utils.py 78.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import copy
16 17
import logging
import os
18
import threading
19
import warnings
20
from functools import reduce
21

22 23 24
import numpy as np

import paddle
25 26 27 28 29
from paddle.fluid.framework import Variable
from paddle.fluid.io import is_belong_to_optimizer, is_parameter
from paddle.framework import core

from .dist_attribute import (
30
    OperatorDistributedAttribute,
31 32
    TensorDistributedAttribute,
)
33
from .process_group import get_all_process_groups
34

35
OpRole = core.op_proto_and_checker_maker.OpRole
36 37
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()

Z
zhaoyingli 已提交
38
__no_shape_var_type__ = [
39 40
    core.VarDesc.VarType.READER,
    core.VarDesc.VarType.STEP_SCOPES,
Z
zhaoyingli 已提交
41 42 43
    core.VarDesc.VarType.LOD_TENSOR_ARRAY,
    core.VarDesc.VarType.FEED_MINIBATCH,
    core.VarDesc.VarType.FETCH_LIST,
44 45
]

46 47
__not_naive_data_parallel_op__ = ["expand_v2"]

48

49 50 51 52 53 54 55
def get_logger(log_level, name="auto_parallel"):
    logger = logging.getLogger(name)
    logger.propagate = False
    if not logger.handlers:
        logger.setLevel(log_level)
        log_handler = logging.StreamHandler()
        log_format = logging.Formatter(
56 57
            '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
        )
58 59 60 61 62
        log_handler.setFormatter(log_format)
        logger.addHandler(log_handler)
    return logger


63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
def is_valid_list_index(list, index):
    if index >= -len(list) and index < len(list):
        return True
    else:
        return False


def is_dim_shard(mapping):
    if mapping != -1:
        return True
    else:
        return False


def is_dim_replicate(mapping):
    if mapping == -1:
        return True
    else:
        return False


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def verify_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    if not all(isinstance(d, int) for d in dims_mapping):
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(process_mesh.shape):
            return False
    for i in range(len(process_mesh.shape)):
        if dims_mapping.count(i) > 1:
            return False
    return True


def convert_to_dims_mapping(shard_spec, process_mesh):
    dims_mapping = []
    for shard in shard_spec:
        if shard is None:
            dims_mapping.append(-1)
103
        elif process_mesh.shape[process_mesh.dim_names.index(shard)] == 1:
Z
zhaoyingli 已提交
104
            dims_mapping.append(-1)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        else:
            dims_mapping.append(process_mesh.dim_names.index(shard))
    return dims_mapping


def convert_to_shard_spec(dims_mapping, process_mesh):
    shard_spec = []
    for dim_mapping in dims_mapping:
        if dim_mapping == -1:
            shard_spec.append(None)
        else:
            shard_spec.append(process_mesh.dim_names[dim_mapping])
    return shard_spec


def verify_shard_spec(shard_spec, tensor_shape, process_mesh):
    if len(shard_spec) != len(tensor_shape):
        return False
    for shard in shard_spec:
        if shard is not None and not isinstance(shard, str):
            return False
        if shard is not None and shard not in process_mesh.dim_names:
            return False
    dims_mapping = convert_to_dims_mapping(shard_spec, process_mesh)
    if not verify_dims_mapping(dims_mapping, process_mesh):
        return False
    for i in range(len(tensor_shape)):
132 133 134 135 136
        if (
            dims_mapping[i] != -1
            and tensor_shape[i] > 0
            and tensor_shape[i] % process_mesh.shape[dims_mapping[i]] != 0
        ):
137 138 139 140
            return False
    return True


141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
def compute_compatible_dim_mapping(dim_mappings):
    if not dim_mappings:
        return None
    compatible_mapping = dim_mappings[0]
    for mapping in dim_mappings:
        if compatible_mapping == -1:
            compatible_mapping = mapping
        elif mapping == -1:
            continue
        elif compatible_mapping == mapping:
            continue
        else:
            return None
    return compatible_mapping


def compute_compatible_dims_mapping(dims_mapping_list):
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
162 163 164 165 166 167
        assert (
            dims_mapping is not None
        ), "Dims mapping must not be None for compatible computation"
        assert (
            len(dims_mapping) == length
        ), "The length of dims_mapping in list must be same for compatible computation."
168 169 170
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
171 172
            list(dim_mappings)
        )
173 174 175 176 177 178 179 180 181 182 183 184
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


def compute_compatible_process_mesh(process_mesh_list):
    compatible_process_mesh = None
    if not process_mesh_list:
        return compatible_process_mesh
    for process_mesh in process_mesh_list:
        if process_mesh is not None:
185 186 187 188
            if (
                compatible_process_mesh is None
                or compatible_process_mesh == process_mesh
            ):
189 190
                compatible_process_mesh = process_mesh
            else:
191
                return None
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    return compatible_process_mesh


def compute_compatible_and_update_dim_mapping(dims_mapping_list, index_list):
    assert len(dims_mapping_list) == len(index_list)
    changed = False
    dim_mappings = []
    for i in range(len(dims_mapping_list)):
        assert is_valid_list_index(dims_mapping_list[i], index_list[i])
        dim_mappings.append(dims_mapping_list[i][index_list[i]])
    compatible_dim_mapping = compute_compatible_dim_mapping(dim_mappings)
    if compatible_dim_mapping is None:
        return False
    for i in range(len(dims_mapping_list)):
        if compatible_dim_mapping != dims_mapping_list[i][index_list[i]]:
            dims_mapping_list[i][index_list[i]] = compatible_dim_mapping
            changed = True
    return changed


def append_distributed_attr_suffix(name):
    """
    Append auto parallel suffix for distributed attribute name.
    """
    return name + core.kAutoParallelSuffix()


def remove_distributed_attr_suffix(name):
    """
    Remove auto parallel suffix from distributed attribute name.
    """
    return name.strip(core.kAutoParallelSuffix())


def check_distributed_attr_for_program(program, dist_context=None):
227
    from .dist_context import get_default_distributed_context
228

229 230
    if dist_context is None:
        dist_context = get_default_distributed_context()
231 232 233
    assert (
        dist_context.is_initialized_for_program()
    ), "Distributed attributes must be initialized before check."
234 235
    for block in program.blocks:
        for tensor in block.vars.values():
236 237
            dist_tensor = dist_context.get_dist_tensor_for_graph(tensor)
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
238 239
                tensor
            )
240
            if (tensor_dist_attr is not None) and (not dist_tensor.is_valid()):
241 242
                return False
        for op in block.ops:
243 244 245
            dist_op = dist_context.get_dist_op_for_graph(tensor)
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
            if (op_dist_attr is not None) and (not dist_op.is_valid()):
246 247 248 249
                return False
    return True


250
def print_program_with_dist_attr(program, dist_context=None):
251 252 253 254 255 256
    """
    This function reuses the original program output ability with a distributed context.
    Using lock can avoid multiple threads change the default distributed context simultaneously.
    """
    lock = threading.Lock()
    lock.acquire()
257 258 259 260
    from .dist_context import (
        get_default_distributed_context,
        set_default_distributed_context,
    )
261

262 263
    if dist_context is None:
        dist_context = get_default_distributed_context()
264
        print(program, flush=True)
265 266 267
    else:
        original_default_context = get_default_distributed_context()
        set_default_distributed_context(dist_context)
268
        print(program, flush=True)
269 270
        set_default_distributed_context(original_default_context)
    lock.release()
271 272 273 274


def _get_comm_group(processes, shape, axis, rank):
    """
275
    Given a rank and the processes mesh the rank belongs to,
276 277 278 279 280 281 282 283 284 285 286
    compute the communication peers of the rank based on the give axis in the mesh.

    Example: 16 processes managed in a 4-Dimensinal mesh with shape of [2, 2, 2, 2].
    the rank communication peers of rank 0 (included) are following:
    in axis 0: [0, 1]
    in axis 1: [0, 2]
    in axis 2: [0, 4]
    in axis 3: [0, 8]
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
287 288
    # tricks to support processes mesh when it is not start with 0 or continuous
    assert rank in processes, "rank [{}] is NOT in processes group {}".format(
289 290
        rank, processes
    )
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    coordinates_in_group = [coordinate[:] for i in range(shape[axis])]

    # select comm group
    for i in range(shape[axis]):
        coordinates_in_group[i][axis] = i

    ranks_in_group_relative = [
        _coordinate2linear_idx(shape, coordinate)
        for coordinate in coordinates_in_group
    ]
    ranks_in_group = [processes[idx] for idx in ranks_in_group_relative]

    return sorted(ranks_in_group)


308 309
def _get_idx_in_axis(processes, shape, axis, rank):
    """
310
    Given a rank and the processes mesh the rank belongs to,
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    compute the index of the rank in given axis.

