!has_feed_ops) {
323 324
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
325
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
326 327 328
    feed_holder->SetPersistable(true);

    int i = 0;
329
    for (auto& feed_target : (*feed_targets)) {
330
      std::string var_name = feed_target.first;
M
minqiyang 已提交
331
      VLOG(3) << "feed target's name: " << var_name;
332 333 334 335 336 337 338 339 340 341 342 343 344

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

345
  if (!has_fetch_ops) {
346 347
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
348
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
349 350 351
    fetch_holder->SetPersistable(true);

    int i = 0;
352
    for (auto& fetch_target : (*fetch_targets)) {
353
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
354
      VLOG(3) << "fetch target's name: " << var_name;
355 356 357 358 359 360 361 362 363 364 365 366 367

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

368
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
369 370 371
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
372 373
}

Q
Qiao Longfei 已提交
374
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
375
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
376
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
377 378
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
379 380 381 382 383
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size(),
                    platform::errors::InvalidArgument(
                        "Input block id = %d, but it should be less than "
                        "program.size() which is %d",
                        static_cast<size_t>(block_id), program.Size()));
Y
Yu Yang 已提交
384 385 386 387
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
S
sneaxiy 已提交
388
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
389
  return ctx;
Y
Yu Yang 已提交
390 391
}

T
refine  
typhoonzero 已提交
392
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
393
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
394 395
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
396
  PADDLE_ENFORCE_EQ(
S
fix bug  
sneaxiy 已提交
397
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
398 399 400 401
      true,
      platform::errors::InvalidArgument("skip_ref_cnt_vars should be either "
                                        "empty or equals to block number %d",
                                        block_ids.size()));
T
typhoonzero 已提交
402
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
403
  size_t idx = 0;
T
typhoonzero 已提交
404
  for (auto& bid : block_ids) {
405 406 407 408 409
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size(),
                      platform::errors::InvalidArgument(
                          "Input block id = %zu, but it should be less than "
                          "program.size() which is %zu",
                          static_cast<size_t>(bid), program.Size()));
S
sneaxiy 已提交
410
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
411 412 413 414
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
415 416 417 418 419
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
420
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
421
    ++idx;
T
typhoonzero 已提交
422 423 424 425
  }
  return result;
}

426 427 428 429 430
void Executor::RunPartialPreparedContext(ExecutorPrepareContext* ctx,
                                         Scope* scope, int64_t start_op_index,
                                         int64_t end_op_index,
                                         bool create_local_scope,
                                         bool create_vars, bool keep_kids) {
431
  platform::RecordBlock b(kProgramId);
432 433
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope shouldn't be null"));
Y
Yu Yang 已提交
434 435 436 437
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
438 439
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
440
  }
Y
Yu Yang 已提交
441

S
sneaxiy 已提交
442
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
443
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
444
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
445
    if (platform::is_gpu_place(place_)) {
446
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
fix bug  
sneaxiy 已提交
447
      if (IsFastEagerDeletionModeEnabled()) {
448
        gc.reset(new UnsafeFastGPUGarbageCollector(place_, max_memory_size));
S
fix bug  
sneaxiy 已提交
449
      } else {
450
        gc.reset(new DefaultStreamGarbageCollector(place_, max_memory_size));
S
fix bug  
sneaxiy 已提交
451
      }
452 453 454
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("No GPU gc found in CPU/XPU paddle"));
S
sneaxiy 已提交
455
#endif
456
    } else if (platform::is_cpu_place(place_)) {
457
      gc.reset(new CPUGarbageCollector(place_, max_memory_size));
458 459
    } else if (platform::is_xpu_place(place_)) {
#ifdef PADDLE_WITH_XPU
460
      gc.reset(new XPUGarbageCollector(place_, max_memory_size));
461 462 463
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("No XPU gc found in CPU/GPU paddle"));
J
jianghaicheng 已提交
464 465 466
#endif
    } else if (platform::is_ipu_place(place_)) {
#ifdef PADDLE_WITH_IPU
467
      gc.reset(new IPUGarbageCollector(place_, max_memory_size));
J
jianghaicheng 已提交
468 469 470
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("No IPU gc found in CPU/IPU paddle"));
471 472 473
#endif
    } else if (platform::is_npu_place(place_)) {
#ifdef PADDLE_WITH_ASCEND_CL
474 475
      if (IsFastEagerDeletionModeEnabled()) {
        VLOG(4) << "Use unsafe fast gc for NPU.";
476
        gc.reset(new NPUUnsafeFastGarbageCollector(place_, max_memory_size));
477 478 479 480 481 482
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Please set FLAGS_fast_eager_deletion_mode=true to use "
            "GarbageCollector on NPU."));
        // TODO(zhiqiu): fix bugs and enable NPUDefaultStreamGarbageCollector.
        VLOG(4) << "Use default stream gc for NPU.";
483
        gc.reset(new NPUDefaultStreamGarbageCollector(place_, max_memory_size));
484
      }
485
#else
486 487
      PADDLE_THROW(
          platform::errors::Unimplemented("No NPU gc found in CPU/NPU paddle"));
F
fwenguang 已提交
488 489 490 491
#endif
    } else if (platform::is_mlu_place(place_)) {
#ifdef PADDLE_WITH_MLU
      if (IsFastEagerDeletionModeEnabled()) {
492
        gc.reset(new MLUUnsafeFastGarbageCollector(place_, max_memory_size));
F
fwenguang 已提交
493
      } else {
494
        gc.reset(new MLUDefaultStreamGarbageCollector(place_, max_memory_size));
F
fwenguang 已提交
495 496 497 498
      }
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("No MLU gc found in CPU/MLU paddle"));
499 500 501 502 503 504 505 506 507 508 509 510 511 512
#endif
    } else if (platform::is_custom_place(place_)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      if (IsFastEagerDeletionModeEnabled()) {
        VLOG(4) << "Use unsafe fast gc for " << place_ << ".";
        gc.reset(new CustomDeviceUnsafeFastGarbageCollector(place_,
                                                            max_memory_size));
      } else {
        VLOG(4) << "Use default stream gc for " << place_ << ".";
        gc.reset(
            new CustomDefaultStreamGarbageCollector(place_, max_memory_size));
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented("No CustomDevice gc found"));
S
sneaxiy 已提交
513
#endif
514
    }
S
sneaxiy 已提交
515 516
  }

