utils.py 72.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import os
16
import copy
17
import paddle
18
import threading
19
import numpy as np
20 21
import warnings
import logging
22
from functools import reduce
23 24

import paddle.fluid.core as core
25
from paddle.fluid.framework import Variable
26
from paddle.distributed.fleet.meta_optimizers.common import OpRole
27 28 29
from paddle.distributed.auto_parallel.process_group import (
    get_all_process_groups,
)
30
from paddle.fluid.io import is_parameter, is_belong_to_optimizer
31 32 33 34
from paddle.distributed.auto_parallel.dist_attribute import (
    TensorDistributedAttribute,
    OperatorDistributedAttribute,
)
35

Z
zhaoyingli 已提交
36
__no_shape_var_type__ = [
37 38
    core.VarDesc.VarType.READER,
    core.VarDesc.VarType.STEP_SCOPES,
Z
zhaoyingli 已提交
39 40 41
    core.VarDesc.VarType.LOD_TENSOR_ARRAY,
    core.VarDesc.VarType.FEED_MINIBATCH,
    core.VarDesc.VarType.FETCH_LIST,
42 43
]

44 45
__not_naive_data_parallel_op__ = ["expand_v2"]

46

47 48 49 50 51 52 53
def get_logger(log_level, name="auto_parallel"):
    logger = logging.getLogger(name)
    logger.propagate = False
    if not logger.handlers:
        logger.setLevel(log_level)
        log_handler = logging.StreamHandler()
        log_format = logging.Formatter(
54 55
            '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
        )
56 57 58 59 60
        log_handler.setFormatter(log_format)
        logger.addHandler(log_handler)
    return logger


61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def is_valid_list_index(list, index):
    if index >= -len(list) and index < len(list):
        return True
    else:
        return False


def is_dim_shard(mapping):
    if mapping != -1:
        return True
    else:
        return False


def is_dim_replicate(mapping):
    if mapping == -1:
        return True
    else:
        return False


82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
def verify_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    if not all(isinstance(d, int) for d in dims_mapping):
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(process_mesh.shape):
            return False
    for i in range(len(process_mesh.shape)):
        if dims_mapping.count(i) > 1:
            return False
    return True


def convert_to_dims_mapping(shard_spec, process_mesh):
    dims_mapping = []
    for shard in shard_spec:
        if shard is None:
            dims_mapping.append(-1)
Z
zhaoyingli 已提交
101 102
        elif process_mesh.topology[process_mesh.dim_names.index(shard)] == 1:
            dims_mapping.append(-1)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        else:
            dims_mapping.append(process_mesh.dim_names.index(shard))
    return dims_mapping


def convert_to_shard_spec(dims_mapping, process_mesh):
    shard_spec = []
    for dim_mapping in dims_mapping:
        if dim_mapping == -1:
            shard_spec.append(None)
        else:
            shard_spec.append(process_mesh.dim_names[dim_mapping])
    return shard_spec


def verify_shard_spec(shard_spec, tensor_shape, process_mesh):
    if len(shard_spec) != len(tensor_shape):
        return False
    for shard in shard_spec:
        if shard is not None and not isinstance(shard, str):
            return False
        if shard is not None and shard not in process_mesh.dim_names:
            return False
    dims_mapping = convert_to_dims_mapping(shard_spec, process_mesh)
    if not verify_dims_mapping(dims_mapping, process_mesh):
        return False
    for i in range(len(tensor_shape)):
130 131 132 133 134
        if (
            dims_mapping[i] != -1
            and tensor_shape[i] > 0
            and tensor_shape[i] % process_mesh.shape[dims_mapping[i]] != 0
        ):
135 136 137 138
            return False
    return True


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
def compute_compatible_dim_mapping(dim_mappings):
    if not dim_mappings:
        return None
    compatible_mapping = dim_mappings[0]
    for mapping in dim_mappings:
        if compatible_mapping == -1:
            compatible_mapping = mapping
        elif mapping == -1:
            continue
        elif compatible_mapping == mapping:
            continue
        else:
            return None
    return compatible_mapping


def compute_compatible_dims_mapping(dims_mapping_list):
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
160 161 162 163 164 165
        assert (
            dims_mapping is not None
        ), "Dims mapping must not be None for compatible computation"
        assert (
            len(dims_mapping) == length
        ), "The length of dims_mapping in list must be same for compatible computation."
166 167 168
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
169 170
            list(dim_mappings)
        )
171 172 173 174 175 176 177 178 179 180 181 182
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


def compute_compatible_process_mesh(process_mesh_list):
    compatible_process_mesh = None
    if not process_mesh_list:
        return compatible_process_mesh
    for process_mesh in process_mesh_list:
        if process_mesh is not None:
183 184 185 186
            if (
                compatible_process_mesh is None
                or compatible_process_mesh == process_mesh
            ):
187 188
                compatible_process_mesh = process_mesh
            else:
189
                return None
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    return compatible_process_mesh


def compute_compatible_and_update_dim_mapping(dims_mapping_list, index_list):
    assert len(dims_mapping_list) == len(index_list)
    changed = False
    dim_mappings = []
    for i in range(len(dims_mapping_list)):
        assert is_valid_list_index(dims_mapping_list[i], index_list[i])
        dim_mappings.append(dims_mapping_list[i][index_list[i]])
    compatible_dim_mapping = compute_compatible_dim_mapping(dim_mappings)
    if compatible_dim_mapping is None:
        return False
    for i in range(len(dims_mapping_list)):
        if compatible_dim_mapping != dims_mapping_list[i][index_list[i]]:
            dims_mapping_list[i][index_list[i]] = compatible_dim_mapping
            changed = True
    return changed


def append_distributed_attr_suffix(name):
    """
    Append auto parallel suffix for distributed attribute name.
    """
    return name + core.kAutoParallelSuffix()


def remove_distributed_attr_suffix(name):
    """
    Remove auto parallel suffix from distributed attribute name.
    """
    return name.strip(core.kAutoParallelSuffix())


def check_distributed_attr_for_program(program, dist_context=None):
225
    from .dist_context import get_default_distributed_context
226

227 228
    if dist_context is None:
        dist_context = get_default_distributed_context()
229 230 231
    assert (
        dist_context.is_initialized_for_program()
    ), "Distributed attributes must be initialized before check."
232 233
    for block in program.blocks:
        for tensor in block.vars.values():
234 235
            dist_tensor = dist_context.get_dist_tensor_for_graph(tensor)
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
236 237
                tensor
            )
238
            if (tensor_dist_attr is not None) and (not dist_tensor.is_valid()):
239 240
                return False
        for op in block.ops:
241 242 243
            dist_op = dist_context.get_dist_op_for_graph(tensor)
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
            if (op_dist_attr is not None) and (not dist_op.is_valid()):
244 245 246 247
                return False
    return True


248
def print_program_with_dist_attr(program, dist_context=None):
249 250 251 252 253 254
    """
    This function reuses the original program output ability with a distributed context.
    Using lock can avoid multiple threads change the default distributed context simultaneously.
    """
    lock = threading.Lock()
    lock.acquire()
255 256
    from .dist_context import get_default_distributed_context
    from .dist_context import set_default_distributed_context
257

258 259
    if dist_context is None:
        dist_context = get_default_distributed_context()
260
        print(program, flush=True)
261 262 263
    else:
        original_default_context = get_default_distributed_context()
        set_default_distributed_context(dist_context)
264
        print(program, flush=True)
265 266
        set_default_distributed_context(original_default_context)
    lock.release()
267 268 269 270


def _get_comm_group(processes, shape, axis, rank):
    """
271
    Given a rank and the processes mesh the rank belongs to,
272 273 274 275 276 277 278 279 280 281 282
    compute the communication peers of the rank based on the give axis in the mesh.