    Example: 27 processes managed in a 3-Dimensinal mesh with shape of [3, 3, 3].
    the index of rank 22 are:
    in axis 0: 1
    in axis 1: 1
    in axis 2: 2
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
    #  tricks to support processes mesh when it is not start with 0 or continuous
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    return coordinate[axis]


327 328 329 330
def _coordinate2linear_idx(mesh_shape, coordinate):
    """
    convert a coordinate in multidimensional mesh space into a scala idx in linear space.

331
    it use Row-major order for dimension conversion.
332
    so it has:  [most_significant_dim, ..., least_significant_dim]
333
    assume:
334 335 336 337

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

338
    linear_idx of a n dimensional coordinate is:
339 340

        I[n-1] * (S[n-2] * S[n-3] * S[n-4] *     ....    S[0]) +
341 342
        I[n-2] * (         S[n-3] * S[n-4] *     ....    S[0]) +
        I[n-3] * (                  S[n-4] *     ....    S[0]) +
343
        ...
344
        I[1]   * (                                       S[0]) +
345 346 347 348
        I[0]

    """
    # NOTE the following function work based on a strong an assumption
349
    # that the processes in mesh are
350
    #    1. starts from 0
351 352
    #    2. continuous
    # it will be wrong if ths above condition doesnot meet,
353
    # e.g. process_mesh = { process_groups = [7, 8, 9,10, 12, 13, 14, 15], mesh = [2, 4]}
354
    # if you want a more general mapping, you should use cartesian product
355 356 357 358

    assert len(mesh_shape) == len(
        coordinate
    ), "coordinate should have the same size as mesh shape, but got shape: {}, coordinate: {}".format(
359 360
        mesh_shape, coordinate
    )
361
    for i in range(len(mesh_shape)):
362 363 364 365 366 367 368 369 370 371
        assert (
            coordinate[i] >= 0
        ), "index in dimension [{}] is least than zero. coordinate: {}".format(
            i, coordinate
        )
        assert (
            coordinate[i] < mesh_shape[i]
        ), "index beyond extent in dimension [{}]. shape: {}, coordinate: {}".format(
            i, mesh_shape, coordinate
        )
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

    base = mesh_shape[-1]
    linear_idx = coordinate[-1]

    # row major order
    for i in range(len(mesh_shape) - 2, -1, -1):
        linear_idx += base * coordinate[i]
        base *= mesh_shape[i]

    return linear_idx


def _linear_idx2coordinate(mesh_shape, linear_idx):
    """
    mapping a linear scala into multidimensional mesh space, return it coordinate in that space.

    it is the inverse function of _coordinate2linear_idx.
389
    assume:
390 391 392 393 394 395 396 397 398 399 400 401 402 403

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

    the coordinate given linear_idx is:

        I[0] = linear_idx                                  % S[0]
        I[0] = (linear_idx / S[0])                         % S[1]
        I[0] = (linear_idx / (S[0] * S[1]))                % S[2]
        ....

    """

    assert linear_idx >= 0, "linear index [{}] is least than zero".format(
404 405
        linear_idx
    )
406 407 408
    assert linear_idx < np.prod(
        mesh_shape
    ), "linear index beyond the extent of mesh shape. shape: {}, linear index: {}".format(
409 410
        mesh_shape, linear_idx
    )
411 412 413 414 415 416 417 418 419 420 421

    base = 1
    coordinate = [-1] * len(mesh_shape)

    for i in reversed(range(len(mesh_shape))):
        offset = linear_idx / base
        coordinate[i] = int(offset % mesh_shape[i])
        base *= mesh_shape[i]

    # row major order
    return coordinate
422 423


424
def _get_corresponding_rank(dist_context, target_mesh, rank):
425 426 427 428 429 430

    # TODO(JZ-LIANG) a hack method to support varying mesh in Pipeline parallelism case.
    # we assume that all mesh are evenly divide from a parent mesh and should have same size.
    # to revise this in future.

    coordinate = None
431
    for mesh in dist_context.process_meshes:
432
        if rank in mesh.process_ids and mesh.shape == target_mesh.shape:
433
            coordinate = _linear_idx2coordinate(
434
                mesh.shape, mesh.process_ids.index(rank)
435
            )
436 437
            break

438 439 440
    # assert coordinate is not None, "could NOT found rank [{}] in any registered mesh".format(
    #     rank)
    if coordinate is not None:
441 442
        return target_mesh.process_ids[
            _coordinate2linear_idx(mesh.shape, coordinate)
443
        ]
444
    else:
445
        return target_mesh.process_ids[0]
446 447


448 449
def _get_unshard_dist_shape(var, dist_attr):
    var_shape = var.shape
450
    mapping = dist_attr.dims_mapping
451
    mesh = dist_attr.process_mesh.shape
452 453 454
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
455 456
        var_shape, mapping
    )
457 458 459 460 461 462 463 464 465 466
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            new_shape.append(var_shape[idx] * mesh[mapping[idx]])

    return new_shape


467
def make_data_unshard(dist_main_prog, dist_startup_prog, dist_context=None):
468
    from .dist_context import get_default_distributed_context
469

470 471
    if dist_context is None:
        dist_context = get_default_distributed_context()
472 473 474

    for var in dist_main_prog.list_vars():
        if var.is_data:
475
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
476 477
                var
            )
478 479
            inverse_shape = _get_unshard_dist_shape(var, tensor_dist_attr)
            var.desc.set_shape(inverse_shape)
480
            dim_mapping = tensor_dist_attr.dims_mapping
481
            dim_mapping = [-1] * len(dim_mapping)
482 483
            tensor_dist_attr.dims_mapping = dim_mapping
            dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
484 485


486
def _update_addition_info(addition_info):
487
    """Update default addition_info with inputs"""
488
    add_info = {"epoch": 0, "batch": 0, "batch_size": 0}
489
    if not addition_info:
490
        return add_info
491
    elif not isinstance(addition_info, dict):
492 493 494 495
        raise TypeError(
            "The type of 'addition_info' should be 'dict', "
            "but got '{}'.".format(str(type(addition_info)))
        )
496
    else:
497 498 499 500
        for item, value in addition_info.items():
            if item not in ["epoch", "batch", "batch_size"]:
                raise ValueError(
                    "The key of 'addition_info' should be one of the "
501
                    "['epoch', 'batch', 'batch_size'], but got '{}'.".format(
502 503 504
                        str(item)
                    )
                )
505 506 507
            if not isinstance(value, int):
                raise ValueError(
                    "The value of 'addition_info' should be 'int', "
508 509
                    "but got '{}'.".format(str(type(value)))
                )
510 511
            add_info[item] = value
        return add_info
512 513 514


def _check_valid_path(file_path):
515
    """Validity check of input file path"""
516 517 518
    if not file_path:
        return file_path
    elif isinstance(file_path, list):
519 520
        for file in file_path:
            if not isinstance(file, str):
521 522 523 524
                raise TypeError(
                    "The type of file path should be 'str', "
                    "but got '{}'.".format(str(type(file)))
                )
525
            if not os.path.exists(file):
526
                raise ValueError(
527 528
                    "The file path '{}' does not exist.".format(file)
                )
529 530
        return file_path
    else:
531 532 533 534
        raise TypeError(
            "The type of file path should be 'list', "
            "but got '{}'.".format(str(type(file_path)))
        )
535 536 537 538 539 540


def _check_param_dict(param_dict):
    if not param_dict:
        raise ValueError("'param_dict' cannot be None.")
    elif not isinstance(param_dict, dict):
541 542 543 544
        raise TypeError(
            "The type of 'param_dict' should be 'dict', "
            "but got '{}'.".format(str(type(param_dict)))
        )
545 546 547 548 549
    else:
        for name, value in param_dict.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of key of 'param_dict' should be 'str', "
550 551
                    "but got '{}'.".format(str(type(name)))
                )
552 553 554
            if not isinstance(value, paddle.fluid.LoDTensor):
                raise TypeError(
                    "The type of value of 'param_dict' should be 'LoDTensor', "
555 556
                    "but got '{}'.".format(str(type(value)))
                )
557 558 559 560 561 562 563
        return param_dict


def _check_dist_attr(dist_attr):
    if not dist_attr:
        return dist_attr
    elif not isinstance(dist_attr, dict):
564 565 566 567
        raise TypeError(
            "The type of 'dist_attr' should be 'dict', "
            "but got '{}'.".format(str(type(dist_attr)))
        )
568 569 570 571 572
    else:
        for name, value in dist_attr.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of param name of 'dist_attr' should be 'str', "
573 574
                    "but got '{}'.".format(str(type(name)))
                )
575 576 577
            if not isinstance(value, dict):
                raise TypeError(
                    "The type of distributed attribute should be 'dict', "
578 579
                    "but got '{}'".format(str(type(value)))
                )
580 581 582 583 584
            attr = ['process_shape', 'process_group', 'dims_mapping']
            if list(value.keys()) != attr:
                raise ValueError(
                    "The key of distributed attribute should be "
                    "'['process_shape', 'process_group', 'dims_mapping']', "
585 586
                    "but got {}.".format(str(value.keys()))
                )
587
        return dist_attr
588 589


590 591 592 593 594 595 596 597
def save_distributed_checkpoint(
    program,
    checkpoint_path,
    dist_attr_path,
    addition_info=None,
    is_integrated=False,
    dist_context=None,
):
598 599
    """
    Save model parameter state, optimzer state, distributed attribute and
600 601 602 603 604
    additional information of each rank.

