utils.py 76.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import os
16
import copy
17
import paddle
18
import threading
19
import numpy as np
20 21
import warnings
import logging
22
from functools import reduce
23 24

import paddle.fluid.core as core
25
from paddle.fluid.framework import Variable
26
from paddle.distributed.fleet.meta_optimizers.common import OpRole
27 28 29
from paddle.distributed.auto_parallel.process_group import (
    get_all_process_groups,
)
30
from paddle.fluid.io import is_parameter, is_belong_to_optimizer
31 32 33 34
from paddle.distributed.auto_parallel.dist_attribute import (
    TensorDistributedAttribute,
    OperatorDistributedAttribute,
)
35

36 37 38
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
OpRole = core.op_proto_and_checker_maker.OpRole

Z
zhaoyingli 已提交
39
__no_shape_var_type__ = [
40 41
    core.VarDesc.VarType.READER,
    core.VarDesc.VarType.STEP_SCOPES,
Z
zhaoyingli 已提交
42 43 44
    core.VarDesc.VarType.LOD_TENSOR_ARRAY,
    core.VarDesc.VarType.FEED_MINIBATCH,
    core.VarDesc.VarType.FETCH_LIST,
45 46
]

47 48
__not_naive_data_parallel_op__ = ["expand_v2"]

49

50 51 52 53 54 55 56
def get_logger(log_level, name="auto_parallel"):
    logger = logging.getLogger(name)
    logger.propagate = False
    if not logger.handlers:
        logger.setLevel(log_level)
        log_handler = logging.StreamHandler()
        log_format = logging.Formatter(
57 58
            '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
        )
59 60 61 62 63
        log_handler.setFormatter(log_format)
        logger.addHandler(log_handler)
    return logger


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def is_valid_list_index(list, index):
    if index >= -len(list) and index < len(list):
        return True
    else:
        return False


def is_dim_shard(mapping):
    if mapping != -1:
        return True
    else:
        return False


def is_dim_replicate(mapping):
    if mapping == -1:
        return True
    else:
        return False


85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
def verify_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    if not all(isinstance(d, int) for d in dims_mapping):
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(process_mesh.shape):
            return False
    for i in range(len(process_mesh.shape)):
        if dims_mapping.count(i) > 1:
            return False
    return True


def convert_to_dims_mapping(shard_spec, process_mesh):
    dims_mapping = []
    for shard in shard_spec:
        if shard is None:
            dims_mapping.append(-1)
Z
zhaoyingli 已提交
104 105
        elif process_mesh.topology[process_mesh.dim_names.index(shard)] == 1:
            dims_mapping.append(-1)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        else:
            dims_mapping.append(process_mesh.dim_names.index(shard))
    return dims_mapping


def convert_to_shard_spec(dims_mapping, process_mesh):
    shard_spec = []
    for dim_mapping in dims_mapping:
        if dim_mapping == -1:
            shard_spec.append(None)
        else:
            shard_spec.append(process_mesh.dim_names[dim_mapping])
    return shard_spec


def verify_shard_spec(shard_spec, tensor_shape, process_mesh):
    if len(shard_spec) != len(tensor_shape):
        return False
    for shard in shard_spec:
        if shard is not None and not isinstance(shard, str):
            return False
        if shard is not None and shard not in process_mesh.dim_names:
            return False
    dims_mapping = convert_to_dims_mapping(shard_spec, process_mesh)
    if not verify_dims_mapping(dims_mapping, process_mesh):
        return False
    for i in range(len(tensor_shape)):
133 134 135 136 137
        if (
            dims_mapping[i] != -1
            and tensor_shape[i] > 0
            and tensor_shape[i] % process_mesh.shape[dims_mapping[i]] != 0
        ):
138 139 140 141
            return False
    return True


142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
def compute_compatible_dim_mapping(dim_mappings):
    if not dim_mappings:
        return None
    compatible_mapping = dim_mappings[0]
    for mapping in dim_mappings:
        if compatible_mapping == -1:
            compatible_mapping = mapping
        elif mapping == -1:
            continue
        elif compatible_mapping == mapping:
            continue
        else:
            return None
    return compatible_mapping


def compute_compatible_dims_mapping(dims_mapping_list):
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
163 164 165 166 167 168
        assert (
            dims_mapping is not None
        ), "Dims mapping must not be None for compatible computation"
        assert (
            len(dims_mapping) == length
        ), "The length of dims_mapping in list must be same for compatible computation."
169 170 171
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
172 173
            list(dim_mappings)
        )
174 175 176 177 178 179 180 181 182 183 184 185
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


def compute_compatible_process_mesh(process_mesh_list):
    compatible_process_mesh = None
    if not process_mesh_list:
        return compatible_process_mesh
    for process_mesh in process_mesh_list:
        if process_mesh is not None:
186 187 188 189
            if (
                compatible_process_mesh is None
                or compatible_process_mesh == process_mesh
            ):
190 191
                compatible_process_mesh = process_mesh
            else:
192
                return None
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    return compatible_process_mesh


def compute_compatible_and_update_dim_mapping(dims_mapping_list, index_list):
    assert len(dims_mapping_list) == len(index_list)
    changed = False
    dim_mappings = []
    for i in range(len(dims_mapping_list)):
        assert is_valid_list_index(dims_mapping_list[i], index_list[i])
        dim_mappings.append(dims_mapping_list[i][index_list[i]])
    compatible_dim_mapping = compute_compatible_dim_mapping(dim_mappings)
    if compatible_dim_mapping is None:
        return False
    for i in range(len(dims_mapping_list)):
        if compatible_dim_mapping != dims_mapping_list[i][index_list[i]]:
            dims_mapping_list[i][index_list[i]] = compatible_dim_mapping
            changed = True
    return changed


def append_distributed_attr_suffix(name):
    """
    Append auto parallel suffix for distributed attribute name.
    """
    return name + core.kAutoParallelSuffix()


def remove_distributed_attr_suffix(name):
    """
    Remove auto parallel suffix from distributed attribute name.
    """
    return name.strip(core.kAutoParallelSuffix())


def check_distributed_attr_for_program(program, dist_context=None):
228
    from .dist_context import get_default_distributed_context
229

230 231
    if dist_context is None:
        dist_context = get_default_distributed_context()
232 233 234
    assert (
        dist_context.is_initialized_for_program()
    ), "Distributed attributes must be initialized before check."
235 236
    for block in program.blocks:
        for tensor in block.vars.values():
237 238
            dist_tensor = dist_context.get_dist_tensor_for_graph(tensor)
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
239 240
                tensor
            )
241
            if (tensor_dist_attr is not None) and (not dist_tensor.is_valid()):
242 243
                return False
        for op in block.ops:
244 245 246
            dist_op = dist_context.get_dist_op_for_graph(tensor)
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
            if (op_dist_attr is not None) and (not dist_op.is_valid()):
247 248 249 250
                return False
    return True


251
def print_program_with_dist_attr(program, dist_context=None):
252 253 254 255 256 257
    """
    This function reuses the original program output ability with a distributed context.
    Using lock can avoid multiple threads change the default distributed context simultaneously.
    """
    lock = threading.Lock()
    lock.acquire()
258 259
    from .dist_context import get_default_distributed_context
    from .dist_context import set_default_distributed_context
260

261 262
    if dist_context is None:
        dist_context = get_default_distributed_context()
263
        print(program, flush=True)
264 265 266
    else:
        original_default_context = get_default_distributed_context()
        set_default_distributed_context(dist_context)
267
        print(program, flush=True)
268 269
        set_default_distributed_context(original_default_context)
    lock.release()
270 271 272 273


def _get_comm_group(processes, shape, axis, rank):
    """
274
    Given a rank and the processes mesh the rank belongs to,
275 276 277 278 279 280 281 282 283 284 285
    compute the communication peers of the rank based on the give axis in the mesh.