    Example: 16 processes managed in a 4-Dimensinal mesh with shape of [2, 2, 2, 2].
    the rank communication peers of rank 0 (included) are following:
    in axis 0: [0, 1]
    in axis 1: [0, 2]
    in axis 2: [0, 4]
    in axis 3: [0, 8]
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
283 284
    # tricks to support processes mesh when it is not start with 0 or continuous
    assert rank in processes, "rank [{}] is NOT in processes group {}".format(
285 286
        rank, processes
    )
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    coordinates_in_group = [coordinate[:] for i in range(shape[axis])]

    # select comm group
    for i in range(shape[axis]):
        coordinates_in_group[i][axis] = i

    ranks_in_group_relative = [
        _coordinate2linear_idx(shape, coordinate)
        for coordinate in coordinates_in_group
    ]
    ranks_in_group = [processes[idx] for idx in ranks_in_group_relative]

    return sorted(ranks_in_group)


304 305
def _get_idx_in_axis(processes, shape, axis, rank):
    """
306
    Given a rank and the processes mesh the rank belongs to,
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    compute the index of the rank in given axis.

    Example: 27 processes managed in a 3-Dimensinal mesh with shape of [3, 3, 3].
    the index of rank 22 are:
    in axis 0: 1
    in axis 1: 1
    in axis 2: 2
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
    #  tricks to support processes mesh when it is not start with 0 or continuous
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    return coordinate[axis]


323 324 325 326
def _coordinate2linear_idx(mesh_shape, coordinate):
    """
    convert a coordinate in multidimensional mesh space into a scala idx in linear space.

327
    it use Row-major order for dimension conversion.
328
    so it has:  [most_significant_dim, ..., least_significant_dim]
329
    assume:
330 331 332 333

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

334
    linear_idx of a n dimensional coordinate is:
335 336

        I[n-1] * (S[n-2] * S[n-3] * S[n-4] *     ....    S[0]) +
337 338
        I[n-2] * (         S[n-3] * S[n-4] *     ....    S[0]) +
        I[n-3] * (                  S[n-4] *     ....    S[0]) +
339
        ...
340
        I[1]   * (                                       S[0]) +
341 342 343 344
        I[0]

    """
    # NOTE the following function work based on a strong an assumption
345
    # that the processes in mesh are
346
    #    1. starts from 0
347 348
    #    2. continuous
    # it will be wrong if ths above condition doesnot meet,
349
    # e.g. process_mesh = { process_groups = [7, 8, 9,10, 12, 13, 14, 15], mesh = [2, 4]}
350
    # if you want a more general mapping, you should use cartesian product
351 352 353 354

    assert len(mesh_shape) == len(
        coordinate
    ), "coordinate should have the same size as mesh shape, but got shape: {}, coordinate: {}".format(
355 356
        mesh_shape, coordinate
    )
357
    for i in range(len(mesh_shape)):
358 359 360 361 362 363 364 365 366 367
        assert (
            coordinate[i] >= 0
        ), "index in dimension [{}] is least than zero. coordinate: {}".format(
            i, coordinate
        )
        assert (
            coordinate[i] < mesh_shape[i]
        ), "index beyond extent in dimension [{}]. shape: {}, coordinate: {}".format(
            i, mesh_shape, coordinate
        )
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

    base = mesh_shape[-1]
    linear_idx = coordinate[-1]

    # row major order
    for i in range(len(mesh_shape) - 2, -1, -1):
        linear_idx += base * coordinate[i]
        base *= mesh_shape[i]

    return linear_idx


def _linear_idx2coordinate(mesh_shape, linear_idx):
    """
    mapping a linear scala into multidimensional mesh space, return it coordinate in that space.

    it is the inverse function of _coordinate2linear_idx.
385
    assume:
386 387 388 389 390 391 392 393 394 395 396 397 398 399

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

    the coordinate given linear_idx is:

        I[0] = linear_idx                                  % S[0]
        I[0] = (linear_idx / S[0])                         % S[1]
        I[0] = (linear_idx / (S[0] * S[1]))                % S[2]
        ....

    """

    assert linear_idx >= 0, "linear index [{}] is least than zero".format(
400 401
        linear_idx
    )
402 403 404
    assert linear_idx < np.prod(
        mesh_shape
    ), "linear index beyond the extent of mesh shape. shape: {}, linear index: {}".format(
405 406
        mesh_shape, linear_idx
    )
407 408 409 410 411 412 413 414 415 416 417

    base = 1
    coordinate = [-1] * len(mesh_shape)

    for i in reversed(range(len(mesh_shape))):
        offset = linear_idx / base
        coordinate[i] = int(offset % mesh_shape[i])
        base *= mesh_shape[i]

    # row major order
    return coordinate
418 419


420
def _get_corresponding_rank(dist_context, target_mesh, rank):
421 422 423 424 425 426

    # TODO(JZ-LIANG) a hack method to support varying mesh in Pipeline parallelism case.
    # we assume that all mesh are evenly divide from a parent mesh and should have same size.
    # to revise this in future.

    coordinate = None
427 428
    for mesh in dist_context.process_meshes:
        if rank in mesh.processes and mesh.topology == target_mesh.topology:
429 430 431
            coordinate = _linear_idx2coordinate(
                mesh.topology, mesh.processes.index(rank)
            )
432 433
            break

434 435 436
    # assert coordinate is not None, "could NOT found rank [{}] in any registered mesh".format(
    #     rank)
    if coordinate is not None:
437 438 439
        return target_mesh.processes[
            _coordinate2linear_idx(mesh.topology, coordinate)
        ]
440 441
    else:
        return target_mesh.processes[0]
442 443


444 445
def _get_unshard_dist_shape(var, dist_attr):
    var_shape = var.shape
446 447
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
448 449 450
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
451 452
        var_shape, mapping
    )
453 454 455 456 457 458 459 460 461 462
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            new_shape.append(var_shape[idx] * mesh[mapping[idx]])

    return new_shape


463
def make_data_unshard(dist_main_prog, dist_startup_prog, dist_context=None):
464
    from .dist_context import get_default_distributed_context
465

466 467
    if dist_context is None:
        dist_context = get_default_distributed_context()
468 469 470

    for var in dist_main_prog.list_vars():
        if var.is_data:
471
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
472 473
                var
            )
474 475
            inverse_shape = _get_unshard_dist_shape(var, tensor_dist_attr)
            var.desc.set_shape(inverse_shape)
476
            dim_mapping = tensor_dist_attr.dims_mapping
477
            dim_mapping = [-1] * len(dim_mapping)
478 479
            tensor_dist_attr.dims_mapping = dim_mapping
            dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
480 481


482
def _update_addition_info(addition_info):
483
    """Update default addition_info with inputs"""
484
    add_info = {"epoch": 0, "batch": 0, "batch_size": 0}
485
    if not addition_info:
486
        return add_info
487
    elif not isinstance(addition_info, dict):
488 489 490 491
        raise TypeError(
            "The type of 'addition_info' should be 'dict', "
            "but got '{}'.".format(str(type(addition_info)))
        )
492
    else:
493 494 495 496
        for item, value in addition_info.items():
            if item not in ["epoch", "batch", "batch_size"]:
                raise ValueError(
                    "The key of 'addition_info' should be one of the "
497
                    "['epoch', 'batch', 'batch_size'], but got '{}'.".format(
498 499 500
                        str(item)
                    )
                )
501 502 503
            if not isinstance(value, int):
                raise ValueError(
                    "The value of 'addition_info' should be 'int', "
504 505
                    "but got '{}'.".format(str(type(value)))
                )
506 507
            add_info[item] = value
        return add_info
508 509 510


def _check_valid_path(file_path):
511
    """Validity check of input file path"""
512 513 514
    if not file_path:
        return file_path
    elif isinstance(file_path, list):
515 516
        for file in file_path:
            if not isinstance(file, str):
517 518 519 520
                raise TypeError(
                    "The type of file path should be 'str', "
                    "but got '{}'.".format(str(type(file)))
                )
521
            if not os.path.exists(file):
522
                raise ValueError(
523 524
                    "The file path '{}' does not exist.".format(file)
                )
525 526
        return file_path
    else:
527 528 529 530
        raise TypeError(
            "The type of file path should be 'list', "
            "but got '{}'.".format(str(type(file_path)))
        )
531 532 533 534 535 536