    Args:
        program(Program): The program to be saved.
        checkpoint_path(str): The path of the checkpoint file to be saved.
605 606 607
        dist_attr_path(str): The path of distributed attribute file to be saved.
        addition_info(dict, optional): Additional information, key should be selected in ['epoch', 'batch', 'batch_size'].
            Default values are 0, when 'addition_info' is None. Default: None.
608
        is_integrated(bool, optional): Whether to integrate param before save. Default: False.
609
        dist_context(DistributedContext ,optional): collect related distributed information for program
610 611 612 613 614 615 616

    Returns:
        None

    Examples:
        .. code-block:: python

617 618 619 620
            path = os.path.join("./output", "step_%d" % step)
            os.makedirs(path, exist_ok=True)
            add_info = {'batch': step, "batch_size": global_batch_size}
            save_distributed_checkpoint(program, path, path, add_info)
621
    """
622 623 624 625 626 627 628 629
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    assert isinstance(is_integrated, bool)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    addition_info = _update_addition_info(addition_info)

630
    if not is_integrated:
631 632
        _save_distributed_state_dict(program, addition_info, checkpoint_path)
        _save_distributed_attribute(program, dist_attr_path, dist_context)
633 634 635
    else:
        # TODO: integrate param before save
        raise NotImplementedError(
636 637
            "Integrating parameter has not been implemented."
        )
638 639


640
def load_distributed_checkpoint(checkpoint_path, dist_attr_path):
641
    """
642
    Load parameter, optimizer, distributed attribute and addition_info.
643 644

    Args:
645 646
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
647 648

    Returns:
649 650
        param_dict(dict): parameters' value of all ranks.
        dist_attr(dict): parameters' distributed attribute.
651
        addition_info(dict): additional information user saved in last training.
652 653 654 655 656 657 658

    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.

    Examples:
        .. code-block:: python

659
            ckpt_path = ['./model_state_rank0.pdmodel',
660
                         './model_state_rank1.pdmodel']
661
            dist_attr_path = ['./dist_attr_rank0.pdattr',
662 663 664
                              './dist_attr_rank1.pdattr']
            param_dict, dist_attr, add_info = load_distributed_checkpoint(ckpt_path, dist_attr_path)
    """
665 666 667 668
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
669 670 671 672 673 674 675 676

    state_dict_info = _load_distributed_state_dict(checkpoint_path)
    dist_attr = _load_distributed_attribute(dist_attr_path)
    param_dict = state_dict_info["model"]
    addition_info = state_dict_info["addition_info"]
    return param_dict, dist_attr, addition_info


677 678 679
def load_checkpoint_into_program(
    checkpoint_path, dist_attr_path, program, dist_context=None
):
680
    """
681 682 683 684 685 686 687 688 689 690
    Load parameter, optimizer, distributed attribute and addition_info into model.

    Args:
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
        program(Program): the program to be updated with checkpoint_path.
        dist_context(DistributedContext ,optional): collect related distributed information for program

    Returns:
        addition_info(dict): user saved in last train.
691

692 693
    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.
694 695 696 697 698

    Examples:
        .. code-block:: python

            exe.run(startup_program)
699
            ckpt_path = ['./model_state_rank0.pdmodel',
700
                         './model_state_rank1.pdmodel']
701
            dist_attr_path = ['./dist_attr_rank0.pdattr',
702 703
                              './dist_attr_rank1.pdattr']
            load_checkpoint_into_program(ckpt_path, dist_attr_path, main_program)
704
    """
705
    from .dist_context import get_default_distributed_context
706

707
    assert isinstance(program, paddle.fluid.framework.Program)
708 709 710 711
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
712 713 714 715 716 717 718
    if dist_context is None:
        dist_context = get_default_distributed_context()
    all_state_dict_info = _load_distributed_state_dict(checkpoint_path)
    all_pre_dist_attr = _load_distributed_attribute(dist_attr_path)
    all_cur_dist_attr = get_dist_attr(program, dist_context)
    all_param_dict = all_state_dict_info["model"]
    addition_info = all_state_dict_info["addition_info"]
719 720 721
    sliced_param_dict = merge_and_slice_parameter(
        all_param_dict, all_pre_dist_attr, all_cur_dist_attr
    )
722 723 724 725 726 727
    load_parameter_into_program(sliced_param_dict, program)

    return addition_info


def load_parameter_into_program(param_dict, program):
728
    """
729 730 731 732 733 734
    Load parameters into program.

    Args:
        param_dict(dict): parameters' name and value.
        program(Program): the program to be updated
    """
735
    assert isinstance(param_dict, dict)
736
    assert program and isinstance(program, paddle.fluid.framework.Program)
737 738
    if not param_dict:
        return
739 740 741 742
    program.set_state_dict(param_dict)


def _save_distributed_attribute(program, dist_attr_path, dist_context):
743
    """Save distributed attribute of all parameters"""
744 745
    # TODO: just save a complete distributed attribute file
    rank_id = paddle.distributed.get_rank()
746 747 748
    dist_attr_name = os.path.join(
        dist_attr_path, "dist_attr_rank{}.pdattr".format(rank_id)
    )
749 750
    dist_attr_dict = {
        "model": get_dist_attr(program, dist_context),
751
        "world_size": paddle.distributed.get_world_size(),
752 753
    }
    paddle.save(dist_attr_dict, dist_attr_name)
754
    logging.info(
755 756
        "Already saved distributed attribute to '{}'.".format(dist_attr_path)
    )
757 758 759


def _load_distributed_attribute(dist_attr_path):
760
    """Load parameters' distributed attribute from dist_attr_path"""
761 762 763 764
    total_dist_attr = {}
    for dist_attr_file in dist_attr_path:
        dist_attr = paddle.load(dist_attr_file)
        pre_world_size = dist_attr["world_size"]
765 766 767
        assert pre_world_size == len(
            dist_attr_path
        ), "The number of 'dist_attr_path' must be equal to the last training world size."
768 769 770 771 772 773 774 775
        for name, attr in dist_attr["model"].items():
            if name not in total_dist_attr:
                total_dist_attr[name] = attr

    return total_dist_attr


def _save_distributed_state_dict(program, addition_info, checkpoint_path):
776
    """Save parameters' state_dict"""
777
    rank = paddle.distributed.get_rank()
778 779 780
    ckpt_file_name = os.path.join(
        checkpoint_path, "model_state_rank{}.pdmodel".format(rank)
    )
781 782 783
    state_dict = {
        "model": program.state_dict(),
        "world_size": paddle.distributed.get_world_size(),
784
        "addition_info": addition_info,
785 786 787 788 789 790
    }
    paddle.save(state_dict, ckpt_file_name)
    logging.info("Already saved model to '{}'.".format(checkpoint_path))


def _load_distributed_state_dict(checkpoint_path):
791
    """Load parameters' state_dict from checkpoint_path"""
792 793
    all_state_dict = {}
    for idx, ckpt_file in enumerate(checkpoint_path):
Z
zhaoyingli 已提交
794
        state_dict_info = paddle.load(ckpt_file, return_numpy=True)
795
        pre_world_size = state_dict_info["world_size"]
796 797 798
        assert pre_world_size == len(
            checkpoint_path
        ), "The number of 'checkpoint_path' must be equal to the last training world size."
799 800 801 802 803 804 805 806 807 808
        if idx == 0:
            addition_info = state_dict_info["addition_info"]
        for name, value in state_dict_info["model"].items():
            if name in all_state_dict:
                all_state_dict[name].append(np.array(value))
            else:
                all_state_dict[name] = [np.array(value)]

    all_state_dict_info = {
        "model": all_state_dict,
809
        "addition_info": addition_info,
810 811 812 813 814
    }
    return all_state_dict_info


def get_dist_attr(program, dist_context=None):
815
    """
816 817 818 819 820 821 822 823 824 825 826 827 828 829
    Get distributed attribute of current rank.