    Example: 16 processes managed in a 4-Dimensinal mesh with shape of [2, 2, 2, 2].
    the rank communication peers of rank 0 (included) are following:
    in axis 0: [0, 1]
    in axis 1: [0, 2]
    in axis 2: [0, 4]
    in axis 3: [0, 8]
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
286 287
    # tricks to support processes mesh when it is not start with 0 or continuous
    assert rank in processes, "rank [{}] is NOT in processes group {}".format(
288 289
        rank, processes
    )
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    coordinates_in_group = [coordinate[:] for i in range(shape[axis])]

    # select comm group
    for i in range(shape[axis]):
        coordinates_in_group[i][axis] = i

    ranks_in_group_relative = [
        _coordinate2linear_idx(shape, coordinate)
        for coordinate in coordinates_in_group
    ]
    ranks_in_group = [processes[idx] for idx in ranks_in_group_relative]

    return sorted(ranks_in_group)


307 308
def _get_idx_in_axis(processes, shape, axis, rank):
    """
309
    Given a rank and the processes mesh the rank belongs to,
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    compute the index of the rank in given axis.

    Example: 27 processes managed in a 3-Dimensinal mesh with shape of [3, 3, 3].
    the index of rank 22 are:
    in axis 0: 1
    in axis 1: 1
    in axis 2: 2
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
    #  tricks to support processes mesh when it is not start with 0 or continuous
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    return coordinate[axis]


326 327 328 329
def _coordinate2linear_idx(mesh_shape, coordinate):
    """
    convert a coordinate in multidimensional mesh space into a scala idx in linear space.

330
    it use Row-major order for dimension conversion.
331
    so it has:  [most_significant_dim, ..., least_significant_dim]
332
    assume:
333 334 335 336

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

337
    linear_idx of a n dimensional coordinate is:
338 339

        I[n-1] * (S[n-2] * S[n-3] * S[n-4] *     ....    S[0]) +
340 341
        I[n-2] * (         S[n-3] * S[n-4] *     ....    S[0]) +
        I[n-3] * (                  S[n-4] *     ....    S[0]) +
342
        ...
343
        I[1]   * (                                       S[0]) +
344 345 346 347
        I[0]

    """
    # NOTE the following function work based on a strong an assumption
348
    # that the processes in mesh are
349
    #    1. starts from 0
350 351
    #    2. continuous
    # it will be wrong if ths above condition doesnot meet,
352
    # e.g. process_mesh = { process_groups = [7, 8, 9,10, 12, 13, 14, 15], mesh = [2, 4]}
353
    # if you want a more general mapping, you should use cartesian product
354 355 356 357

    assert len(mesh_shape) == len(
        coordinate
    ), "coordinate should have the same size as mesh shape, but got shape: {}, coordinate: {}".format(
358 359
        mesh_shape, coordinate
    )
360
    for i in range(len(mesh_shape)):
361 362 363 364 365 366 367 368 369 370
        assert (
            coordinate[i] >= 0
        ), "index in dimension [{}] is least than zero. coordinate: {}".format(
            i, coordinate
        )
        assert (
            coordinate[i] < mesh_shape[i]
        ), "index beyond extent in dimension [{}]. shape: {}, coordinate: {}".format(
            i, mesh_shape, coordinate
        )
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

    base = mesh_shape[-1]
    linear_idx = coordinate[-1]

    # row major order
    for i in range(len(mesh_shape) - 2, -1, -1):
        linear_idx += base * coordinate[i]
        base *= mesh_shape[i]

    return linear_idx


def _linear_idx2coordinate(mesh_shape, linear_idx):
    """
    mapping a linear scala into multidimensional mesh space, return it coordinate in that space.

    it is the inverse function of _coordinate2linear_idx.
388
    assume:
389 390 391 392 393 394 395 396 397 398 399 400 401 402

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

    the coordinate given linear_idx is:

        I[0] = linear_idx                                  % S[0]
        I[0] = (linear_idx / S[0])                         % S[1]
        I[0] = (linear_idx / (S[0] * S[1]))                % S[2]
        ....

    """

    assert linear_idx >= 0, "linear index [{}] is least than zero".format(
403 404
        linear_idx
    )
405 406 407
    assert linear_idx < np.prod(
        mesh_shape
    ), "linear index beyond the extent of mesh shape. shape: {}, linear index: {}".format(
408 409
        mesh_shape, linear_idx
    )
410 411 412 413 414 415 416 417 418 419 420

    base = 1
    coordinate = [-1] * len(mesh_shape)

    for i in reversed(range(len(mesh_shape))):
        offset = linear_idx / base
        coordinate[i] = int(offset % mesh_shape[i])
        base *= mesh_shape[i]

    # row major order
    return coordinate
421 422


423
def _get_corresponding_rank(dist_context, target_mesh, rank):
424 425 426 427 428 429

    # TODO(JZ-LIANG) a hack method to support varying mesh in Pipeline parallelism case.
    # we assume that all mesh are evenly divide from a parent mesh and should have same size.
    # to revise this in future.

    coordinate = None
430 431
    for mesh in dist_context.process_meshes:
        if rank in mesh.processes and mesh.topology == target_mesh.topology:
432 433 434
            coordinate = _linear_idx2coordinate(
                mesh.topology, mesh.processes.index(rank)
            )
435 436
            break

437 438 439
    # assert coordinate is not None, "could NOT found rank [{}] in any registered mesh".format(
    #     rank)
    if coordinate is not None:
440 441 442
        return target_mesh.processes[
            _coordinate2linear_idx(mesh.topology, coordinate)
        ]
443 444
    else:
        return target_mesh.processes[0]
445 446


447 448
def _get_unshard_dist_shape(var, dist_attr):
    var_shape = var.shape
449 450
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
451 452 453
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
454 455
        var_shape, mapping
    )
456 457 458 459 460 461 462 463 464 465
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            new_shape.append(var_shape[idx] * mesh[mapping[idx]])

    return new_shape


466
def make_data_unshard(dist_main_prog, dist_startup_prog, dist_context=None):
467
    from .dist_context import get_default_distributed_context
468

469 470
    if dist_context is None:
        dist_context = get_default_distributed_context()
471 472 473

    for var in dist_main_prog.list_vars():
        if var.is_data:
474
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
475 476
                var
            )
477 478
            inverse_shape = _get_unshard_dist_shape(var, tensor_dist_attr)
            var.desc.set_shape(inverse_shape)
479
            dim_mapping = tensor_dist_attr.dims_mapping
480
            dim_mapping = [-1] * len(dim_mapping)
481 482
            tensor_dist_attr.dims_mapping = dim_mapping
            dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
483 484