def _check_param_dict(param_dict):
    if not param_dict:
        raise ValueError("'param_dict' cannot be None.")
    elif not isinstance(param_dict, dict):
537 538 539 540
        raise TypeError(
            "The type of 'param_dict' should be 'dict', "
            "but got '{}'.".format(str(type(param_dict)))
        )
541 542 543 544 545
    else:
        for name, value in param_dict.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of key of 'param_dict' should be 'str', "
546 547
                    "but got '{}'.".format(str(type(name)))
                )
548 549 550
            if not isinstance(value, paddle.fluid.LoDTensor):
                raise TypeError(
                    "The type of value of 'param_dict' should be 'LoDTensor', "
551 552
                    "but got '{}'.".format(str(type(value)))
                )
553 554 555 556 557 558 559
        return param_dict


def _check_dist_attr(dist_attr):
    if not dist_attr:
        return dist_attr
    elif not isinstance(dist_attr, dict):
560 561 562 563
        raise TypeError(
            "The type of 'dist_attr' should be 'dict', "
            "but got '{}'.".format(str(type(dist_attr)))
        )
564 565 566 567 568
    else:
        for name, value in dist_attr.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of param name of 'dist_attr' should be 'str', "
569 570
                    "but got '{}'.".format(str(type(name)))
                )
571 572 573
            if not isinstance(value, dict):
                raise TypeError(
                    "The type of distributed attribute should be 'dict', "
574 575
                    "but got '{}'".format(str(type(value)))
                )
576 577 578 579 580
            attr = ['process_shape', 'process_group', 'dims_mapping']
            if list(value.keys()) != attr:
                raise ValueError(
                    "The key of distributed attribute should be "
                    "'['process_shape', 'process_group', 'dims_mapping']', "
581 582
                    "but got {}.".format(str(value.keys()))
                )
583
        return dist_attr
584 585


586 587 588 589 590 591 592 593
def save_distributed_checkpoint(
    program,
    checkpoint_path,
    dist_attr_path,
    addition_info=None,
    is_integrated=False,
    dist_context=None,
):
594 595
    """
    Save model parameter state, optimzer state, distributed attribute and
596 597 598 599 600
    additional information of each rank.

    Args:
        program(Program): The program to be saved.
        checkpoint_path(str): The path of the checkpoint file to be saved.
601 602 603
        dist_attr_path(str): The path of distributed attribute file to be saved.
        addition_info(dict, optional): Additional information, key should be selected in ['epoch', 'batch', 'batch_size'].
            Default values are 0, when 'addition_info' is None. Default: None.
604
        is_integrated(bool, optional): Whether to integrate param before save. Default: False.
605
        dist_context(DistributedContext ,optional): collect related distributed information for program
606 607 608 609 610 611 612

    Returns:
        None

    Examples:
        .. code-block:: python

613 614 615 616
            path = os.path.join("./output", "step_%d" % step)
            os.makedirs(path, exist_ok=True)
            add_info = {'batch': step, "batch_size": global_batch_size}
            save_distributed_checkpoint(program, path, path, add_info)
617
    """
618 619 620 621 622 623 624 625
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    assert isinstance(is_integrated, bool)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    addition_info = _update_addition_info(addition_info)

626
    if not is_integrated:
627 628
        _save_distributed_state_dict(program, addition_info, checkpoint_path)
        _save_distributed_attribute(program, dist_attr_path, dist_context)
629 630 631
    else:
        # TODO: integrate param before save
        raise NotImplementedError(
632 633
            "Integrating parameter has not been implemented."
        )
634 635


636
def load_distributed_checkpoint(checkpoint_path, dist_attr_path):
637
    """
638
    Load parameter, optimizer, distributed attribute and addition_info.
639 640

    Args:
641 642
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
643 644

    Returns:
645 646
        param_dict(dict): parameters' value of all ranks.
        dist_attr(dict): parameters' distributed attribute.
647
        addition_info(dict): additional information user saved in last training.
648 649 650 651 652 653 654

    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.

    Examples:
        .. code-block:: python

655
            ckpt_path = ['./model_state_rank0.pdmodel',
656
                         './model_state_rank1.pdmodel']
657
            dist_attr_path = ['./dist_attr_rank0.pdattr',
658 659 660
                              './dist_attr_rank1.pdattr']
            param_dict, dist_attr, add_info = load_distributed_checkpoint(ckpt_path, dist_attr_path)
    """
661 662 663 664
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
665 666 667 668 669 670 671 672

    state_dict_info = _load_distributed_state_dict(checkpoint_path)
    dist_attr = _load_distributed_attribute(dist_attr_path)
    param_dict = state_dict_info["model"]
    addition_info = state_dict_info["addition_info"]
    return param_dict, dist_attr, addition_info


673 674 675
def load_checkpoint_into_program(
    checkpoint_path, dist_attr_path, program, dist_context=None
):
676
    """
677 678 679 680 681 682 683 684 685 686
    Load parameter, optimizer, distributed attribute and addition_info into model.

    Args:
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
        program(Program): the program to be updated with checkpoint_path.
        dist_context(DistributedContext ,optional): collect related distributed information for program

    Returns:
        addition_info(dict): user saved in last train.
687

688 689
    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.
690 691 692 693 694

    Examples:
        .. code-block:: python

            exe.run(startup_program)
695
            ckpt_path = ['./model_state_rank0.pdmodel',
696
                         './model_state_rank1.pdmodel']
697
            dist_attr_path = ['./dist_attr_rank0.pdattr',
698 699
                              './dist_attr_rank1.pdattr']
            load_checkpoint_into_program(ckpt_path, dist_attr_path, main_program)
700
    """
701
    from .dist_context import get_default_distributed_context
702

703
    assert isinstance(program, paddle.fluid.framework.Program)
704 705 706 707
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
708 709 710 711 712 713 714
    if dist_context is None:
        dist_context = get_default_distributed_context()
    all_state_dict_info = _load_distributed_state_dict(checkpoint_path)
    all_pre_dist_attr = _load_distributed_attribute(dist_attr_path)
    all_cur_dist_attr = get_dist_attr(program, dist_context)
    all_param_dict = all_state_dict_info["model"]
    addition_info = all_state_dict_info["addition_info"]
715 716 717
    sliced_param_dict = merge_and_slice_parameter(
        all_param_dict, all_pre_dist_attr, all_cur_dist_attr
    )
718 719 720 721 722 723
    load_parameter_into_program(sliced_param_dict, program)

    return addition_info


def load_parameter_into_program(param_dict, program):
724
    """
725 726 727 728 729 730
    Load parameters into program.