    Args:
        program(Program): main program for training
    """
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    dist_attr = {}
    for var in program.list_vars():
        if is_parameter(var) or is_belong_to_optimizer(var):
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
830 831
                var
            )
832 833 834
            process_mesh = tensor_dist_attr.process_mesh
            dims_mapping = tensor_dist_attr.dims_mapping
            dist_attr[var.name] = {
835 836
                "process_shape": process_mesh.shape,
                "process_group": process_mesh.process_ids,
837
                "dims_mapping": dims_mapping,
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
            }
    return dist_attr


def merge_and_slice_parameter(dist_param_dict, pre_dist_attr, cur_dist_attr):
    """
    Merge parameters with previous dist_attr and slice parameters with current dist_attr

    Arags:
        dist_param_dict(dict): parameters' value of all ranks.
        pre_dist_attr(dict): parameters' dist_attr of last training process.
        cur_dist_attr(dict): parameters' dist_attr of current training process.

    Returns:
        dist_param_dict(dict): parameters' value of current rank.
    """
    assert _check_dist_attr(pre_dist_attr), "'pre_dist_attr' cannot be None."
855 856 857 858 859
    assert isinstance(
        dist_param_dict, dict
    ), "The type of 'dist_param_dict' should be 'dict', but got {}.".format(
        str(type(dist_param_dict))
    )
860 861
    for name, value in dist_param_dict.items():
        if not isinstance(name, str):
862 863 864 865 866 867
            raise TypeError(
                "The key of 'dist_param_dict' is parameter's name, "
                "and its type should be 'str', but got {}.".format(
                    str(type(name))
                )
            )
868
        if not isinstance(value, list) or not all(
869 870
            isinstance(v, np.ndarray) for v in value
        ):
871 872
            raise TypeError(
                "The value of 'dist_param_dict' is parameter's value of all ranks, "
873 874
                "and its type should be 'list(numpy.ndarray)'."
            )
875

876 877 878
    if cur_dist_attr is None:
        return {}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
    param_not_in_pre = []
    param_not_in_cur = []
    logging.info("Start to merge and slice parameters.")
    for var_name in cur_dist_attr.keys():
        if var_name not in pre_dist_attr:
            param_not_in_pre.append(var_name)
            continue

        pre_attr = pre_dist_attr[var_name]
        cur_attr = cur_dist_attr[var_name]
        if pre_attr == cur_attr:
            # skip merge and slice
            rank_id = paddle.distributed.get_rank()
            index = cur_attr["process_group"].index(rank_id)
            param = dist_param_dict[var_name][index]
894
            dist_param_dict[var_name] = param
895 896 897 898 899 900
            continue

        pre_param = dist_param_dict[var_name]
        pre_dims_mapping = pre_attr["dims_mapping"]
        cur_dims_mapping = cur_attr["dims_mapping"]
        if len(set(pre_dims_mapping)) > 1 or -1 not in pre_dims_mapping:
901
            complete_param = _merge_parameter_with_dist_attr(
902 903
                pre_param, pre_attr
            )
904 905 906
            dist_param_dict[var_name] = complete_param
        else:
            complete_param = pre_param[0]
907
            dist_param_dict[var_name] = complete_param
908 909

        if len(set(cur_dims_mapping)) > 1 or -1 not in cur_dims_mapping:
910
            sliced_param = _slice_parameter_with_dist_attr(
911 912
                complete_param, cur_attr
            )
913 914 915 916 917 918 919 920
            dist_param_dict[var_name] = sliced_param

    for var_name in pre_dist_attr:
        if var_name not in cur_dist_attr:
            param_not_in_cur.append(var_name)
            dist_param_dict.pop(var_name)

    if param_not_in_pre:
921 922
        warnings.warn(
            "Parameters '{}' are not found in last training process.".format(
923 924 925
                str(param_not_in_pre)
            )
        )
926 927
    if param_not_in_cur:
        warnings.warn(
928
            "Parameters '{}' are not found in current training process.".format(
929 930 931
                str(param_not_in_cur)
            )
        )
932 933 934 935 936

    return dist_param_dict


def _merge_parameter_with_dist_attr(param_list, dist_attr):
937
    """Merge parameter with distributed attribute"""
938
    from .reshard import Resharder
939 940 941 942 943

    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # get the complete shape of the parameter
944 945 946
    complete_shape = Resharder.compute_complete_shape(
        param_list[0].shape, process_shape, dims_mapping
    )
947 948
    # merge the parameter with dist_attr
    partition_param_list = []
Z
zhaoyingli 已提交
949
    merged_partiton = []
950
    for process in process_group:
951
        partition_index = Resharder.compute_partition_index(
952 953
            process, complete_shape, dims_mapping, process_shape, process_group
        )
954
        index = process_group.index(process)
Z
zhaoyingli 已提交
955 956
        if partition_index not in merged_partiton:
            merged_partiton.append(partition_index)
957 958 959 960 961 962
            _merge_parameter(
                partition_param_list,
                param_list[index],
                partition_index,
                complete_shape,
            )
Z
zhaoyingli 已提交
963

964 965 966
    assert (
        len(partition_param_list) == 1 or not partition_param_list
    ), "Fail to merge parameter"
967
    complete_param = partition_param_list[0][0]
968 969 970 971
    return complete_param


def _slice_parameter_with_dist_attr(param, dist_attr):
972 973 974 975
    """Slice parameter with distributed attribute"""
    param = (
        np.array(param) if isinstance(param, paddle.fluid.LoDTensor) else param
    )
976 977 978 979
    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # slice the parameter with dist_attr
980 981 982 983 984 985
    partition_index_list = _get_split_indices(
        param.shape, dims_mapping, process_shape, process_group
    )
    sliced_param_list = _slice_parameter(
        param, partition_index_list, len(partition_index_list)
    )
986 987
    # get the current parameter's index in sliced_param_list
    rank_id = paddle.distributed.get_rank()
988 989 990
    sliced_param_index = _get_sliced_param_index(
        rank_id, param.shape, dims_mapping, process_shape, process_group
    )
991
    sliced_param = sliced_param_list[sliced_param_index]
992 993 994
    return sliced_param


995 996 997
def _merge_parameter(
    partition_param_list, param, partition_index, complete_shape
):
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    """
    Merge partitial parameters to a complete one.

    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
            partition_param_list = [(np.array([[[1.11, 1.12]]]), [[0,1],[0,1],[0,2]])]
            param = np.array([[[1.13, 1.14]]])
            partition_index = [[0,1],[0,1],[2,4]]

            _merge_parameter(partition_param_list, param, partition_index)
            # partition_param_list: [(np.array([[[1.11, 1.12, 1.13, 1.14]]]), [[0,1],[0,1],[0,4]])]
    """
1015
    from .reshard import Resharder
1016

Z
zhaoyingli 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025
    if len(partition_param_list) == 1:
        is_complete_data = True
        for idx, item in enumerate(partition_param_list[0][1]):
            if item[0] != 0 or item[1] != complete_shape[idx]:
                is_complete_data = False
                break
        if is_complete_data:
            return

1026 1027
    if not partition_param_list:
        partition_param_list.append((param, partition_index))
1028
    else:
1029 1030
        i = 0
        while i < len(partition_param_list):
1031 1032 1033 1034 1035 1036 1037
            (
                concat_axis,
                first_order,
                new_partition,
            ) = Resharder.compute_concat_info(
                partition_param_list[i][1], partition_index
            )
1038 1039 1040
            if concat_axis != -1:
                if first_order == 0:
                    new_param = np.concatenate(
1041 1042
                        (partition_param_list[i][0], param), axis=concat_axis
                    )
1043 1044
                else:
                    new_param = np.concatenate(
1045 1046
                        (param, partition_param_list[i][0]), axis=concat_axis
                    )
1047 1048

                partition_param_list.pop(i)
1049 1050 1051 1052 1053 1054
                _merge_parameter(
                    partition_param_list,
                    new_param,
                    new_partition,
                    complete_shape,
                )
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
                break
            i += 1


def _slice_parameter(complete_param, partition_index_list, length):
    """
    Slice a complete parameter.

    Returns:
        sliced_param_list(list): sliced parameters with 'partition_index_list'

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            sliced_param_list = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]
    """
    sliced_param_list = []
    axis = len(complete_param.shape) - length
1082 1083 1084
    sliced_param = np.split(
        complete_param, partition_index_list[axis], axis=axis
    )
1085 1086 1087 1088
    if length == 1:
        return sliced_param
    for param in sliced_param:
        sliced_param_list.extend(
1089 1090
            _slice_parameter(param, partition_index_list, length - 1)
        )
1091 1092 1093
    return sliced_param_list


1094 1095 1096
def _get_sliced_param_index(
    rank, complete_shape, dims_mapping, process_shape, process_group
):
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    """
    Get sliced_param's index of current rank in all sliced parameters list.