485
def _update_addition_info(addition_info):
486
    """Update default addition_info with inputs"""
487
    add_info = {"epoch": 0, "batch": 0, "batch_size": 0}
488
    if not addition_info:
489
        return add_info
490
    elif not isinstance(addition_info, dict):
491 492 493 494
        raise TypeError(
            "The type of 'addition_info' should be 'dict', "
            "but got '{}'.".format(str(type(addition_info)))
        )
495
    else:
496 497 498 499
        for item, value in addition_info.items():
            if item not in ["epoch", "batch", "batch_size"]:
                raise ValueError(
                    "The key of 'addition_info' should be one of the "
500
                    "['epoch', 'batch', 'batch_size'], but got '{}'.".format(
501 502 503
                        str(item)
                    )
                )
504 505 506
            if not isinstance(value, int):
                raise ValueError(
                    "The value of 'addition_info' should be 'int', "
507 508
                    "but got '{}'.".format(str(type(value)))
                )
509 510
            add_info[item] = value
        return add_info
511 512 513


def _check_valid_path(file_path):
514
    """Validity check of input file path"""
515 516 517
    if not file_path:
        return file_path
    elif isinstance(file_path, list):
518 519
        for file in file_path:
            if not isinstance(file, str):
520 521 522 523
                raise TypeError(
                    "The type of file path should be 'str', "
                    "but got '{}'.".format(str(type(file)))
                )
524
            if not os.path.exists(file):
525
                raise ValueError(
526 527
                    "The file path '{}' does not exist.".format(file)
                )
528 529
        return file_path
    else:
530 531 532 533
        raise TypeError(
            "The type of file path should be 'list', "
            "but got '{}'.".format(str(type(file_path)))
        )
534 535 536 537 538 539


def _check_param_dict(param_dict):
    if not param_dict:
        raise ValueError("'param_dict' cannot be None.")
    elif not isinstance(param_dict, dict):
540 541 542 543
        raise TypeError(
            "The type of 'param_dict' should be 'dict', "
            "but got '{}'.".format(str(type(param_dict)))
        )
544 545 546 547 548
    else:
        for name, value in param_dict.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of key of 'param_dict' should be 'str', "
549 550
                    "but got '{}'.".format(str(type(name)))
                )
551 552 553
            if not isinstance(value, paddle.fluid.LoDTensor):
                raise TypeError(
                    "The type of value of 'param_dict' should be 'LoDTensor', "
554 555
                    "but got '{}'.".format(str(type(value)))
                )
556 557 558 559 560 561 562
        return param_dict


def _check_dist_attr(dist_attr):
    if not dist_attr:
        return dist_attr
    elif not isinstance(dist_attr, dict):
563 564 565 566
        raise TypeError(
            "The type of 'dist_attr' should be 'dict', "
            "but got '{}'.".format(str(type(dist_attr)))
        )
567 568 569 570 571
    else:
        for name, value in dist_attr.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of param name of 'dist_attr' should be 'str', "
572 573
                    "but got '{}'.".format(str(type(name)))
                )
574 575 576
            if not isinstance(value, dict):
                raise TypeError(
                    "The type of distributed attribute should be 'dict', "
577 578
                    "but got '{}'".format(str(type(value)))
                )
579 580 581 582 583
            attr = ['process_shape', 'process_group', 'dims_mapping']
            if list(value.keys()) != attr:
                raise ValueError(
                    "The key of distributed attribute should be "
                    "'['process_shape', 'process_group', 'dims_mapping']', "
584 585
                    "but got {}.".format(str(value.keys()))
                )
586
        return dist_attr
587 588


589 590 591 592 593 594 595 596
def save_distributed_checkpoint(
    program,
    checkpoint_path,
    dist_attr_path,
    addition_info=None,
    is_integrated=False,
    dist_context=None,
):
597 598
    """
    Save model parameter state, optimzer state, distributed attribute and
599 600 601 602 603
    additional information of each rank.

    Args:
        program(Program): The program to be saved.
        checkpoint_path(str): The path of the checkpoint file to be saved.
604 605 606
        dist_attr_path(str): The path of distributed attribute file to be saved.
        addition_info(dict, optional): Additional information, key should be selected in ['epoch', 'batch', 'batch_size'].
            Default values are 0, when 'addition_info' is None. Default: None.
607
        is_integrated(bool, optional): Whether to integrate param before save. Default: False.
608
        dist_context(DistributedContext ,optional): collect related distributed information for program
609 610 611 612 613 614 615

    Returns:
        None

    Examples:
        .. code-block:: python

616 617 618 619
            path = os.path.join("./output", "step_%d" % step)
            os.makedirs(path, exist_ok=True)
            add_info = {'batch': step, "batch_size": global_batch_size}
            save_distributed_checkpoint(program, path, path, add_info)
620
    """
621 622 623 624 625 626 627 628
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    assert isinstance(is_integrated, bool)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    addition_info = _update_addition_info(addition_info)

629
    if not is_integrated:
630 631
        _save_distributed_state_dict(program, addition_info, checkpoint_path)
        _save_distributed_attribute(program, dist_attr_path, dist_context)
632 633 634
    else:
        # TODO: integrate param before save
        raise NotImplementedError(
635 636
            "Integrating parameter has not been implemented."
        )
637 638


639
def load_distributed_checkpoint(checkpoint_path, dist_attr_path):
640
    """
641
    Load parameter, optimizer, distributed attribute and addition_info.
642 643

    Args:
644 645
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
646 647

    Returns:
648 649
        param_dict(dict): parameters' value of all ranks.
        dist_attr(dict): parameters' distributed attribute.
650
        addition_info(dict): additional information user saved in last training.
651 652 653 654 655 656 657

    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.

    Examples:
        .. code-block:: python

658
            ckpt_path = ['./model_state_rank0.pdmodel',
659
                         './model_state_rank1.pdmodel']
660
            dist_attr_path = ['./dist_attr_rank0.pdattr',
661 662 663
                              './dist_attr_rank1.pdattr']
            param_dict, dist_attr, add_info = load_distributed_checkpoint(ckpt_path, dist_attr_path)
    """
664 665 666 667
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
668 669 670 671 672 673 674 675

    state_dict_info = _load_distributed_state_dict(checkpoint_path)
    dist_attr = _load_distributed_attribute(dist_attr_path)
    param_dict = state_dict_info["model"]
    addition_info = state_dict_info["addition_info"]
    return param_dict, dist_attr, addition_info


676 677 678
def load_checkpoint_into_program(
    checkpoint_path, dist_attr_path, program, dist_context=None
):
679
    """
680 681 682 683 684 685 686 687 688 689
    Load parameter, optimizer, distributed attribute and addition_info into model.

    Args:
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
        program(Program): the program to be updated with checkpoint_path.
        dist_context(DistributedContext ,optional): collect related distributed information for program

    Returns:
        addition_info(dict): user saved in last train.
690

691 692
    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.
693 694 695 696 697

    Examples:
        .. code-block:: python

            exe.run(startup_program)
698
            ckpt_path = ['./model_state_rank0.pdmodel',
699
                         './model_state_rank1.pdmodel']
700
            dist_attr_path = ['./dist_attr_rank0.pdattr',
701 702
                              './dist_attr_rank1.pdattr']
            load_checkpoint_into_program(ckpt_path, dist_attr_path, main_program)
703
    """
704
    from .dist_context import get_default_distributed_context
705

706
    assert isinstance(program, paddle.fluid.framework.Program)
707 708 709 710
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
711 712 713 714 715 716 717
    if dist_context is None:
        dist_context = get_default_distributed_context()
    all_state_dict_info = _load_distributed_state_dict(checkpoint_path)
    all_pre_dist_attr = _load_distributed_attribute(dist_attr_path)
    all_cur_dist_attr = get_dist_attr(program, dist_context)
    all_param_dict = all_state_dict_info["model"]
    addition_info = all_state_dict_info["addition_info"]
718 719 720
    sliced_param_dict = merge_and_slice_parameter(
        all_param_dict, all_pre_dist_attr, all_cur_dist_attr
    )
721 722 723 724 725 726
    load_parameter_into_program(sliced_param_dict, program)

    return addition_info


def load_parameter_into_program(param_dict, program):
727
    """
728 729 730 731 732 733
    Load parameters into program.