    Args:
        param_dict(dict): parameters' name and value.
        program(Program): the program to be updated
    """
731
    assert isinstance(param_dict, dict)
732
    assert program and isinstance(program, paddle.fluid.framework.Program)
733 734
    if not param_dict:
        return
735 736 737 738
    program.set_state_dict(param_dict)


def _save_distributed_attribute(program, dist_attr_path, dist_context):
739
    """Save distributed attribute of all parameters"""
740 741
    # TODO: just save a complete distributed attribute file
    rank_id = paddle.distributed.get_rank()
742 743 744
    dist_attr_name = os.path.join(
        dist_attr_path, "dist_attr_rank{}.pdattr".format(rank_id)
    )
745 746
    dist_attr_dict = {
        "model": get_dist_attr(program, dist_context),
747
        "world_size": paddle.distributed.get_world_size(),
748 749
    }
    paddle.save(dist_attr_dict, dist_attr_name)
750
    logging.info(
751 752
        "Already saved distributed attribute to '{}'.".format(dist_attr_path)
    )
753 754 755


def _load_distributed_attribute(dist_attr_path):
756
    """Load parameters' distributed attribute from dist_attr_path"""
757 758 759 760
    total_dist_attr = {}
    for dist_attr_file in dist_attr_path:
        dist_attr = paddle.load(dist_attr_file)
        pre_world_size = dist_attr["world_size"]
761 762 763
        assert pre_world_size == len(
            dist_attr_path
        ), "The number of 'dist_attr_path' must be equal to the last training world size."
764 765 766 767 768 769 770 771
        for name, attr in dist_attr["model"].items():
            if name not in total_dist_attr:
                total_dist_attr[name] = attr

    return total_dist_attr


def _save_distributed_state_dict(program, addition_info, checkpoint_path):
772
    """Save parameters' state_dict"""
773
    rank = paddle.distributed.get_rank()
774 775 776
    ckpt_file_name = os.path.join(
        checkpoint_path, "model_state_rank{}.pdmodel".format(rank)
    )
777 778 779
    state_dict = {
        "model": program.state_dict(),
        "world_size": paddle.distributed.get_world_size(),
780
        "addition_info": addition_info,
781 782 783 784 785 786
    }
    paddle.save(state_dict, ckpt_file_name)
    logging.info("Already saved model to '{}'.".format(checkpoint_path))


def _load_distributed_state_dict(checkpoint_path):
787
    """Load parameters' state_dict from checkpoint_path"""
788 789
    all_state_dict = {}
    for idx, ckpt_file in enumerate(checkpoint_path):
Z
zhaoyingli 已提交
790
        state_dict_info = paddle.load(ckpt_file, return_numpy=True)
791
        pre_world_size = state_dict_info["world_size"]
792 793 794
        assert pre_world_size == len(
            checkpoint_path
        ), "The number of 'checkpoint_path' must be equal to the last training world size."
795 796 797 798 799 800 801 802 803 804
        if idx == 0:
            addition_info = state_dict_info["addition_info"]
        for name, value in state_dict_info["model"].items():
            if name in all_state_dict:
                all_state_dict[name].append(np.array(value))
            else:
                all_state_dict[name] = [np.array(value)]

    all_state_dict_info = {
        "model": all_state_dict,
805
        "addition_info": addition_info,
806 807 808 809 810
    }
    return all_state_dict_info


def get_dist_attr(program, dist_context=None):
811
    """
812 813 814 815 816 817 818 819 820 821 822 823 824 825
    Get distributed attribute of current rank.

    Args:
        program(Program): main program for training
    """
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    dist_attr = {}
    for var in program.list_vars():
        if is_parameter(var) or is_belong_to_optimizer(var):
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
826 827
                var
            )
828 829 830 831 832
            process_mesh = tensor_dist_attr.process_mesh
            dims_mapping = tensor_dist_attr.dims_mapping
            dist_attr[var.name] = {
                "process_shape": process_mesh.topology,
                "process_group": process_mesh.processes,
833
                "dims_mapping": dims_mapping,
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
            }
    return dist_attr


def merge_and_slice_parameter(dist_param_dict, pre_dist_attr, cur_dist_attr):
    """
    Merge parameters with previous dist_attr and slice parameters with current dist_attr

    Arags:
        dist_param_dict(dict): parameters' value of all ranks.
        pre_dist_attr(dict): parameters' dist_attr of last training process.
        cur_dist_attr(dict): parameters' dist_attr of current training process.

    Returns:
        dist_param_dict(dict): parameters' value of current rank.
    """
    assert _check_dist_attr(pre_dist_attr), "'pre_dist_attr' cannot be None."
851 852 853 854 855
    assert isinstance(
        dist_param_dict, dict
    ), "The type of 'dist_param_dict' should be 'dict', but got {}.".format(
        str(type(dist_param_dict))
    )
856 857
    for name, value in dist_param_dict.items():
        if not isinstance(name, str):
858 859 860 861 862 863
            raise TypeError(
                "The key of 'dist_param_dict' is parameter's name, "
                "and its type should be 'str', but got {}.".format(
                    str(type(name))
                )
            )
864
        if not isinstance(value, list) or not all(
865 866
            isinstance(v, np.ndarray) for v in value
        ):
867 868
            raise TypeError(
                "The value of 'dist_param_dict' is parameter's value of all ranks, "
869 870
                "and its type should be 'list(numpy.ndarray)'."
            )
871

872 873 874
    if cur_dist_attr is None:
        return {}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
    param_not_in_pre = []
    param_not_in_cur = []
    logging.info("Start to merge and slice parameters.")
    for var_name in cur_dist_attr.keys():
        if var_name not in pre_dist_attr:
            param_not_in_pre.append(var_name)
            continue

        pre_attr = pre_dist_attr[var_name]
        cur_attr = cur_dist_attr[var_name]
        if pre_attr == cur_attr:
            # skip merge and slice
            rank_id = paddle.distributed.get_rank()
            index = cur_attr["process_group"].index(rank_id)
            param = dist_param_dict[var_name][index]
890
            dist_param_dict[var_name] = param
891 892 893 894 895 896
            continue

        pre_param = dist_param_dict[var_name]
        pre_dims_mapping = pre_attr["dims_mapping"]
        cur_dims_mapping = cur_attr["dims_mapping"]
        if len(set(pre_dims_mapping)) > 1 or -1 not in pre_dims_mapping:
897
            complete_param = _merge_parameter_with_dist_attr(
898 899
                pre_param, pre_attr
            )
900 901 902
            dist_param_dict[var_name] = complete_param
        else:
            complete_param = pre_param[0]
903
            dist_param_dict[var_name] = complete_param
904 905

        if len(set(cur_dims_mapping)) > 1 or -1 not in cur_dims_mapping:
906
            sliced_param = _slice_parameter_with_dist_attr(
907 908
                complete_param, cur_attr
            )
909 910 911 912 913 914 915 916
            dist_param_dict[var_name] = sliced_param

    for var_name in pre_dist_attr:
        if var_name not in cur_dist_attr:
            param_not_in_cur.append(var_name)
            dist_param_dict.pop(var_name)

    if param_not_in_pre:
917 918
        warnings.warn(
            "Parameters '{}' are not found in last training process.".format(
919 920 921
                str(param_not_in_pre)
            )
        )
922 923
    if param_not_in_cur:
        warnings.warn(
924
            "Parameters '{}' are not found in current training process.".format(
925 926 927
                str(param_not_in_cur)
            )
        )
928 929 930 931 932

    return dist_param_dict


def _merge_parameter_with_dist_attr(param_list, dist_attr):
933
    """Merge parameter with distributed attribute"""
934
    from .reshard import Resharder
935 936 937 938 939

    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # get the complete shape of the parameter
940 941 942
    complete_shape = Resharder.compute_complete_shape(
        param_list[0].shape, process_shape, dims_mapping
    )
943 944
    # merge the parameter with dist_attr
    partition_param_list = []
Z
zhaoyingli 已提交
945
    merged_partiton = []
946
    for process in process_group:
947
        partition_index = Resharder.compute_partition_index(
948 949
            process, complete_shape, dims_mapping, process_shape, process_group
        )
950
        index = process_group.index(process)
Z
zhaoyingli 已提交
951 952
        if partition_index not in merged_partiton:
            merged_partiton.append(partition_index)
953 954 955 956 957 958
            _merge_parameter(
                partition_param_list,
                param_list[index],
                partition_index,
                complete_shape,
            )
Z
zhaoyingli 已提交
959

960 961 962
    assert (
        len(partition_param_list) == 1 or not partition_param_list
    ), "Fail to merge parameter"
963
    complete_param = partition_param_list[0][0]
964 965 966 967
    return complete_param


def _slice_parameter_with_dist_attr(param, dist_attr):
968 969 970 971
    """Slice parameter with distributed attribute"""
    param = (
        np.array(param) if isinstance(param, paddle.fluid.LoDTensor) else param
    )
972 973 974 975
    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # slice the parameter with dist_attr
976 977 978 979 980 981
    partition_index_list = _get_split_indices(
        param.shape, dims_mapping, process_shape, process_group
    )
    sliced_param_list = _slice_parameter(
        param, partition_index_list, len(partition_index_list)
    )
982 983
    # get the current parameter's index in sliced_param_list
    rank_id = paddle.distributed.get_rank()
984 985 986
    sliced_param_index = _get_sliced_param_index(
        rank_id, param.shape, dims_mapping, process_shape, process_group
    )
987
    sliced_param = sliced_param_list[sliced_param_index]
988 989 990
    return sliced_param


991 992 993
def _merge_parameter(
    partition_param_list, param, partition_index, complete_shape
):
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    """
    Merge partitial parameters to a complete one.