    Returns:
        sliced_param_index(int): the index of sliced param in sliced_param_list

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            slice_param = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
1115
            # slice_param:
1116 1117 1118 1119 1120 1121
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]

            index = _get_sliced_param_index(rank, complete_shape, dims_mapping
                                            process_shape, process_group)
            # index: 2
    """
1122
    from .reshard import Resharder
1123

1124 1125 1126
    partition_index = Resharder.compute_partition_index(
        rank, complete_shape, dims_mapping, process_shape, process_group
    )
1127 1128 1129 1130 1131 1132
    sliced_param_index = 0
    for i, shape in enumerate(complete_shape):
        if dims_mapping[i] == -1:
            slice_shape = shape
        else:
            slice_shape = shape // process_shape[dims_mapping[i]]
1133 1134
        if slice_shape == 1:
            index = partition_index[i][0]
1135 1136 1137 1138
        else:
            index = (partition_index[i][0] + 1) // slice_shape
        sliced_param_index = sliced_param_index * (shape // slice_shape) + index
    return sliced_param_index
1139 1140


1141 1142 1143
def _get_split_indices(
    complete_shape, dims_mapping, process_shape, process_group
):
1144 1145 1146 1147 1148
    """
    Get split indices of every dimension.

    Returns:
        split_indices_list(list): the split indices of every dimension of the parameter
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            index = _get_split_indices(complete_shape, dims_mapping, process_shape, process_group)
            # index: [[], [], [2, 4]]
    """
1163
    from .reshard import Resharder
1164 1165 1166

    split_indices_list = []
    for process in process_group:
1167
        partition_index = Resharder.compute_partition_index(
1168 1169
            process, complete_shape, dims_mapping, process_shape, process_group
        )
1170 1171 1172 1173 1174 1175
        if split_indices_list:
            for dim in range(len(partition_index)):
                split_indices_list[dim].extend(partition_index[dim])
        else:
            split_indices_list = partition_index
    split_indices_list = list(
1176 1177 1178 1179 1180 1181
        map(
            lambda x, y: list(set(x) - set([y]) - set([0])),
            split_indices_list,
            complete_shape,
        )
    )
1182 1183
    split_indices_list = [sorted(x) for x in split_indices_list]
    return split_indices_list
Z
zhaoyingli 已提交
1184 1185 1186 1187 1188 1189 1190


def set_grad_var_shape(program, dist_context):
    from .operators.common import infer_shape

    block = program.global_block()
    vars = block.vars
1191 1192 1193 1194 1195 1196 1197 1198
    appended_grad_times = 0
    grad_var_to_var = dist_context.dist_op_context.grad_var_to_var

    for idx, op in enumerate(block.ops):

        if int(op.attr('op_role')) != int(OpRole.Backward):
            continue

1199 1200 1201 1202
        if (
            int(block.ops[idx - 1].attr('op_role')) == int(OpRole.Forward)
            or int(block.ops[idx - 1].attr('op_role')) == 257
        ):
1203
            appended_grad_times += 1
J
JZ-LIANG 已提交
1204 1205 1206 1207

        if op.type in ["check_finite_and_unscale", "update_loss_scaling"]:
            break

1208
        if op.type in ["sum", "concat", "shape"]:
Z
zhaoyingli 已提交
1209 1210
            continue

1211 1212 1213 1214 1215 1216 1217 1218 1219
        op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None

        for var_name in op.output_arg_names:

            if "@GRAD" not in var_name:
                continue
            if var_name in grad_var_to_var[appended_grad_times]:
                forward_var_name = grad_var_to_var[appended_grad_times][
1220 1221
                    var_name
                ]
1222
            else:
1223
                forward_var_name = var_name[: var_name.find("@GRAD")]
1224 1225

            if op.type in [
1226 1227 1228 1229 1230
                "c_allreduce_sum",
                "c_identity",
                "scale",
                "cast",
                "fill_any_like",
1231 1232
            ]:
                forward_var_name = op.input_arg_names[0]
1233 1234 1235 1236 1237
            elif (
                op.type == "matmul_v2_grad"
                or op.type == "matmul_grad"
                or op.type == "mul_grad"
            ):
1238 1239 1240 1241
                forward_var_name = None
                for output_name in op.output_names:
                    if var_name in op.output(output_name):
                        assert "@GRAD" in output_name
1242
                        input_name = output_name[: output_name.find("@GRAD")]
1243 1244 1245 1246 1247
                        assert len(op.input(input_name)) == 1
                        forward_var_name = op.input(input_name)[0]
                assert forward_var_name is not None

            need_set_shape_list = [
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
                "reshape2_grad",
                "softmax_with_cross_entropy_grad",
                "transpose2_grad",
                "softmax_grad",
                "cross_entropy_grad2",
                "dropout_grad",
                "tanh_grad",
                "slice",
                "assign",
                "matmul_v2_triple_grad",
                "elementwise_add_triple_grad",
                "fill_constant",
                "sqrt_grad",
Z
zhaoyingli 已提交
1261
                "fused_softmax_mask_upper_triangle_grad",
1262 1263
                "flatten_contiguous_range_grad",
                "relu_grad",
1264 1265
                "exp_grad",
                "sigmoid_grad",
1266 1267
            ]
            forward_list = [
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
                "reshape2",
                "softmax_with_cross_entropy",
                "transpose2",
                "softmax",
                "cross_entropy2",
                "dropout",
                "tanh",
                ["slice_grad", "c_allgather"],
                "assign",
                "matmul_v2_grad_grad",
                "elementwise_add_grad_grad",
                "shape",
                "sqrt",
                "fused_softmax_mask_upper_triangle",
                "flatten_contiguous_range",
                "relu",
1284 1285
                "exp",
                "sigmoid",
1286 1287 1288 1289 1290
            ]
            if op.type in need_set_shape_list:
                for forward_op in block.ops:
                    idx = need_set_shape_list.index(op.type)
                    forward_op_name = forward_list[idx]
1291 1292 1293 1294 1295 1296 1297 1298 1299
                    if (
                        forward_op.type in forward_op_name
                        and forward_var_name in forward_op.input_arg_names
                    ):
                        op_dist_attr = (
                            dist_context.get_op_dist_attr_for_program(
                                forward_op
                            )
                        )
1300 1301 1302
                        break

            forward_input_dist_attr = op_dist_attr.get_input_dist_attr(
1303 1304 1305 1306 1307
                forward_var_name
            )
            assert (
                forward_input_dist_attr is not None
            ), f"{forward_var_name, str(op)}"
1308
            forward_var = vars[forward_var_name]
1309 1310 1311
            forward_var_dist_attr = (
                dist_context.get_tensor_dist_attr_for_program(forward_var)
            )
1312 1313
            assert forward_var_dist_attr is not None
            grad_var = vars[var_name]
1314 1315 1316 1317 1318 1319
            ref_shape = infer_shape(
                block,
                forward_var,
                forward_var_dist_attr,
                forward_input_dist_attr,
            )
1320 1321 1322

            if list(grad_var.shape) != ref_shape:
                grad_var.desc.set_shape(ref_shape)
C
caozhou 已提交
1323 1324


1325 1326
def is_forward_op(op):
    op_role = int(op.attr('op_role'))
1327 1328 1329
    return OP_ROLE_KEY in op.attr_names and (
        op_role == int(OpRole.Forward) or op_role == int(OpRole.Loss)
    )
1330 1331 1332


def is_backward_op(op):
1333 1334 1335
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Backward)
1336 1337


1338
def is_optimize_op(op):
1339 1340 1341
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize)
1342 1343


1344
def is_lr_sched_op(op):
1345 1346 1347
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize.LRSched)
1348 1349


J
JZ-LIANG 已提交
1350
def is_loss_op(op):
1351 1352 1353
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) == (int(OpRole.Forward) | int(OpRole.Loss))
J
JZ-LIANG 已提交
1354 1355


1356 1357 1358 1359 1360 1361 1362
def is_loss_grad_op(op):
    if OP_ROLE_KEY not in op.attr_names:
        return False
    op_role = int(op.all_attrs()[OP_ROLE_KEY])
    return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)


1363
def is_gradient_clip_op(op):
1364 1365 1366
    return op.desc.has_attr("op_namescope") and op.desc.attr(
        "op_namescope"
    ).startswith("/gradient_clip")
1367 1368


1369 1370 1371 1372
def is_prim_op(op):
    return op.type.endswith("_p")


J
JZ-LIANG 已提交
1373 1374 1375 1376
def get_loss_op(block):
    loss_ops = []
    for op in block.ops:
        if is_loss_op(op):
1377 1378 1379
            assert (
                len(op.desc.output_arg_names()) == 1
            ), "loss op should only output loss var"
J
JZ-LIANG 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
            loss_ops.append(op)

    assert len(loss_ops) == 1, "num of loss op is not equal to one"
    return loss_ops[0]


def set_var_dist_attr(dist_context, var, dims_mapping, process_mesh, **kwargs):
    tensor_dist_attr = TensorDistributedAttribute()
    tensor_dist_attr.dims_mapping = dims_mapping
    # TODO get global mesh group
    tensor_dist_attr.process_mesh = process_mesh
1391 1392 1393
    if "mark_annotated" in kwargs and kwargs["mark_annotated"]:
        tensor_dist_attr.mark_annotated("dims_mapping")
        tensor_dist_attr.mark_annotated("process_mesh")
J
JZ-LIANG 已提交
1394 1395 1396 1397
    dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
    return tensor_dist_attr