    Args:
        param_dict(dict): parameters' name and value.
        program(Program): the program to be updated
    """
734
    assert isinstance(param_dict, dict)
735
    assert program and isinstance(program, paddle.fluid.framework.Program)
736 737
    if not param_dict:
        return
738 739 740 741
    program.set_state_dict(param_dict)


def _save_distributed_attribute(program, dist_attr_path, dist_context):
742
    """Save distributed attribute of all parameters"""
743 744
    # TODO: just save a complete distributed attribute file
    rank_id = paddle.distributed.get_rank()
745 746 747
    dist_attr_name = os.path.join(
        dist_attr_path, "dist_attr_rank{}.pdattr".format(rank_id)
    )
748 749
    dist_attr_dict = {
        "model": get_dist_attr(program, dist_context),
750
        "world_size": paddle.distributed.get_world_size(),
751 752
    }
    paddle.save(dist_attr_dict, dist_attr_name)
753
    logging.info(
754 755
        "Already saved distributed attribute to '{}'.".format(dist_attr_path)
    )
756 757 758


def _load_distributed_attribute(dist_attr_path):
759
    """Load parameters' distributed attribute from dist_attr_path"""
760 761 762 763
    total_dist_attr = {}
    for dist_attr_file in dist_attr_path:
        dist_attr = paddle.load(dist_attr_file)
        pre_world_size = dist_attr["world_size"]
764 765 766
        assert pre_world_size == len(
            dist_attr_path
        ), "The number of 'dist_attr_path' must be equal to the last training world size."
767 768 769 770 771 772 773 774
        for name, attr in dist_attr["model"].items():
            if name not in total_dist_attr:
                total_dist_attr[name] = attr

    return total_dist_attr


def _save_distributed_state_dict(program, addition_info, checkpoint_path):
775
    """Save parameters' state_dict"""
776
    rank = paddle.distributed.get_rank()
777 778 779
    ckpt_file_name = os.path.join(
        checkpoint_path, "model_state_rank{}.pdmodel".format(rank)
    )
780 781 782
    state_dict = {
        "model": program.state_dict(),
        "world_size": paddle.distributed.get_world_size(),
783
        "addition_info": addition_info,
784 785 786 787 788 789
    }
    paddle.save(state_dict, ckpt_file_name)
    logging.info("Already saved model to '{}'.".format(checkpoint_path))


def _load_distributed_state_dict(checkpoint_path):
790
    """Load parameters' state_dict from checkpoint_path"""
791 792
    all_state_dict = {}
    for idx, ckpt_file in enumerate(checkpoint_path):
Z
zhaoyingli 已提交
793
        state_dict_info = paddle.load(ckpt_file, return_numpy=True)
794
        pre_world_size = state_dict_info["world_size"]
795 796 797
        assert pre_world_size == len(
            checkpoint_path
        ), "The number of 'checkpoint_path' must be equal to the last training world size."
798 799 800 801 802 803 804 805 806 807
        if idx == 0:
            addition_info = state_dict_info["addition_info"]
        for name, value in state_dict_info["model"].items():
            if name in all_state_dict:
                all_state_dict[name].append(np.array(value))
            else:
                all_state_dict[name] = [np.array(value)]

    all_state_dict_info = {
        "model": all_state_dict,
808
        "addition_info": addition_info,
809 810 811 812 813
    }
    return all_state_dict_info


def get_dist_attr(program, dist_context=None):
814
    """
815 816 817 818 819 820 821 822 823 824 825 826 827 828
    Get distributed attribute of current rank.

    Args:
        program(Program): main program for training
    """
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    dist_attr = {}
    for var in program.list_vars():
        if is_parameter(var) or is_belong_to_optimizer(var):
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
829 830
                var
            )
831 832 833 834 835
            process_mesh = tensor_dist_attr.process_mesh
            dims_mapping = tensor_dist_attr.dims_mapping
            dist_attr[var.name] = {
                "process_shape": process_mesh.topology,
                "process_group": process_mesh.processes,
836
                "dims_mapping": dims_mapping,
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
            }
    return dist_attr


def merge_and_slice_parameter(dist_param_dict, pre_dist_attr, cur_dist_attr):
    """
    Merge parameters with previous dist_attr and slice parameters with current dist_attr

    Arags:
        dist_param_dict(dict): parameters' value of all ranks.
        pre_dist_attr(dict): parameters' dist_attr of last training process.
        cur_dist_attr(dict): parameters' dist_attr of current training process.

    Returns:
        dist_param_dict(dict): parameters' value of current rank.
    """
    assert _check_dist_attr(pre_dist_attr), "'pre_dist_attr' cannot be None."
854 855 856 857 858
    assert isinstance(
        dist_param_dict, dict
    ), "The type of 'dist_param_dict' should be 'dict', but got {}.".format(
        str(type(dist_param_dict))
    )
859 860
    for name, value in dist_param_dict.items():
        if not isinstance(name, str):
861 862 863 864 865 866
            raise TypeError(
                "The key of 'dist_param_dict' is parameter's name, "
                "and its type should be 'str', but got {}.".format(
                    str(type(name))
                )
            )
867
        if not isinstance(value, list) or not all(
868 869
            isinstance(v, np.ndarray) for v in value
        ):
870 871
            raise TypeError(
                "The value of 'dist_param_dict' is parameter's value of all ranks, "
872 873
                "and its type should be 'list(numpy.ndarray)'."
            )
874

875 876 877
    if cur_dist_attr is None:
        return {}

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
    param_not_in_pre = []
    param_not_in_cur = []
    logging.info("Start to merge and slice parameters.")
    for var_name in cur_dist_attr.keys():
        if var_name not in pre_dist_attr:
            param_not_in_pre.append(var_name)
            continue

        pre_attr = pre_dist_attr[var_name]
        cur_attr = cur_dist_attr[var_name]
        if pre_attr == cur_attr:
            # skip merge and slice
            rank_id = paddle.distributed.get_rank()
            index = cur_attr["process_group"].index(rank_id)
            param = dist_param_dict[var_name][index]
893
            dist_param_dict[var_name] = param
894 895 896 897 898 899
            continue

        pre_param = dist_param_dict[var_name]
        pre_dims_mapping = pre_attr["dims_mapping"]
        cur_dims_mapping = cur_attr["dims_mapping"]
        if len(set(pre_dims_mapping)) > 1 or -1 not in pre_dims_mapping:
900
            complete_param = _merge_parameter_with_dist_attr(
901 902
                pre_param, pre_attr
            )
903 904 905
            dist_param_dict[var_name] = complete_param
        else:
            complete_param = pre_param[0]
906
            dist_param_dict[var_name] = complete_param
907 908

        if len(set(cur_dims_mapping)) > 1 or -1 not in cur_dims_mapping:
909
            sliced_param = _slice_parameter_with_dist_attr(
910 911
                complete_param, cur_attr
            )
912 913 914 915 916 917 918 919
            dist_param_dict[var_name] = sliced_param

    for var_name in pre_dist_attr:
        if var_name not in cur_dist_attr:
            param_not_in_cur.append(var_name)
            dist_param_dict.pop(var_name)

    if param_not_in_pre:
920 921
        warnings.warn(
            "Parameters '{}' are not found in last training process.".format(
922 923 924
                str(param_not_in_pre)
            )
        )
925 926
    if param_not_in_cur:
        warnings.warn(
927
            "Parameters '{}' are not found in current training process.".format(
928 929 930
                str(param_not_in_cur)
            )
        )
931 932 933 934 935

    return dist_param_dict


def _merge_parameter_with_dist_attr(param_list, dist_attr):
936
    """Merge parameter with distributed attribute"""
937
    from .reshard import Resharder
938 939 940 941 942