    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
            partition_param_list = [(np.array([[[1.11, 1.12]]]), [[0,1],[0,1],[0,2]])]
            param = np.array([[[1.13, 1.14]]])
            partition_index = [[0,1],[0,1],[2,4]]

            _merge_parameter(partition_param_list, param, partition_index)
            # partition_param_list: [(np.array([[[1.11, 1.12, 1.13, 1.14]]]), [[0,1],[0,1],[0,4]])]
    """
1011
    from .reshard import Resharder
1012

Z
zhaoyingli 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021
    if len(partition_param_list) == 1:
        is_complete_data = True
        for idx, item in enumerate(partition_param_list[0][1]):
            if item[0] != 0 or item[1] != complete_shape[idx]:
                is_complete_data = False
                break
        if is_complete_data:
            return

1022 1023
    if not partition_param_list:
        partition_param_list.append((param, partition_index))
1024
    else:
1025 1026
        i = 0
        while i < len(partition_param_list):
1027 1028 1029 1030 1031 1032 1033
            (
                concat_axis,
                first_order,
                new_partition,
            ) = Resharder.compute_concat_info(
                partition_param_list[i][1], partition_index
            )
1034 1035 1036
            if concat_axis != -1:
                if first_order == 0:
                    new_param = np.concatenate(
1037 1038
                        (partition_param_list[i][0], param), axis=concat_axis
                    )
1039 1040
                else:
                    new_param = np.concatenate(
1041 1042
                        (param, partition_param_list[i][0]), axis=concat_axis
                    )
1043 1044

                partition_param_list.pop(i)
1045 1046 1047 1048 1049 1050
                _merge_parameter(
                    partition_param_list,
                    new_param,
                    new_partition,
                    complete_shape,
                )
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
                break
            i += 1


def _slice_parameter(complete_param, partition_index_list, length):
    """
    Slice a complete parameter.

    Returns:
        sliced_param_list(list): sliced parameters with 'partition_index_list'

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            sliced_param_list = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]
    """
    sliced_param_list = []
    axis = len(complete_param.shape) - length
1078 1079 1080
    sliced_param = np.split(
        complete_param, partition_index_list[axis], axis=axis
    )
1081 1082 1083 1084
    if length == 1:
        return sliced_param
    for param in sliced_param:
        sliced_param_list.extend(
1085 1086
            _slice_parameter(param, partition_index_list, length - 1)
        )
1087 1088 1089
    return sliced_param_list


1090 1091 1092
def _get_sliced_param_index(
    rank, complete_shape, dims_mapping, process_shape, process_group
):
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
    """
    Get sliced_param's index of current rank in all sliced parameters list.

    Returns:
        sliced_param_index(int): the index of sliced param in sliced_param_list

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            slice_param = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
1111
            # slice_param:
1112 1113 1114 1115 1116 1117
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]

            index = _get_sliced_param_index(rank, complete_shape, dims_mapping
                                            process_shape, process_group)
            # index: 2
    """
1118
    from .reshard import Resharder
1119

1120 1121 1122
    partition_index = Resharder.compute_partition_index(
        rank, complete_shape, dims_mapping, process_shape, process_group
    )
1123 1124 1125 1126 1127 1128
    sliced_param_index = 0
    for i, shape in enumerate(complete_shape):
        if dims_mapping[i] == -1:
            slice_shape = shape
        else:
            slice_shape = shape // process_shape[dims_mapping[i]]
1129 1130
        if slice_shape == 1:
            index = partition_index[i][0]
1131 1132 1133 1134
        else:
            index = (partition_index[i][0] + 1) // slice_shape
        sliced_param_index = sliced_param_index * (shape // slice_shape) + index
    return sliced_param_index
1135 1136


1137 1138 1139
def _get_split_indices(
    complete_shape, dims_mapping, process_shape, process_group
):
1140 1141 1142 1143 1144
    """
    Get split indices of every dimension.

    Returns:
        split_indices_list(list): the split indices of every dimension of the parameter
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            index = _get_split_indices(complete_shape, dims_mapping, process_shape, process_group)
            # index: [[], [], [2, 4]]
    """
1159
    from .reshard import Resharder
1160 1161 1162

    split_indices_list = []
    for process in process_group:
1163
        partition_index = Resharder.compute_partition_index(
1164 1165
            process, complete_shape, dims_mapping, process_shape, process_group
        )
1166 1167 1168 1169 1170 1171
        if split_indices_list:
            for dim in range(len(partition_index)):
                split_indices_list[dim].extend(partition_index[dim])
        else:
            split_indices_list = partition_index
    split_indices_list = list(
1172 1173 1174 1175 1176 1177
        map(
            lambda x, y: list(set(x) - set([y]) - set([0])),
            split_indices_list,
            complete_shape,
        )
    )
1178 1179
    split_indices_list = [sorted(x) for x in split_indices_list]
    return split_indices_list
Z
zhaoyingli 已提交
1180 1181 1182 1183 1184 1185 1186 1187


def set_grad_var_shape(program, dist_context):
    from .operators.common import infer_shape
    from paddle.distributed.fleet.meta_optimizers.common import OpRole

    block = program.global_block()
    vars = block.vars
1188 1189 1190 1191 1192 1193 1194 1195
    appended_grad_times = 0
    grad_var_to_var = dist_context.dist_op_context.grad_var_to_var

    for idx, op in enumerate(block.ops):

        if int(op.attr('op_role')) != int(OpRole.Backward):
            continue

1196 1197 1198 1199
        if (
            int(block.ops[idx - 1].attr('op_role')) == int(OpRole.Forward)
            or int(block.ops[idx - 1].attr('op_role')) == 257
        ):
1200
            appended_grad_times += 1
J
JZ-LIANG 已提交
1201 1202 1203 1204

        if op.type in ["check_finite_and_unscale", "update_loss_scaling"]:
            break

1205
        if op.type in ["sum", "concat", "shape"]:
Z
zhaoyingli 已提交
1206 1207
            continue