1398
def naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
1399 1400
    new_op, process_mesh, ref_mapping, ctx
):
J
JZ-LIANG 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    assert process_mesh is not None
    assert ref_mapping is not None

    new_op_dist_attr = OperatorDistributedAttribute()

    for input_varname in new_op.desc.input_arg_names():
        new_op_dist_attr.set_input_dims_mapping(input_varname, ref_mapping)
    for output_varname in new_op.desc.output_arg_names():
        new_op_dist_attr.set_output_dims_mapping(output_varname, ref_mapping)

    new_op_dist_attr.process_mesh = process_mesh
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


1415 1416 1417
def naive_set_dist_op_attr_for_program_by_mesh(
    new_op, process_mesh, ctx, is_recompute=False
):
1418 1419 1420
    # hack to skip coalesce var for dist attr
    if not is_recompute:
        return
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
    assert process_mesh is not None

    new_op_dist_attr = OperatorDistributedAttribute()

    for input_varname in new_op.desc.input_arg_names():
        var = ctx.serial_main_program.global_block().var(input_varname)
        mapping = ctx.get_tensor_dist_attr_for_program(var).dims_mapping
        new_op_dist_attr.set_input_dims_mapping(input_varname, mapping)
    for output_varname in new_op.desc.output_arg_names():
        var = ctx.serial_main_program.global_block().var(output_varname)
        mapping = ctx.get_tensor_dist_attr_for_program(var).dims_mapping
        new_op_dist_attr.set_output_dims_mapping(output_varname, mapping)

    new_op_dist_attr.process_mesh = process_mesh
    new_op_dist_attr.is_recompute = is_recompute
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


C
caozhou 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
def update_op_dims_mapping_by_default_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    # The following statement will be replaced by a more elegent way
    if op_desc.type() == "shape" or op_desc.type() == "slice":
        return False
    output_names = op_desc.output_names()
    xshape_arg_names = []
    if "XShape" in output_names:
        xshape_arg_names = op_desc.output("XShape")
    batch_dim_mappings = []
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if len(dims_mapping) > 1:
            for idx, mapping in enumerate(dims_mapping[1:]):
1458 1459 1460 1461 1462
                assert (
                    mapping == -1
                ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                    op_desc.type(), idx, mapping
                )
C
caozhou 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471
        batch_dim_mappings.append(dims_mapping[0])
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if len(dims_mapping) > 1:
                for idx, mapping in enumerate(dims_mapping[1:]):
1472 1473 1474 1475 1476
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1477 1478
            batch_dim_mappings.append(dims_mapping[0])
        else:
1479 1480 1481 1482 1483
            assert (
                dims_mapping[0] == -1
            ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part.".format(
                op_desc.type(), mapping
            )
C
caozhou 已提交
1484 1485
            if len(dims_mapping) > 2:
                for idx, mapping in enumerate(dims_mapping[2:]):
1486 1487 1488 1489 1490
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1491 1492 1493
            batch_dim_mappings.append(dims_mapping[1])

    compatible_dim_mapping = compute_compatible_dim_mapping(batch_dim_mappings)
1494 1495 1496
    assert (
        compatible_dim_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if compatible_dim_mapping != dims_mapping[0]:
            dims_mapping[0] = compatible_dim_mapping
            changed = True
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if compatible_dim_mapping != dims_mapping[0]:
                dims_mapping[0] = compatible_dim_mapping
                changed = True
        else:
            if compatible_dim_mapping != dims_mapping[1]:
                dims_mapping[1] = compatible_dim_mapping
                changed = True

    return changed


def update_op_dims_mapping_by_elementwise_like_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    input_arg_names = op_desc.input_arg_names()
    input_dims_mapping_dict = {}
    input_dims_mapping_lens = {}
    max_dims_mapping_len = -1
    for arg_name in input_arg_names:
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if max_dims_mapping_len < len(dims_mapping):
            max_dims_mapping_len = len(dims_mapping)
        input_dims_mapping_dict[arg_name] = dims_mapping
        input_dims_mapping_lens[arg_name] = len(dims_mapping)

    dims_mapping_list = []
    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
            for i in range(input_dims_mapping_lens[arg_name]):
1542 1543 1544
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
                new_dims_mapping[new_idx] = input_dims_mapping_dict[arg_name][i]
            dims_mapping_list.append(new_dims_mapping)
        else:
            dims_mapping_list.append(input_dims_mapping_dict[arg_name])
    output_arg_names = op_desc.output_arg_names()
    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        assert len(dims_mapping) == max_dims_mapping_len
        dims_mapping_list.append(dims_mapping)

    compatible_dims_mapping = compute_compatible_dims_mapping(dims_mapping_list)
1556 1557 1558
    assert (
        compatible_dims_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1559 1560 1561 1562 1563 1564 1565

    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [
                -1 for _ in range(input_dims_mapping_lens[arg_name])
            ]
            for i in range(input_dims_mapping_lens[arg_name]):
1566 1567 1568
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1569 1570 1571 1572 1573 1574
                new_dims_mapping[i] = compatible_dims_mapping[new_idx]
            if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                changed = True
        else:
            if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
1575 1576 1577
                op_dist_attr.set_input_dims_mapping(
                    arg_name, compatible_dims_mapping
                )
C
caozhou 已提交
1578 1579 1580 1581 1582
                changed = True

    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if compatible_dims_mapping != dims_mapping:
1583 1584 1585
            op_dist_attr.set_output_dims_mapping(
                arg_name, compatible_dims_mapping
            )
C
caozhou 已提交
1586 1587 1588
            changed = True

    return changed
1589 1590


1591 1592 1593
def get_all_distributed_main_program(
    serial_program_info, dist_context, parallelizer
):
1594
    "Get all distributed main programs by dist_context."
1595
    from .dist_context import DistributedOperatorContext
1596

1597
    cluster = serial_program_info.cluster
1598
    copied_parallelizer = copy.deepcopy(parallelizer)
1599
    all_dist_main_program = []
1600 1601 1602 1603 1604
    ranks = (
        paddle.distributed.get_world_size()
        if cluster is None
        else len(cluster.get_all_devices("GPU"))
    )
1605 1606 1607
    for rank_id in range(ranks):
        used_dist_context = copy.deepcopy(dist_context)
        used_dist_context._dist_op_context = DistributedOperatorContext()
1608 1609 1610 1611 1612 1613 1614
        (
            _,
            _,
            dist_startup_program,
            dist_main_program,
            _,
        ) = copied_parallelizer._get_dist_program(rank_id, used_dist_context)
1615 1616 1617 1618 1619 1620
        all_dist_main_program.append(dist_main_program)

    return all_dist_main_program


class SerialProgramInfo:
1621 1622 1623
    def __init__(
        self, train_program, satrtup_program, loss, optimizer, cluster=None
    ):
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
        self._train_program = train_program
        self._startup_program = satrtup_program
        self._loss = loss
        self._optimizer = optimizer
        self._cluster = cluster

    @property
    def train_program(self):
        return self._train_program

    @property
    def startup_program(self):
        return self._startup_program

    @property
    def loss(self):
        return self._loss

    @property
    def optimizer(self):
        return self._optimizer

    @property
    def cluster(self):
        return self._cluster
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663


def get_standalone_cost_data(distributed_programs):
    def _compute_runtime(op_cost, op, vars):
        runtime = 0
        try:
            runtime = float(op_cost["op_time"])
        except:
            return runtime
        op_config = op_cost["config"]
        total_static_input_size = 0
        total_actual_input_size = 0
        parsed_info = op_config.split("\n")
        variable = "(Variable)"
        for info in parsed_info:
1664 1665 1666
            variable = (
                "(Variable)" if "(Variable)" in info else "(list<Variable>"
            )
1667
            if variable in info:
1668
                arg_name_lower = info[: info.find(variable) - 1]
1669 1670
                shape_left_boundary = info.find("[")
                shape_right_boundary = info.find("]")
1671 1672 1673 1674 1675 1676 1677 1678
                assert (
                    shape_left_boundary > 0
                    and shape_right_boundary > 0
                    and shape_right_boundary > shape_left_boundary
                ), "Get shape failed."
                shape = info[
                    shape_left_boundary + 1 : shape_right_boundary
                ].split(",")
1679 1680 1681 1682
                shape = list(map(lambda x: int(x.strip()), shape))
                dtype_factor = 1
                total_static_input_size += reduce(lambda x, y: x * y, shape)
                if op.type == "c_embedding":
1683 1684 1685
                    arg_name_lower = (
                        "w" if arg_name_lower == "weight" else "ids"
                    )
1686 1687 1688 1689 1690
                for arg_name in op.input_names:
                    if arg_name.lower() == arg_name_lower:
                        for var_name in op.input(arg_name):
                            var = vars[var_name]
                            total_actual_input_size += reduce(
1691 1692
                                lambda x, y: x * y, var.shape
                            )
1693
                        break
1694 1695 1696
        assert (
            total_static_input_size > 0 and total_actual_input_size > 0
        ), "Get input size failed."
1697