    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # get the complete shape of the parameter
943 944 945
    complete_shape = Resharder.compute_complete_shape(
        param_list[0].shape, process_shape, dims_mapping
    )
946 947
    # merge the parameter with dist_attr
    partition_param_list = []
Z
zhaoyingli 已提交
948
    merged_partiton = []
949
    for process in process_group:
950
        partition_index = Resharder.compute_partition_index(
951 952
            process, complete_shape, dims_mapping, process_shape, process_group
        )
953
        index = process_group.index(process)
Z
zhaoyingli 已提交
954 955
        if partition_index not in merged_partiton:
            merged_partiton.append(partition_index)
956 957 958 959 960 961
            _merge_parameter(
                partition_param_list,
                param_list[index],
                partition_index,
                complete_shape,
            )
Z
zhaoyingli 已提交
962

963 964 965
    assert (
        len(partition_param_list) == 1 or not partition_param_list
    ), "Fail to merge parameter"
966
    complete_param = partition_param_list[0][0]
967 968 969 970
    return complete_param


def _slice_parameter_with_dist_attr(param, dist_attr):
971 972 973 974
    """Slice parameter with distributed attribute"""
    param = (
        np.array(param) if isinstance(param, paddle.fluid.LoDTensor) else param
    )
975 976 977 978
    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # slice the parameter with dist_attr
979 980 981 982 983 984
    partition_index_list = _get_split_indices(
        param.shape, dims_mapping, process_shape, process_group
    )
    sliced_param_list = _slice_parameter(
        param, partition_index_list, len(partition_index_list)
    )
985 986
    # get the current parameter's index in sliced_param_list
    rank_id = paddle.distributed.get_rank()
987 988 989
    sliced_param_index = _get_sliced_param_index(
        rank_id, param.shape, dims_mapping, process_shape, process_group
    )
990
    sliced_param = sliced_param_list[sliced_param_index]
991 992 993
    return sliced_param


994 995 996
def _merge_parameter(
    partition_param_list, param, partition_index, complete_shape
):
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    """
    Merge partitial parameters to a complete one.

    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
            partition_param_list = [(np.array([[[1.11, 1.12]]]), [[0,1],[0,1],[0,2]])]
            param = np.array([[[1.13, 1.14]]])
            partition_index = [[0,1],[0,1],[2,4]]

            _merge_parameter(partition_param_list, param, partition_index)
            # partition_param_list: [(np.array([[[1.11, 1.12, 1.13, 1.14]]]), [[0,1],[0,1],[0,4]])]
    """
1014
    from .reshard import Resharder
1015

Z
zhaoyingli 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024
    if len(partition_param_list) == 1:
        is_complete_data = True
        for idx, item in enumerate(partition_param_list[0][1]):
            if item[0] != 0 or item[1] != complete_shape[idx]:
                is_complete_data = False
                break
        if is_complete_data:
            return

1025 1026
    if not partition_param_list:
        partition_param_list.append((param, partition_index))
1027
    else:
1028 1029
        i = 0
        while i < len(partition_param_list):
1030 1031 1032 1033 1034 1035 1036
            (
                concat_axis,
                first_order,
                new_partition,
            ) = Resharder.compute_concat_info(
                partition_param_list[i][1], partition_index
            )
1037 1038 1039
            if concat_axis != -1:
                if first_order == 0:
                    new_param = np.concatenate(
1040 1041
                        (partition_param_list[i][0], param), axis=concat_axis
                    )
1042 1043
                else:
                    new_param = np.concatenate(
1044 1045
                        (param, partition_param_list[i][0]), axis=concat_axis
                    )
1046 1047

                partition_param_list.pop(i)
1048 1049 1050 1051 1052 1053
                _merge_parameter(
                    partition_param_list,
                    new_param,
                    new_partition,
                    complete_shape,
                )
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
                break
            i += 1


def _slice_parameter(complete_param, partition_index_list, length):
    """
    Slice a complete parameter.

    Returns:
        sliced_param_list(list): sliced parameters with 'partition_index_list'

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            sliced_param_list = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]
    """
    sliced_param_list = []
    axis = len(complete_param.shape) - length
1081 1082 1083
    sliced_param = np.split(
        complete_param, partition_index_list[axis], axis=axis
    )
1084 1085 1086 1087
    if length == 1:
        return sliced_param
    for param in sliced_param:
        sliced_param_list.extend(
1088 1089
            _slice_parameter(param, partition_index_list, length - 1)
        )
1090 1091 1092
    return sliced_param_list


1093 1094 1095
def _get_sliced_param_index(
    rank, complete_shape, dims_mapping, process_shape, process_group
):
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
    """
    Get sliced_param's index of current rank in all sliced parameters list.

    Returns:
        sliced_param_index(int): the index of sliced param in sliced_param_list

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            slice_param = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
1114
            # slice_param:
1115 1116 1117 1118 1119 1120
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]

            index = _get_sliced_param_index(rank, complete_shape, dims_mapping
                                            process_shape, process_group)
            # index: 2
    """
1121
    from .reshard import Resharder
1122

1123 1124 1125
    partition_index = Resharder.compute_partition_index(
        rank, complete_shape, dims_mapping, process_shape, process_group
    )
1126 1127 1128 1129 1130 1131
    sliced_param_index = 0
    for i, shape in enumerate(complete_shape):
        if dims_mapping[i] == -1:
            slice_shape = shape
        else:
            slice_shape = shape // process_shape[dims_mapping[i]]
1132 1133
        if slice_shape == 1:
            index = partition_index[i][0]
1134 1135 1136 1137
        else:
            index = (partition_index[i][0] + 1) // slice_shape
        sliced_param_index = sliced_param_index * (shape // slice_shape) + index
    return sliced_param_index
1138 1139


1140 1141 1142
def _get_split_indices(
    complete_shape, dims_mapping, process_shape, process_group
):
1143 1144 1145 1146 1147
    """
    Get split indices of every dimension.