1208 1209 1210 1211 1212 1213 1214 1215 1216
        op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None

        for var_name in op.output_arg_names:

            if "@GRAD" not in var_name:
                continue
            if var_name in grad_var_to_var[appended_grad_times]:
                forward_var_name = grad_var_to_var[appended_grad_times][
1217 1218
                    var_name
                ]
1219
            else:
1220
                forward_var_name = var_name[: var_name.find("@GRAD")]
1221 1222

            if op.type in [
1223 1224 1225 1226 1227
                "c_allreduce_sum",
                "c_identity",
                "scale",
                "cast",
                "fill_any_like",
1228 1229
            ]:
                forward_var_name = op.input_arg_names[0]
1230 1231 1232 1233 1234
            elif (
                op.type == "matmul_v2_grad"
                or op.type == "matmul_grad"
                or op.type == "mul_grad"
            ):
1235 1236 1237 1238
                forward_var_name = None
                for output_name in op.output_names:
                    if var_name in op.output(output_name):
                        assert "@GRAD" in output_name
1239
                        input_name = output_name[: output_name.find("@GRAD")]
1240 1241 1242 1243 1244
                        assert len(op.input(input_name)) == 1
                        forward_var_name = op.input(input_name)[0]
                assert forward_var_name is not None

            need_set_shape_list = [
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
                "reshape2_grad",
                "softmax_with_cross_entropy_grad",
                "transpose2_grad",
                "softmax_grad",
                "cross_entropy_grad2",
                "dropout_grad",
                "tanh_grad",
                "slice",
                "assign",
                "matmul_v2_triple_grad",
                "elementwise_add_triple_grad",
                "fill_constant",
                "sqrt_grad",
Z
zhaoyingli 已提交
1258
                "fused_softmax_mask_upper_triangle_grad",
1259 1260
                "flatten_contiguous_range_grad",
                "relu_grad",
1261 1262
            ]
            forward_list = [
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
                "reshape2",
                "softmax_with_cross_entropy",
                "transpose2",
                "softmax",
                "cross_entropy2",
                "dropout",
                "tanh",
                ["slice_grad", "c_allgather"],
                "assign",
                "matmul_v2_grad_grad",
                "elementwise_add_grad_grad",
                "shape",
                "sqrt",
                "fused_softmax_mask_upper_triangle",
                "flatten_contiguous_range",
                "relu",
1279 1280 1281 1282 1283
            ]
            if op.type in need_set_shape_list:
                for forward_op in block.ops:
                    idx = need_set_shape_list.index(op.type)
                    forward_op_name = forward_list[idx]
1284 1285 1286 1287 1288 1289 1290 1291 1292
                    if (
                        forward_op.type in forward_op_name
                        and forward_var_name in forward_op.input_arg_names
                    ):
                        op_dist_attr = (
                            dist_context.get_op_dist_attr_for_program(
                                forward_op
                            )
                        )
1293 1294 1295
                        break

            forward_input_dist_attr = op_dist_attr.get_input_dist_attr(
1296 1297 1298 1299 1300
                forward_var_name
            )
            assert (
                forward_input_dist_attr is not None
            ), f"{forward_var_name, str(op)}"
1301
            forward_var = vars[forward_var_name]
1302 1303 1304
            forward_var_dist_attr = (
                dist_context.get_tensor_dist_attr_for_program(forward_var)
            )
1305 1306
            assert forward_var_dist_attr is not None
            grad_var = vars[var_name]
1307 1308 1309 1310 1311 1312
            ref_shape = infer_shape(
                block,
                forward_var,
                forward_var_dist_attr,
                forward_input_dist_attr,
            )
1313 1314 1315

            if list(grad_var.shape) != ref_shape:
                grad_var.desc.set_shape(ref_shape)
C
caozhou 已提交
1316 1317


1318 1319 1320 1321 1322 1323
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
OpRole = core.op_proto_and_checker_maker.OpRole


def is_forward_op(op):
    op_role = int(op.attr('op_role'))
1324 1325 1326
    return OP_ROLE_KEY in op.attr_names and (
        op_role == int(OpRole.Forward) or op_role == int(OpRole.Loss)
    )
1327 1328 1329


def is_backward_op(op):
1330 1331 1332
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Backward)
1333 1334


1335
def is_optimize_op(op):
1336 1337 1338
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize)
1339 1340


1341
def is_lr_sched_op(op):
1342 1343 1344
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize.LRSched)
1345 1346


J
JZ-LIANG 已提交
1347
def is_loss_op(op):
1348 1349 1350
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) == (int(OpRole.Forward) | int(OpRole.Loss))
J
JZ-LIANG 已提交
1351 1352


1353 1354 1355 1356 1357 1358 1359
def is_loss_grad_op(op):
    if OP_ROLE_KEY not in op.attr_names:
        return False
    op_role = int(op.all_attrs()[OP_ROLE_KEY])
    return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)


1360
def is_gradient_clip_op(op):
1361 1362 1363
    return op.desc.has_attr("op_namescope") and op.desc.attr(
        "op_namescope"
    ).startswith("/gradient_clip")
1364 1365


1366 1367 1368 1369
def is_prim_op(op):
    return op.type.endswith("_p")


J
JZ-LIANG 已提交
1370 1371 1372 1373
def get_loss_op(block):
    loss_ops = []
    for op in block.ops:
        if is_loss_op(op):
1374 1375 1376
            assert (
                len(op.desc.output_arg_names()) == 1
            ), "loss op should only output loss var"
J
JZ-LIANG 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
            loss_ops.append(op)

    assert len(loss_ops) == 1, "num of loss op is not equal to one"
    return loss_ops[0]


def set_var_dist_attr(dist_context, var, dims_mapping, process_mesh, **kwargs):
    tensor_dist_attr = TensorDistributedAttribute()
    tensor_dist_attr.dims_mapping = dims_mapping
    # TODO get global mesh group
    tensor_dist_attr.process_mesh = process_mesh
1388 1389 1390
    if "mark_annotated" in kwargs and kwargs["mark_annotated"]:
        tensor_dist_attr.mark_annotated("dims_mapping")
        tensor_dist_attr.mark_annotated("process_mesh")
J
JZ-LIANG 已提交
1391 1392 1393 1394
    dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
    return tensor_dist_attr


1395
def naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
1396 1397
    new_op, process_mesh, ref_mapping, ctx
):
J
JZ-LIANG 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    assert process_mesh is not None
    assert ref_mapping is not None

    new_op_dist_attr = OperatorDistributedAttribute()

    for input_varname in new_op.desc.input_arg_names():
        new_op_dist_attr.set_input_dims_mapping(input_varname, ref_mapping)
    for output_varname in new_op.desc.output_arg_names():
        new_op_dist_attr.set_output_dims_mapping(output_varname, ref_mapping)

    new_op_dist_attr.process_mesh = process_mesh
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


C
caozhou 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
def update_op_dims_mapping_by_default_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    # The following statement will be replaced by a more elegent way
    if op_desc.type() == "shape" or op_desc.type() == "slice":
        return False
    output_names = op_desc.output_names()
    xshape_arg_names = []
    if "XShape" in output_names:
        xshape_arg_names = op_desc.output("XShape")
    batch_dim_mappings = []
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if len(dims_mapping) > 1:
            for idx, mapping in enumerate(dims_mapping[1:]):
1431 1432 1433 1434 1435
                assert (
                    mapping == -1
                ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                    op_desc.type(), idx, mapping
                )
C
caozhou 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444
        batch_dim_mappings.append(dims_mapping[0])
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if len(dims_mapping) > 1:
                for idx, mapping in enumerate(dims_mapping[1:]):
1445 1446 1447 1448 1449
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1450 1451
            batch_dim_mappings.append(dims_mapping[0])
        else:
1452 1453 1454 1455 1456
            assert (
                dims_mapping[0] == -1
            ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part.".format(
                op_desc.type(), mapping
            )
C
caozhou 已提交
1457 1458
            if len(dims_mapping) > 2:
                for idx, mapping in enumerate(dims_mapping[2:]):
1459 1460 1461 1462 1463
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1464 1465 1466
            batch_dim_mappings.append(dims_mapping[1])

    compatible_dim_mapping = compute_compatible_dim_mapping(batch_dim_mappings)
1467 1468 1469
    assert (
        compatible_dim_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if compatible_dim_mapping != dims_mapping[0]:
            dims_mapping[0] = compatible_dim_mapping
            changed = True
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if compatible_dim_mapping != dims_mapping[0]:
                dims_mapping[0] = compatible_dim_mapping
                changed = True
        else:
            if compatible_dim_mapping != dims_mapping[1]:
                dims_mapping[1] = compatible_dim_mapping
                changed = True

    return changed


def update_op_dims_mapping_by_elementwise_like_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    input_arg_names = op_desc.input_arg_names()
    input_dims_mapping_dict = {}
    input_dims_mapping_lens = {}
    max_dims_mapping_len = -1
    for arg_name in input_arg_names:
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if max_dims_mapping_len < len(dims_mapping):
            max_dims_mapping_len = len(dims_mapping)
        input_dims_mapping_dict[arg_name] = dims_mapping
        input_dims_mapping_lens[arg_name] = len(dims_mapping)

    dims_mapping_list = []
    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
            for i in range(input_dims_mapping_lens[arg_name]):
1515 1516 1517
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
                new_dims_mapping[new_idx] = input_dims_mapping_dict[arg_name][i]
            dims_mapping_list.append(new_dims_mapping)
        else:
            dims_mapping_list.append(input_dims_mapping_dict[arg_name])
    output_arg_names = op_desc.output_arg_names()
    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        assert len(dims_mapping) == max_dims_mapping_len
        dims_mapping_list.append(dims_mapping)

    compatible_dims_mapping = compute_compatible_dims_mapping(dims_mapping_list)
1529 1530 1531
    assert (
        compatible_dims_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1532 1533 1534 1535 1536 1537 1538