1698 1699 1700
        actual_runtime = (
            total_actual_input_size / total_static_input_size * runtime
        )
1701 1702
        return actual_runtime

1703
    import paddle.cost_model as cm
1704

1705
    cost_model = cm.CostModel()
1706 1707 1708 1709 1710 1711 1712 1713 1714
    cost_model.static_cost_data()
    DEFAULT_MULTIPLE = 2
    OP_NAME_MAPPING = {
        "c_embedding": "embedding",
        "matmul_v2": "matmul",
        "transpose2": "transpose",
        "reshape2": "reshape",
        "unsqueeze2": "unsqueeze",
        "reduce_sum": "sum",
1715
        "elementwise_div": "divide",
1716 1717 1718
    }

    standalone_cost_data = []
1719 1720
    # skip ops
    not_enum_ops = [
1721 1722 1723 1724
        "create_py_reader",
        "create_double_buffer_reader",
        "read",
        "assign",
1725
    ]
1726 1727 1728 1729 1730 1731 1732 1733
    for distributed_program in distributed_programs:
        cost_data = {}
        vars = distributed_program.global_block().vars
        for op in distributed_program.global_block().ops:
            runtime = 0
            if op.type in not_enum_ops:
                cost_data[op.desc.id()] = runtime
                continue
1734 1735 1736 1737 1738
            dtype = (
                str(vars[op.input_arg_names[0]].dtype)
                if op.input_arg_names
                else "float32"
            )
1739 1740 1741 1742 1743
            if int(op.attr('op_role')) == int(OpRole.Backward):
                if "_grad" in op.type:
                    forward_op_name = op.type[:-5]
                    if forward_op_name in OP_NAME_MAPPING.keys():
                        forward_op_name = OP_NAME_MAPPING[forward_op_name]
1744 1745 1746
                    op_cost = cost_model.get_static_op_time(
                        forward_op_name, forward=False, dtype=dtype
                    )
1747 1748 1749
                    if op_cost:
                        runtime = _compute_runtime(op_cost, op, vars)
                    else:
1750 1751 1752
                        op_cost = cost_model.get_static_op_time(
                            forward_op_name, dtype=dtype
                        )
1753 1754 1755
                        if op_cost:
                            runtime = 2 * _compute_runtime(op_cost, op, vars)
            elif int(op.attr('op_role')) == int(OpRole.Forward):
1756 1757 1758 1759 1760
                op_name = (
                    OP_NAME_MAPPING[op.type]
                    if op.type in OP_NAME_MAPPING.keys()
                    else op.type
                )
1761 1762 1763 1764 1765 1766 1767 1768 1769
                op_cost = cost_model.get_static_op_time(op_name)
                if op_cost:
                    runtime = _compute_runtime(op_cost, op, vars)

            cost_data[op.desc.id()] = runtime

        standalone_cost_data.append(cost_data)

    return standalone_cost_data
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785


def set_dist_op_desc_original_id(dist_op_desc, op_desc, dist_context):
    op_id = op_desc.id()
    op_original_id = op_desc.original_id()
    # First, try to set the original id to the id of the op_desc
    if op_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_id)
        return
    # Second, try to set the original id to the original_id of the op_desc
    elif op_original_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_original_id)
        return
    # Third, print error infomation if we cannot find the original id
    else:
        assert False, "Cannot find the original id in the distributed context"
1786 1787 1788 1789 1790 1791 1792 1793


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]
1794 1795 1796 1797 1798


def debug_program(program, path, name):

    filename = os.path.join(
1799 1800
        path, name + '_program' + ".%d" % (paddle.distributed.get_rank())
    )
1801 1802
    with open(filename, 'w') as f:
        f.write(str(program))
1803 1804 1805 1806 1807 1808 1809


def ring_id_to_process_group(ring_id):
    for g in get_all_process_groups():
        if g.id == ring_id:
            return g
    return None
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821


def find_higher_order_backward_op(program):

    higher_order_op_suffix = ['_grad_grad', 'triple_grad']
    for block in program.blocks:
        for op in block.ops:
            for suffix in higher_order_op_suffix:
                if suffix in op.type:
                    return True

    return False
Z
zhaoyingli 已提交
1822 1823


1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
def get_var_numel(var):
    """
    input:
        - var: variable
    return:
        number of elemnet in var
    """
    assert isinstance(var, Variable)
    assert -1 not in var.shape
    return reduce(lambda x, y: x * y, var.shape)


Z
zhaoyingli 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
def get_lr(optimizer):
    if isinstance(optimizer, paddle.optimizer.Optimizer):
        return optimizer.get_lr()
    elif isinstance(optimizer, paddle.fluid.optimizer.Optimizer):
        if isinstance(optimizer._learning_rate, float):
            return optimizer._learning_rate
        else:
            return optimizer._learning_rate()
    else:
        raise TypeError(
1846 1847 1848
            "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
            " or `paddle.fluid.optimizer.Optimizer`, but got {}.".format(
                type(optimizer)
Z
zhaoyingli 已提交
1849
            )
1850
        )
1851 1852 1853 1854


def initialize_pg_in_full_mode(all_process_groups, cur_rank):
    import socket
1855

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
    from ..collective import _get_global_env

    has_recv_by_socket = []
    # This is a magic number
    magic_num = 500
    genv = _get_global_env()
    cur_rank_ip, cur_rank_port = genv.current_endpoint.split(":")
    cur_rank_recv_port = int(cur_rank_port) + magic_num
    server_socket = None
    # Large enough for recv rank
    buff_size = 1024
    server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server_socket.bind((cur_rank_ip, cur_rank_recv_port))
    # The 10 is an empirical value
    server_socket.listen(10)
    client_sockets = {}
    for process_group in all_process_groups:
        if cur_rank not in process_group.ranks:
            continue
        if len(process_group.ranks) == 2:
            index = process_group.ranks.index(cur_rank)
            is_send = True if index == 0 else False
            if is_send:
                recv_rank = process_group.ranks[1]
                recv_rank_ip, recv_rank_port = genv.trainer_endpoints[
1881 1882
                    recv_rank
                ].split(":")
1883
                connect_port = int(recv_rank_port) + magic_num
1884 1885 1886
                client_socket = socket.socket(
                    socket.AF_INET, socket.SOCK_STREAM
                )
1887 1888 1889 1890 1891 1892
                client_socket.connect((recv_rank_ip, connect_port))
                client_socket.send(str(cur_rank).encode('utf-8'))
                rank = client_socket.recv(buff_size).decode('utf-8')
                rank = int(rank)
                if rank != recv_rank:
                    raise ValueError(
1893 1894 1895 1896
                        "Please check comm pair, the recv rank should be {} but got {}.".format(
                            recv_rank, rank
                        )
                    )
1897
                else:
1898 1899 1900 1901 1902
                    print(
                        "It is able to instantiate {} as sender now.".format(
                            process_group.ranks
                        )
                    )
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
                client_socket.close()
            else:
                send_rank = process_group.ranks[0]
                while True:
                    if send_rank not in has_recv_by_socket:
                        client_socket, recv_addr = server_socket.accept()
                        rank = int(client_socket.recv(buff_size).decode())
                        client_sockets[rank] = client_socket
                        has_recv_by_socket.append(rank)
                    else:
                        client_sockets[send_rank].send(
1914 1915
                            str(cur_rank).encode("utf-8")
                        )
1916
                        client_sockets[send_rank].close()
1917 1918 1919 1920 1921
                        print(
                            "It is able to instantiate {} as recver now.".format(
                                process_group.ranks
                            )
                        )
1922 1923 1924
                        break
        process_group.instantiate()
    server_socket.close()
1925 1926


1927 1928 1929 1930
def is_recompute_op(op):
    return op.has_attr('op_namescope') and "/auto_parallel/rc" in op.attr(
        'op_namescope'
    )
1931