    Returns:
        split_indices_list(list): the split indices of every dimension of the parameter
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            index = _get_split_indices(complete_shape, dims_mapping, process_shape, process_group)
            # index: [[], [], [2, 4]]
    """
1162
    from .reshard import Resharder
1163 1164 1165

    split_indices_list = []
    for process in process_group:
1166
        partition_index = Resharder.compute_partition_index(
1167 1168
            process, complete_shape, dims_mapping, process_shape, process_group
        )
1169 1170 1171 1172 1173 1174
        if split_indices_list:
            for dim in range(len(partition_index)):
                split_indices_list[dim].extend(partition_index[dim])
        else:
            split_indices_list = partition_index
    split_indices_list = list(
1175 1176 1177 1178 1179 1180
        map(
            lambda x, y: list(set(x) - set([y]) - set([0])),
            split_indices_list,
            complete_shape,
        )
    )
1181 1182
    split_indices_list = [sorted(x) for x in split_indices_list]
    return split_indices_list
Z
zhaoyingli 已提交
1183 1184 1185 1186 1187 1188 1189


def set_grad_var_shape(program, dist_context):
    from .operators.common import infer_shape

    block = program.global_block()
    vars = block.vars
1190 1191 1192 1193 1194 1195 1196 1197
    appended_grad_times = 0
    grad_var_to_var = dist_context.dist_op_context.grad_var_to_var

    for idx, op in enumerate(block.ops):

        if int(op.attr('op_role')) != int(OpRole.Backward):
            continue

1198 1199 1200 1201
        if (
            int(block.ops[idx - 1].attr('op_role')) == int(OpRole.Forward)
            or int(block.ops[idx - 1].attr('op_role')) == 257
        ):
1202
            appended_grad_times += 1
J
JZ-LIANG 已提交
1203 1204 1205 1206

        if op.type in ["check_finite_and_unscale", "update_loss_scaling"]:
            break

1207
        if op.type in ["sum", "concat", "shape"]:
Z
zhaoyingli 已提交
1208 1209
            continue

1210 1211 1212 1213 1214 1215 1216 1217 1218
        op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None

        for var_name in op.output_arg_names:

            if "@GRAD" not in var_name:
                continue
            if var_name in grad_var_to_var[appended_grad_times]:
                forward_var_name = grad_var_to_var[appended_grad_times][
1219 1220
                    var_name
                ]
1221
            else:
1222
                forward_var_name = var_name[: var_name.find("@GRAD")]
1223 1224

            if op.type in [
1225 1226 1227 1228 1229
                "c_allreduce_sum",
                "c_identity",
                "scale",
                "cast",
                "fill_any_like",
1230 1231
            ]:
                forward_var_name = op.input_arg_names[0]
1232 1233 1234 1235 1236
            elif (
                op.type == "matmul_v2_grad"
                or op.type == "matmul_grad"
                or op.type == "mul_grad"
            ):
1237 1238 1239 1240
                forward_var_name = None
                for output_name in op.output_names:
                    if var_name in op.output(output_name):
                        assert "@GRAD" in output_name
1241
                        input_name = output_name[: output_name.find("@GRAD")]
1242 1243 1244 1245 1246
                        assert len(op.input(input_name)) == 1
                        forward_var_name = op.input(input_name)[0]
                assert forward_var_name is not None

            need_set_shape_list = [
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
                "reshape2_grad",
                "softmax_with_cross_entropy_grad",
                "transpose2_grad",
                "softmax_grad",
                "cross_entropy_grad2",
                "dropout_grad",
                "tanh_grad",
                "slice",
                "assign",
                "matmul_v2_triple_grad",
                "elementwise_add_triple_grad",
                "fill_constant",
                "sqrt_grad",
Z
zhaoyingli 已提交
1260
                "fused_softmax_mask_upper_triangle_grad",
1261 1262
                "flatten_contiguous_range_grad",
                "relu_grad",
1263 1264
            ]
            forward_list = [
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
                "reshape2",
                "softmax_with_cross_entropy",
                "transpose2",
                "softmax",
                "cross_entropy2",
                "dropout",
                "tanh",
                ["slice_grad", "c_allgather"],
                "assign",
                "matmul_v2_grad_grad",
                "elementwise_add_grad_grad",
                "shape",
                "sqrt",
                "fused_softmax_mask_upper_triangle",
                "flatten_contiguous_range",
                "relu",
1281 1282 1283 1284 1285
            ]
            if op.type in need_set_shape_list:
                for forward_op in block.ops:
                    idx = need_set_shape_list.index(op.type)
                    forward_op_name = forward_list[idx]
1286 1287 1288 1289 1290 1291 1292 1293 1294
                    if (
                        forward_op.type in forward_op_name
                        and forward_var_name in forward_op.input_arg_names
                    ):
                        op_dist_attr = (
                            dist_context.get_op_dist_attr_for_program(
                                forward_op
                            )
                        )
1295 1296 1297
                        break

            forward_input_dist_attr = op_dist_attr.get_input_dist_attr(
1298 1299 1300 1301 1302
                forward_var_name
            )
            assert (
                forward_input_dist_attr is not None
            ), f"{forward_var_name, str(op)}"
1303
            forward_var = vars[forward_var_name]
1304 1305 1306
            forward_var_dist_attr = (
                dist_context.get_tensor_dist_attr_for_program(forward_var)
            )
1307 1308
            assert forward_var_dist_attr is not None
            grad_var = vars[var_name]
1309 1310 1311 1312 1313 1314
            ref_shape = infer_shape(
                block,
                forward_var,
                forward_var_dist_attr,
                forward_input_dist_attr,
            )
1315 1316 1317

            if list(grad_var.shape) != ref_shape:
                grad_var.desc.set_shape(ref_shape)
C
caozhou 已提交
1318 1319


1320 1321
def is_forward_op(op):
    op_role = int(op.attr('op_role'))
1322 1323 1324
    return OP_ROLE_KEY in op.attr_names and (
        op_role == int(OpRole.Forward) or op_role == int(OpRole.Loss)
    )
1325 1326 1327


def is_backward_op(op):
1328 1329 1330
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Backward)
1331 1332


1333
def is_optimize_op(op):
1334 1335 1336
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize)
1337 1338


1339
def is_lr_sched_op(op):
1340 1341 1342
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize.LRSched)
1343 1344


J
JZ-LIANG 已提交
1345
def is_loss_op(op):
1346 1347 1348
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) == (int(OpRole.Forward) | int(OpRole.Loss))
J
JZ-LIANG 已提交
1349 1350


1351 1352 1353 1354 1355 1356 1357
def is_loss_grad_op(op):
    if OP_ROLE_KEY not in op.attr_names:
        return False
    op_role = int(op.all_attrs()[OP_ROLE_KEY])
    return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)


1358
def is_gradient_clip_op(op):
1359 1360 1361
    return op.desc.has_attr("op_namescope") and op.desc.attr(
        "op_namescope"
    ).startswith("/gradient_clip")
1362 1363


1364 1365 1366 1367
def is_prim_op(op):
    return op.type.endswith("_p")


J
JZ-LIANG 已提交
1368 1369 1370 1371
def get_loss_op(block):
    loss_ops = []
    for op in block.ops:
        if is_loss_op(op):
1372 1373 1374
            assert (
                len(op.desc.output_arg_names()) == 1
            ), "loss op should only output loss var"
J
JZ-LIANG 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
            loss_ops.append(op)

    assert len(loss_ops) == 1, "num of loss op is not equal to one"
    return loss_ops[0]


def set_var_dist_attr(dist_context, var, dims_mapping, process_mesh, **kwargs):
    tensor_dist_attr = TensorDistributedAttribute()
    tensor_dist_attr.dims_mapping = dims_mapping
    # TODO get global mesh group
    tensor_dist_attr.process_mesh = process_mesh
1386 1387 1388
    if "mark_annotated" in kwargs and kwargs["mark_annotated"]:
        tensor_dist_attr.mark_annotated("dims_mapping")
        tensor_dist_attr.mark_annotated("process_mesh")
J
JZ-LIANG 已提交
1389 1390 1391 1392
    dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
    return tensor_dist_attr