    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [
                -1 for _ in range(input_dims_mapping_lens[arg_name])
            ]
            for i in range(input_dims_mapping_lens[arg_name]):
1539 1540 1541
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1542 1543 1544 1545 1546 1547
                new_dims_mapping[i] = compatible_dims_mapping[new_idx]
            if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                changed = True
        else:
            if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
1548 1549 1550
                op_dist_attr.set_input_dims_mapping(
                    arg_name, compatible_dims_mapping
                )
C
caozhou 已提交
1551 1552 1553 1554 1555
                changed = True

    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if compatible_dims_mapping != dims_mapping:
1556 1557 1558
            op_dist_attr.set_output_dims_mapping(
                arg_name, compatible_dims_mapping
            )
C
caozhou 已提交
1559 1560 1561
            changed = True

    return changed
1562 1563


1564 1565 1566
def get_all_distributed_main_program(
    serial_program_info, dist_context, parallelizer
):
1567
    "Get all distributed main programs by dist_context."
1568
    from .dist_context import DistributedOperatorContext
1569

1570
    cluster = serial_program_info.cluster
1571
    copied_parallelizer = copy.deepcopy(parallelizer)
1572
    all_dist_main_program = []
1573 1574 1575 1576 1577
    ranks = (
        paddle.distributed.get_world_size()
        if cluster is None
        else len(cluster.get_all_devices("GPU"))
    )
1578 1579 1580
    for rank_id in range(ranks):
        used_dist_context = copy.deepcopy(dist_context)
        used_dist_context._dist_op_context = DistributedOperatorContext()
1581 1582 1583 1584 1585 1586 1587
        (
            _,
            _,
            dist_startup_program,
            dist_main_program,
            _,
        ) = copied_parallelizer._get_dist_program(rank_id, used_dist_context)
1588 1589 1590 1591 1592 1593
        all_dist_main_program.append(dist_main_program)

    return all_dist_main_program


class SerialProgramInfo:
1594 1595 1596
    def __init__(
        self, train_program, satrtup_program, loss, optimizer, cluster=None
    ):
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
        self._train_program = train_program
        self._startup_program = satrtup_program
        self._loss = loss
        self._optimizer = optimizer
        self._cluster = cluster

    @property
    def train_program(self):
        return self._train_program

    @property
    def startup_program(self):
        return self._startup_program

    @property
    def loss(self):
        return self._loss

    @property
    def optimizer(self):
        return self._optimizer

    @property
    def cluster(self):
        return self._cluster
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636


def get_standalone_cost_data(distributed_programs):
    def _compute_runtime(op_cost, op, vars):
        runtime = 0
        try:
            runtime = float(op_cost["op_time"])
        except:
            return runtime
        op_config = op_cost["config"]
        total_static_input_size = 0
        total_actual_input_size = 0
        parsed_info = op_config.split("\n")
        variable = "(Variable)"
        for info in parsed_info:
1637 1638 1639
            variable = (
                "(Variable)" if "(Variable)" in info else "(list<Variable>"
            )
1640
            if variable in info:
1641
                arg_name_lower = info[: info.find(variable) - 1]
1642 1643
                shape_left_boundary = info.find("[")
                shape_right_boundary = info.find("]")
1644 1645 1646 1647 1648 1649 1650 1651
                assert (
                    shape_left_boundary > 0
                    and shape_right_boundary > 0
                    and shape_right_boundary > shape_left_boundary
                ), "Get shape failed."
                shape = info[
                    shape_left_boundary + 1 : shape_right_boundary
                ].split(",")
1652 1653 1654 1655
                shape = list(map(lambda x: int(x.strip()), shape))
                dtype_factor = 1
                total_static_input_size += reduce(lambda x, y: x * y, shape)
                if op.type == "c_embedding":
1656 1657 1658
                    arg_name_lower = (
                        "w" if arg_name_lower == "weight" else "ids"
                    )
1659 1660 1661 1662 1663
                for arg_name in op.input_names:
                    if arg_name.lower() == arg_name_lower:
                        for var_name in op.input(arg_name):
                            var = vars[var_name]
                            total_actual_input_size += reduce(
1664 1665
                                lambda x, y: x * y, var.shape
                            )
1666
                        break
1667 1668 1669
        assert (
            total_static_input_size > 0 and total_actual_input_size > 0
        ), "Get input size failed."
1670

1671 1672 1673
        actual_runtime = (
            total_actual_input_size / total_static_input_size * runtime
        )
1674 1675
        return actual_runtime

1676
    import paddle.cost_model as cm
1677

1678
    cost_model = cm.CostModel()
1679 1680 1681 1682 1683 1684 1685 1686 1687
    cost_model.static_cost_data()
    DEFAULT_MULTIPLE = 2
    OP_NAME_MAPPING = {
        "c_embedding": "embedding",
        "matmul_v2": "matmul",
        "transpose2": "transpose",
        "reshape2": "reshape",
        "unsqueeze2": "unsqueeze",
        "reduce_sum": "sum",
1688
        "elementwise_div": "divide",
1689 1690 1691
    }

    standalone_cost_data = []
1692 1693
    # skip ops
    not_enum_ops = [
1694 1695 1696 1697
        "create_py_reader",
        "create_double_buffer_reader",
        "read",
        "assign",
1698
    ]
1699 1700 1701 1702 1703 1704 1705 1706
    for distributed_program in distributed_programs:
        cost_data = {}
        vars = distributed_program.global_block().vars
        for op in distributed_program.global_block().ops:
            runtime = 0
            if op.type in not_enum_ops:
                cost_data[op.desc.id()] = runtime
                continue
1707 1708 1709 1710 1711
            dtype = (
                str(vars[op.input_arg_names[0]].dtype)
                if op.input_arg_names
                else "float32"
            )
1712 1713 1714 1715 1716
            if int(op.attr('op_role')) == int(OpRole.Backward):
                if "_grad" in op.type:
                    forward_op_name = op.type[:-5]
                    if forward_op_name in OP_NAME_MAPPING.keys():
                        forward_op_name = OP_NAME_MAPPING[forward_op_name]
1717 1718 1719
                    op_cost = cost_model.get_static_op_time(
                        forward_op_name, forward=False, dtype=dtype
                    )
1720 1721 1722
                    if op_cost:
                        runtime = _compute_runtime(op_cost, op, vars)
                    else:
1723 1724 1725
                        op_cost = cost_model.get_static_op_time(
                            forward_op_name, dtype=dtype
                        )
1726 1727 1728
                        if op_cost:
                            runtime = 2 * _compute_runtime(op_cost, op, vars)
            elif int(op.attr('op_role')) == int(OpRole.Forward):
1729 1730 1731 1732 1733
                op_name = (
                    OP_NAME_MAPPING[op.type]
                    if op.type in OP_NAME_MAPPING.keys()
                    else op.type
                )
1734 1735 1736 1737 1738 1739 1740 1741 1742
                op_cost = cost_model.get_static_op_time(op_name)
                if op_cost:
                    runtime = _compute_runtime(op_cost, op, vars)

            cost_data[op.desc.id()] = runtime

        standalone_cost_data.append(cost_data)

    return standalone_cost_data
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758


def set_dist_op_desc_original_id(dist_op_desc, op_desc, dist_context):
    op_id = op_desc.id()
    op_original_id = op_desc.original_id()
    # First, try to set the original id to the id of the op_desc
    if op_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_id)
        return
    # Second, try to set the original id to the original_id of the op_desc
    elif op_original_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_original_id)
        return
    # Third, print error infomation if we cannot find the original id
    else:
        assert False, "Cannot find the original id in the distributed context"
1759 1760 1761 1762 1763 1764 1765 1766