1932 1933 1934 1935 1936

def set_recompute_segments(model, losses, strategy, program):
    from ..passes.auto_parallel_recompute import RecomputeState

    if not losses:
1937 1938 1939 1940 1941 1942 1943 1944 1945
        return

    recompute = strategy.recompute
    if not recompute.enable:
        return

    # NOTE: hack to enable recompute in engine api for GPT-3
    # TODO support more PaddleNLP/CV models here
    # extract ckpts by specific model
1946
    ckpts = []
1947
    if isinstance(model, paddle.nn.Layer):
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
        if (
            hasattr(model, "gpt")
            and model.__class__.__name__
            in [
                'GPTForPretraining',
                'GPTForPretrainingAuto',
            ]
            and hasattr(model.gpt, "checkpoints")
        ):
            ckpts = model.gpt.checkpoints
1958
        else:
1959
            ckpts = recompute.checkpoints
1960
    else:
1961
        ckpts = recompute.checkpoints
1962

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
    if not ckpts:
        return

    block = program.global_block()
    rc_state = RecomputeState(block, block.ops)
    rc_state.build_stats()
    checkpoints = rc_state.sort_checkpoints(ckpts)

    segments = []
    start_idx = -1
    pre_segment_end_idx = -1
    while start_idx + 1 < len(checkpoints):
        if start_idx == -1:
            ckpt_name = checkpoints[start_idx + 1]
            if ckpt_name not in rc_state.var_op_deps:
                start_idx += 1
                continue
            op_idx_list = rc_state.var_op_deps[ckpt_name]["var_as_output_ops"]
            if op_idx_list and max(op_idx_list) > 0:
                segments.append([0, max(op_idx_list) + 1])
        else:
            flag, min_idx, max_idx = rc_state.is_subgraph(
                [checkpoints[start_idx]], [checkpoints[start_idx + 1]]
            )
            if flag:
                min_idx = rc_state._update_segment_start(
                    min_idx, pre_segment_end_idx
                )
                segments.append([min_idx, max_idx + 1])
            else:
                logging.debug(
                    "Could not recompute op range [{}] - [{}] ".format(
                        min_idx, max_idx + 1
                    )
                )
        start_idx += 1

    for i, segment in enumerate(segments):
        for j in range(segment[0], segment[1]):
            block.ops[j]._set_attr(
                'op_namescope', "/auto_parallel/rc_" + str(i)
            )
2005 2006


2007 2008 2009 2010 2011 2012
def get_input_split_info(cur_rank, var, dist_context):
    # deduce how the input data is split among the cluster
    tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
    process_mesh = tensor_dist_attr.process_mesh
    dims_mapping = tensor_dist_attr.dims_mapping

2013
    if cur_rank not in process_mesh.process_ids:
2014 2015 2016 2017 2018
        rank_id = _get_corresponding_rank(dist_context, process_mesh, cur_rank)
    else:
        rank_id = cur_rank

    batch_size_axis = dims_mapping[0]
2019
    if batch_size_axis > -1 and process_mesh.shape[batch_size_axis] > 1:
2020
        group_ranks = _get_comm_group(
2021 2022
            process_mesh.process_ids,
            process_mesh.shape,
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
            batch_size_axis,
            rank_id,
        )
        return len(group_ranks), group_ranks.index(rank_id)

    return 1, 0


def validate_opt(optimizer):
    if optimizer is not None:
        optimizer._parameter_list = None
        optimizer._param_groups = None
    return optimizer
2036 2037


2038
def set_data_parallel(x):
2039
    from .interface import ProcessMesh, shard_tensor
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
    from .process_group import get_world_process_group

    world_ranks = get_world_process_group().ranks
    process_mesh = ProcessMesh(world_ranks, ['dp'])
    shard_spec = ['dp' if len(world_ranks) > 1 else None] + [
        None for _ in range(len(x.shape) - 1)
    ]

    return shard_tensor(x, process_mesh, shard_spec)


def is_naive_data_parallel(dist_context):
    # Navie data parallel only completes dist_attr once from the front to back.
    if not dist_context.data_parallel:
        return False

    ops_type = [
        op.type
        for op in dist_context._original_serial_main_program.global_block().ops
    ]
    if (
        not set(ops_type) & set(__not_naive_data_parallel_op__)
    ) and dist_context.data_parallel:
        return True
    return False


2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
def _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.dims_mapping = py_dist_attr.dims_mapping
    cpp_dist_attr.annotated = py_dist_attr._is_annotated


def _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
    if not cpp_process_mesh.empty():
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.dims_mapping = cpp_dist_attr.dims_mapping
    py_dist_attr._is_annotated = cpp_dist_attr.annotated


def _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.impl_type = py_dist_attr.impl_type
    cpp_dist_attr.impl_idx = py_dist_attr.impl_idx
    cpp_dist_attr.annotated = py_dist_attr._is_annotated
    for name, py_tensor_dist_attr in py_dist_attr.inputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)
    for name, py_tensor_dist_attr in py_dist_attr.outputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)


def _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
    if not cpp_process_mesh.empty():
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.impl_type = cpp_dist_attr.impl_type
    py_dist_attr.impl_idx = cpp_dist_attr.impl_idx
    py_dist_attr._is_annotated = cpp_dist_attr.annotated
    py_dist_attr.op_type = cpp_dist_attr.op.type()
    for name, cpp_tensor_dist_attr in cpp_dist_attr.inputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )
    for name, cpp_tensor_dist_attr in cpp_dist_attr.outputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )


def _copy_dist_attr_to_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_to_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_to_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_from_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_from_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_from_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_to_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)


def _copy_dist_attr_from_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
2182 2183 2184 2185 2186 2187


def insert_dependencies_for_two_ops(
    block,
    idx,
    prior_op,
2188
    posterior_op,
2189 2190 2191 2192 2193
    dist_context,
    is_recompute=False,
    sync=False,
):
    """
2194
    dependency: prior_op should be run before posterior_op
2195 2196 2197 2198 2199 2200 2201 2202
    """

    assert (
        len(prior_op.output_arg_names) >= 1
    ), "first op of dependency should at least have one output. [{}]".format(
        str(prior_op)
    )
    assert (
2203
        len(posterior_op.input_arg_names) >= 1
2204
    ), "second op of dependency should at least have one input. [{}]".format(
2205
        str(posterior_op)
2206 2207 2208 2209 2210
    )
    prior_op_mesh = dist_context.get_op_dist_attr_for_program(
        prior_op
    ).process_mesh
    posterior_mesh = dist_context.get_op_dist_attr_for_program(
2211
        posterior_op
2212 2213 2214 2215 2216 2217 2218 2219 2220
    ).process_mesh
    assert (
        prior_op_mesh == posterior_mesh
    ), "two ops of dependency should have same mesh but got [{}] and [{}]".format(
        str(prior_op_mesh), str(posterior_mesh)
    )

    def _select_best_depend_var(vars):

2221 2222 2223
        # parameter should not be dep var since it maybe partition in sharding pass
        vars = [var for var in vars if not var.is_parameter]
        assert len(vars) > 0
2224 2225 2226 2227 2228 2229 2230 2231 2232
        vars_with_numels = [(var, get_var_numel(var)) for var in vars]
        vars_with_numels.sort(key=lambda x: x[1])

        return vars_with_numels[-1][0]

    first_var = _select_best_depend_var(
        [block.var(name) for name in prior_op.output_arg_names]
    )
    second_var = _select_best_depend_var(
2233
        [block.var(name) for name in posterior_op.input_arg_names]
2234 2235
    )

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
    return insert_dependencies_for_two_vars(
        block,
        idx,
        first_var,
        second_var,
        dist_context,
        OpRole.Backward,
        prior_op_mesh,
        is_recompute,
        sync,
    )


def insert_dependencies_for_two_vars(
    block,
    idx,
    prior_var,
    post_var,
    dist_context,
    oprole,
    process_mesh=None,
    is_recompute=False,
    sync=False,
):
    """
    dependency: op that generates prior_var should be run before op that generates post_var
    """
    assert block.has_var(prior_var.name)
    assert block.has_var(post_var.name)
    if process_mesh is None:
        process_mesh = dist_context.get_tensor_dist_attr_for_program(
            post_var
        ).process_mesh
    assert process_mesh is not None

2271 2272 2273 2274
    depend_op = block._insert_op_without_sync(
        idx,
        type='nop',
        inputs={
2275
            "X": prior_var,
2276
        },
2277
        outputs={"Out": post_var},
2278 2279
    )
    # depend_op.desc.set_type("depend")
2280
    depend_op._set_attr(OP_ROLE_KEY, oprole)
2281 2282 2283 2284
    # depend_op.desc.set_input("Dep", [first_var.name])
    # self.desc.set_output(out_proto.name, out_arg_names)

    naive_set_dist_op_attr_for_program_by_mesh(
2285
        depend_op, process_mesh, dist_context, is_recompute
2286 2287 2288 2289
    )

    if sync:
        block._sync_with_cpp()
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

    return depend_op


def use_standalone_executor():
    return os.environ.get('FLAGS_CONVERT_GRAPH_TO_PROGRAM', None) in [
        1,
        '1',
        True,
        'True',
        'true',
    ]