517 518
  for (int64_t i = start_op_index; i < end_op_index; ++i) {
    auto& op = ctx->ops_[i];
519
    op->Run(*local_scope, place_);
S
fix bug  
sneaxiy 已提交
520
    if (gc) {
S
sneaxiy 已提交
521
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
522
    }
Y
Yu Yang 已提交
523
  }
S
sneaxiy 已提交
524

L
Leo Chen 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
  auto callback = [scope, local_scope, keep_kids]() {
    if (local_scope != scope) {
      VLOG(4) << "Delete scope: " << local_scope;
      scope->DeleteScope(local_scope);
    } else {
      if (!keep_kids) {
        VLOG(4) << "Drop kids: " << scope;
        // By default, we should delete all kid scopes after run executor
        // because
        // some operators may create local scope when running, such as while_op.
        // But when while_op also create a local executor to run it's sub block,
        // the sub scopes it created should not be dropped immediately, because
        // while_grad_op will use some variables created during while_op run, so
        // we need to keep the kids and wait for the outer executor to drop
        // them.

        scope->DropKids();
      }
      VLOG(4) << "Keep kids: " << scope;
    }
  };
S
sneaxiy 已提交
546

L
Leo Chen 已提交
547 548 549
  if (gc) {
    VLOG(4) << "Async deleting scope";
    gc->DirectClearCallback(callback);
550
  } else {
L
Leo Chen 已提交
551 552 553
    VLOG(4) << "Sync deleting scope";
    platform::DeviceContextPool::Instance().Get(place_)->Wait();
    callback();
Y
Yu Yang 已提交
554 555 556
  }
}

557 558 559 560 561 562 563 564 565
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
  int64_t start_op_index = 0;
  int64_t end_op_index = ctx->ops_.size();
  RunPartialPreparedContext(ctx, scope, start_op_index, end_op_index,
                            create_local_scope, create_vars, keep_kids);
}

566 567
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
568
    std::map<std::string, const LoDTensor*>* feed_targets,
569
    std::map<std::string, FetchType*>* fetch_targets, bool create_local_scope,
W
Wu Yi 已提交
570 571
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
572 573
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

574 575 576 577 578
  PADDLE_ENFORCE_EQ(
      has_feed_operators(global_block, *feed_targets, feed_holder_name), true,
      platform::errors::PreconditionNotMet(
          "Program in ExecutorPrepareContext should has feed_ops."));
  PADDLE_ENFORCE_EQ(
579
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
580 581
      true, platform::errors::PreconditionNotMet(
                "Program in the prepared context should has fetch_ops."));
582

583 584 585 586
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
587
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
588 589
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
590 591 592
    }
  }

W
Wu Yi 已提交
593
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
594 595 596 597 598

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
599
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
600
      *(*fetch_targets)[fetch_target_name] =
601 602 603 604 605
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

606 607
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
608
  VLOG(3) << "use_mkldnn=True";
609 610 611 612 613 614 615 616
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
617 618 619
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
620 621
#endif
}
Q
qijun 已提交
622 623
}  // namespace framework
}  // namespace paddle