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]
1767 1768 1769 1770 1771


def debug_program(program, path, name):

    filename = os.path.join(
1772 1773
        path, name + '_program' + ".%d" % (paddle.distributed.get_rank())
    )
1774 1775
    with open(filename, 'w') as f:
        f.write(str(program))
1776 1777 1778 1779 1780 1781 1782


def ring_id_to_process_group(ring_id):
    for g in get_all_process_groups():
        if g.id == ring_id:
            return g
    return None
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794


def find_higher_order_backward_op(program):

    higher_order_op_suffix = ['_grad_grad', 'triple_grad']
    for block in program.blocks:
        for op in block.ops:
            for suffix in higher_order_op_suffix:
                if suffix in op.type:
                    return True

    return False
Z
zhaoyingli 已提交
1795 1796


1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
def get_var_numel(var):
    """
    input:
        - var: variable
    return:
        number of elemnet in var
    """
    assert isinstance(var, Variable)
    assert -1 not in var.shape
    return reduce(lambda x, y: x * y, var.shape)


Z
zhaoyingli 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
def get_lr(optimizer):
    if isinstance(optimizer, paddle.optimizer.Optimizer):
        return optimizer.get_lr()
    elif isinstance(optimizer, paddle.fluid.optimizer.Optimizer):
        if isinstance(optimizer._learning_rate, float):
            return optimizer._learning_rate
        else:
            return optimizer._learning_rate()
    else:
        raise TypeError(
1819 1820 1821
            "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
            " or `paddle.fluid.optimizer.Optimizer`, but got {}.".format(
                type(optimizer)
Z
zhaoyingli 已提交
1822
            )
1823
        )
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852


def initialize_pg_in_full_mode(all_process_groups, cur_rank):
    import socket
    from ..collective import _get_global_env

    has_recv_by_socket = []
    # This is a magic number
    magic_num = 500
    genv = _get_global_env()
    cur_rank_ip, cur_rank_port = genv.current_endpoint.split(":")
    cur_rank_recv_port = int(cur_rank_port) + magic_num
    server_socket = None
    # Large enough for recv rank
    buff_size = 1024
    server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server_socket.bind((cur_rank_ip, cur_rank_recv_port))
    # The 10 is an empirical value
    server_socket.listen(10)
    client_sockets = {}
    for process_group in all_process_groups:
        if cur_rank not in process_group.ranks:
            continue
        if len(process_group.ranks) == 2:
            index = process_group.ranks.index(cur_rank)
            is_send = True if index == 0 else False
            if is_send:
                recv_rank = process_group.ranks[1]
                recv_rank_ip, recv_rank_port = genv.trainer_endpoints[
1853 1854
                    recv_rank
                ].split(":")
1855
                connect_port = int(recv_rank_port) + magic_num
1856 1857 1858
                client_socket = socket.socket(
                    socket.AF_INET, socket.SOCK_STREAM
                )
1859 1860 1861 1862 1863 1864
                client_socket.connect((recv_rank_ip, connect_port))
                client_socket.send(str(cur_rank).encode('utf-8'))
                rank = client_socket.recv(buff_size).decode('utf-8')
                rank = int(rank)
                if rank != recv_rank:
                    raise ValueError(
1865 1866 1867 1868
                        "Please check comm pair, the recv rank should be {} but got {}.".format(
                            recv_rank, rank
                        )
                    )
1869
                else:
1870 1871 1872 1873 1874
                    print(
                        "It is able to instantiate {} as sender now.".format(
                            process_group.ranks
                        )
                    )
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
                client_socket.close()
            else:
                send_rank = process_group.ranks[0]
                while True:
                    if send_rank not in has_recv_by_socket:
                        client_socket, recv_addr = server_socket.accept()
                        rank = int(client_socket.recv(buff_size).decode())
                        client_sockets[rank] = client_socket
                        has_recv_by_socket.append(rank)
                    else:
                        client_sockets[send_rank].send(
1886 1887
                            str(cur_rank).encode("utf-8")
                        )
1888
                        client_sockets[send_rank].close()
1889 1890 1891 1892 1893
                        print(
                            "It is able to instantiate {} as recver now.".format(
                                process_group.ranks
                            )
                        )
1894 1895 1896
                        break
        process_group.instantiate()
    server_socket.close()
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927


def get_input_split_info(cur_rank, var, dist_context):
    # deduce how the input data is split among the cluster
    tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
    process_mesh = tensor_dist_attr.process_mesh
    dims_mapping = tensor_dist_attr.dims_mapping

    if cur_rank not in process_mesh.processes:
        rank_id = _get_corresponding_rank(dist_context, process_mesh, cur_rank)
    else:
        rank_id = cur_rank

    batch_size_axis = dims_mapping[0]
    if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
        group_ranks = _get_comm_group(
            process_mesh.processes,
            process_mesh.topology,
            batch_size_axis,
            rank_id,
        )
        return len(group_ranks), group_ranks.index(rank_id)

    return 1, 0


def validate_opt(optimizer):
    if optimizer is not None:
        optimizer._parameter_list = None
        optimizer._param_groups = None
    return optimizer
1928 1929


1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
def set_data_parallel(x):
    from .process_group import get_world_process_group
    from .interface import shard_tensor, ProcessMesh

    world_ranks = get_world_process_group().ranks
    process_mesh = ProcessMesh(world_ranks, ['dp'])
    shard_spec = ['dp' if len(world_ranks) > 1 else None] + [
        None for _ in range(len(x.shape) - 1)
    ]

    return shard_tensor(x, process_mesh, shard_spec)


def is_naive_data_parallel(dist_context):
    # Navie data parallel only completes dist_attr once from the front to back.
    if not dist_context.data_parallel:
        return False

    ops_type = [
        op.type
        for op in dist_context._original_serial_main_program.global_block().ops
    ]
    if (
        not set(ops_type) & set(__not_naive_data_parallel_op__)
    ) and dist_context.data_parallel:
        return True
    return False


1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
def _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.dims_mapping = py_dist_attr.dims_mapping
    cpp_dist_attr.annotated = py_dist_attr._is_annotated


def _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
    if not cpp_process_mesh.empty():
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.dims_mapping = cpp_dist_attr.dims_mapping
    py_dist_attr._is_annotated = cpp_dist_attr.annotated


def _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.impl_type = py_dist_attr.impl_type
    cpp_dist_attr.impl_idx = py_dist_attr.impl_idx
    cpp_dist_attr.annotated = py_dist_attr._is_annotated
    for name, py_tensor_dist_attr in py_dist_attr.inputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)
    for name, py_tensor_dist_attr in py_dist_attr.outputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)


def _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
    if not cpp_process_mesh.empty():
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.impl_type = cpp_dist_attr.impl_type
    py_dist_attr.impl_idx = cpp_dist_attr.impl_idx
    py_dist_attr._is_annotated = cpp_dist_attr.annotated
    py_dist_attr.op_type = cpp_dist_attr.op.type()
    for name, cpp_tensor_dist_attr in cpp_dist_attr.inputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )
    for name, cpp_tensor_dist_attr in cpp_dist_attr.outputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )


def _copy_dist_attr_to_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_to_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_to_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_from_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_from_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_from_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_to_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)


def _copy_dist_attr_from_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)