1393
def naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
1394 1395
    new_op, process_mesh, ref_mapping, ctx
):
J
JZ-LIANG 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
    assert process_mesh is not None
    assert ref_mapping is not None

    new_op_dist_attr = OperatorDistributedAttribute()

    for input_varname in new_op.desc.input_arg_names():
        new_op_dist_attr.set_input_dims_mapping(input_varname, ref_mapping)
    for output_varname in new_op.desc.output_arg_names():
        new_op_dist_attr.set_output_dims_mapping(output_varname, ref_mapping)

    new_op_dist_attr.process_mesh = process_mesh
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


1410 1411 1412
def naive_set_dist_op_attr_for_program_by_mesh(
    new_op, process_mesh, ctx, is_recompute=False
):
1413 1414 1415
    # hack to skip coalesce var for dist attr
    if not is_recompute:
        return
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    assert process_mesh is not None

    new_op_dist_attr = OperatorDistributedAttribute()

    for input_varname in new_op.desc.input_arg_names():
        var = ctx.serial_main_program.global_block().var(input_varname)
        mapping = ctx.get_tensor_dist_attr_for_program(var).dims_mapping
        new_op_dist_attr.set_input_dims_mapping(input_varname, mapping)
    for output_varname in new_op.desc.output_arg_names():
        var = ctx.serial_main_program.global_block().var(output_varname)
        mapping = ctx.get_tensor_dist_attr_for_program(var).dims_mapping
        new_op_dist_attr.set_output_dims_mapping(output_varname, mapping)

    new_op_dist_attr.process_mesh = process_mesh
    new_op_dist_attr.is_recompute = is_recompute
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


C
caozhou 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
def update_op_dims_mapping_by_default_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    # The following statement will be replaced by a more elegent way
    if op_desc.type() == "shape" or op_desc.type() == "slice":
        return False
    output_names = op_desc.output_names()
    xshape_arg_names = []
    if "XShape" in output_names:
        xshape_arg_names = op_desc.output("XShape")
    batch_dim_mappings = []
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if len(dims_mapping) > 1:
            for idx, mapping in enumerate(dims_mapping[1:]):
1453 1454 1455 1456 1457
                assert (
                    mapping == -1
                ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                    op_desc.type(), idx, mapping
                )
C
caozhou 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466
        batch_dim_mappings.append(dims_mapping[0])
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if len(dims_mapping) > 1:
                for idx, mapping in enumerate(dims_mapping[1:]):
1467 1468 1469 1470 1471
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1472 1473
            batch_dim_mappings.append(dims_mapping[0])
        else:
1474 1475 1476 1477 1478
            assert (
                dims_mapping[0] == -1
            ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part.".format(
                op_desc.type(), mapping
            )
C
caozhou 已提交
1479 1480
            if len(dims_mapping) > 2:
                for idx, mapping in enumerate(dims_mapping[2:]):
1481 1482 1483 1484 1485
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1486 1487 1488
            batch_dim_mappings.append(dims_mapping[1])

    compatible_dim_mapping = compute_compatible_dim_mapping(batch_dim_mappings)
1489 1490 1491
    assert (
        compatible_dim_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if compatible_dim_mapping != dims_mapping[0]:
            dims_mapping[0] = compatible_dim_mapping
            changed = True
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if compatible_dim_mapping != dims_mapping[0]:
                dims_mapping[0] = compatible_dim_mapping
                changed = True
        else:
            if compatible_dim_mapping != dims_mapping[1]:
                dims_mapping[1] = compatible_dim_mapping
                changed = True

    return changed


def update_op_dims_mapping_by_elementwise_like_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    input_arg_names = op_desc.input_arg_names()
    input_dims_mapping_dict = {}
    input_dims_mapping_lens = {}
    max_dims_mapping_len = -1
    for arg_name in input_arg_names:
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if max_dims_mapping_len < len(dims_mapping):
            max_dims_mapping_len = len(dims_mapping)
        input_dims_mapping_dict[arg_name] = dims_mapping
        input_dims_mapping_lens[arg_name] = len(dims_mapping)

    dims_mapping_list = []
    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
            for i in range(input_dims_mapping_lens[arg_name]):
1537 1538 1539
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
                new_dims_mapping[new_idx] = input_dims_mapping_dict[arg_name][i]
            dims_mapping_list.append(new_dims_mapping)
        else:
            dims_mapping_list.append(input_dims_mapping_dict[arg_name])
    output_arg_names = op_desc.output_arg_names()
    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        assert len(dims_mapping) == max_dims_mapping_len
        dims_mapping_list.append(dims_mapping)

    compatible_dims_mapping = compute_compatible_dims_mapping(dims_mapping_list)
1551 1552 1553
    assert (
        compatible_dims_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1554 1555 1556 1557 1558 1559 1560

    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [
                -1 for _ in range(input_dims_mapping_lens[arg_name])
            ]
            for i in range(input_dims_mapping_lens[arg_name]):
1561 1562 1563
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1564 1565 1566 1567 1568 1569
                new_dims_mapping[i] = compatible_dims_mapping[new_idx]
            if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                changed = True
        else:
            if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
1570 1571 1572
                op_dist_attr.set_input_dims_mapping(
                    arg_name, compatible_dims_mapping
                )
C
caozhou 已提交
1573 1574 1575 1576 1577
                changed = True

    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if compatible_dims_mapping != dims_mapping:
1578 1579 1580
            op_dist_attr.set_output_dims_mapping(
                arg_name, compatible_dims_mapping
            )
C
caozhou 已提交
1581 1582 1583
            changed = True

    return changed
1584 1585


1586 1587 1588
def get_all_distributed_main_program(
    serial_program_info, dist_context, parallelizer
):
1589
    "Get all distributed main programs by dist_context."
1590
    from .dist_context import DistributedOperatorContext
1591

1592
    cluster = serial_program_info.cluster
1593
    copied_parallelizer = copy.deepcopy(parallelizer)
1594
    all_dist_main_program = []
1595 1596 1597 1598 1599
    ranks = (
        paddle.distributed.get_world_size()
        if cluster is None
        else len(cluster.get_all_devices("GPU"))
    )
1600 1601 1602
    for rank_id in range(ranks):
        used_dist_context = copy.deepcopy(dist_context)
        used_dist_context._dist_op_context = DistributedOperatorContext()
1603 1604 1605 1606 1607 1608 1609
        (
            _,
            _,
            dist_startup_program,
            dist_main_program,
            _,
        ) = copied_parallelizer._get_dist_program(rank_id, used_dist_context)
1610 1611 1612 1613 1614 1615
        all_dist_main_program.append(dist_main_program)

    return all_dist_main_program


class SerialProgramInfo:
1616 1617 1618
    def __init__(
        self, train_program, satrtup_program, loss, optimizer, cluster=None
    ):
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
        self._train_program = train_program
        self._startup_program = satrtup_program
        self._loss = loss
        self._optimizer = optimizer
        self._cluster = cluster

    @property
    def train_program(self):
        return self._train_program

    @property
    def startup_program(self):
        return self._startup_program

    @property
    def loss(self):
        return self._loss

    @property
    def optimizer(self):
        return self._optimizer

    @property
    def cluster(self):
        return self._cluster
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658


def get_standalone_cost_data(distributed_programs):
    def _compute_runtime(op_cost, op, vars):
        runtime = 0
        try:
            runtime = float(op_cost["op_time"])
        except:
            return runtime
        op_config = op_cost["config"]
        total_static_input_size = 0
        total_actual_input_size = 0
        parsed_info = op_config.split("\n")
        variable = "(Variable)"
        for info in parsed_info:
1659 1660 1661
            variable = (
                "(Variable)" if "(Variable)" in info else "(list<Variable>"
            )
1662
            if variable in info:
1663
                arg_name_lower = info[: info.find(variable) - 1]
1664 1665
                shape_left_boundary = info.find("[")
                shape_right_boundary = info.find("]")
1666 1667 1668 1669 1670 1671 1672 1673
                assert (
                    shape_left_boundary > 0
                    and shape_right_boundary > 0
                    and shape_right_boundary > shape_left_boundary
                ), "Get shape failed."
                shape = info[
                    shape_left_boundary + 1 : shape_right_boundary
                ].split(",")
1674 1675 1676 1677
                shape = list(map(lambda x: int(x.strip()), shape))
                dtype_factor = 1
                total_static_input_size += reduce(lambda x, y: x * y, shape)
                if op.type == "c_embedding":
1678 1679 1680
                    arg_name_lower = (
                        "w" if arg_name_lower == "weight" else "ids"
                    )
1681 1682 1683 1684 1685
                for arg_name in op.input_names:
                    if arg_name.lower() == arg_name_lower:
                        for var_name in op.input(arg_name):
                            var = vars[var_name]
                            total_actual_input_size += reduce(
1686 1687
                                lambda x, y: x * y, var.shape
                            )
1688
                        break
1689 1690 1691
        assert (
            total_static_input_size > 0 and total_actual_input_size > 0
        ), "Get input size failed."
1692

1693 1694 1695
        actual_runtime = (
            total_actual_input_size / total_static_input_size * runtime
        )
1696 1697
        return actual_runtime

1698
    import paddle.cost_model as cm
1699

1700
    cost_model = cm.CostModel()
1701 1702 1703 1704 1705 1706 1707 1708 1709
    cost_model.static_cost_data()
    DEFAULT_MULTIPLE = 2
    OP_NAME_MAPPING = {
        "c_embedding": "embedding",
        "matmul_v2": "matmul",
        "transpose2": "transpose",
        "reshape2": "reshape",
        "unsqueeze2": "unsqueeze",
        "reduce_sum": "sum",
1710
        "elementwise_div": "divide",
1711 1712 1713
    }

    standalone_cost_data = []
1714 1715
    # skip ops
    not_enum_ops = [
1716 1717 1718 1719
        "create_py_reader",
        "create_double_buffer_reader",
        "read",
        "assign",
1720
    ]
1721 1722 1723 1724 1725 1726 1727 1728
    for distributed_program in distributed_programs:
        cost_data = {}
        vars = distributed_program.global_block().vars
        for op in distributed_program.global_block().ops:
            runtime = 0
            if op.type in not_enum_ops:
                cost_data[op.desc.id()] = runtime
                continue
1729 1730 1731 1732 1733
            dtype = (
                str(vars[op.input_arg_names[0]].dtype)
                if op.input_arg_names
                else "float32"
            )
1734 1735 1736 1737 1738
            if int(op.attr('op_role')) == int(OpRole.Backward):
                if "_grad" in op.type:
                    forward_op_name = op.type[:-5]
                    if forward_op_name in OP_NAME_MAPPING.keys():
                        forward_op_name = OP_NAME_MAPPING[forward_op_name]
1739 1740 1741
                    op_cost = cost_model.get_static_op_time(
                        forward_op_name, forward=False, dtype=dtype
                    )
1742 1743 1744
                    if op_cost:
                        runtime = _compute_runtime(op_cost, op, vars)
                    else:
1745 1746 1747
                        op_cost = cost_model.get_static_op_time(
                            forward_op_name, dtype=dtype
                        )
1748 1749 1750
                        if op_cost:
                            runtime = 2 * _compute_runtime(op_cost, op, vars)
            elif int(op.attr('op_role')) == int(OpRole.Forward):
1751 1752 1753 1754 1755
                op_name = (
                    OP_NAME_MAPPING[op.type]
                    if op.type in OP_NAME_MAPPING.keys()
                    else op.type
                )
1756 1757 1758 1759 1760 1761 1762 1763 1764
                op_cost = cost_model.get_static_op_time(op_name)
                if op_cost:
                    runtime = _compute_runtime(op_cost, op, vars)

            cost_data[op.desc.id()] = runtime

        standalone_cost_data.append(cost_data)

    return standalone_cost_data
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780


def set_dist_op_desc_original_id(dist_op_desc, op_desc, dist_context):
    op_id = op_desc.id()
    op_original_id = op_desc.original_id()
    # First, try to set the original id to the id of the op_desc
    if op_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_id)
        return
    # Second, try to set the original id to the original_id of the op_desc
    elif op_original_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_original_id)
        return
    # Third, print error infomation if we cannot find the original id
    else:
        assert False, "Cannot find the original id in the distributed context"
1781 1782 1783 1784 1785 1786 1787 1788


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]
1789 1790 1791 1792 1793


def debug_program(program, path, name):

    filename = os.path.join(
1794 1795
        path, name + '_program' + ".%d" % (paddle.distributed.get_rank())
    )
1796 1797
    with open(filename, 'w') as f:
        f.write(str(program))
1798 1799 1800 1801 1802 1803 1804


def ring_id_to_process_group(ring_id):
    for g in get_all_process_groups():
        if g.id == ring_id:
            return g
    return None
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816


def find_higher_order_backward_op(program):

    higher_order_op_suffix = ['_grad_grad', 'triple_grad']
    for block in program.blocks:
        for op in block.ops:
            for suffix in higher_order_op_suffix:
                if suffix in op.type:
                    return True

    return False
Z
zhaoyingli 已提交
1817 1818


1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
def get_var_numel(var):
    """
    input:
        - var: variable
    return:
        number of elemnet in var
    """
    assert isinstance(var, Variable)
    assert -1 not in var.shape
    return reduce(lambda x, y: x * y, var.shape)


Z
zhaoyingli 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
def get_lr(optimizer):
    if isinstance(optimizer, paddle.optimizer.Optimizer):
        return optimizer.get_lr()
    elif isinstance(optimizer, paddle.fluid.optimizer.Optimizer):
        if isinstance(optimizer._learning_rate, float):
            return optimizer._learning_rate
        else:
            return optimizer._learning_rate()
    else:
        raise TypeError(
1841 1842 1843
            "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
            " or `paddle.fluid.optimizer.Optimizer`, but got {}.".format(
                type(optimizer)
Z
zhaoyingli 已提交
1844
            )
1845
        )
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874


def initialize_pg_in_full_mode(all_process_groups, cur_rank):
    import socket
    from ..collective import _get_global_env

    has_recv_by_socket = []
    # This is a magic number
    magic_num = 500
    genv = _get_global_env()
    cur_rank_ip, cur_rank_port = genv.current_endpoint.split(":")
    cur_rank_recv_port = int(cur_rank_port) + magic_num
    server_socket = None
    # Large enough for recv rank
    buff_size = 1024
    server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server_socket.bind((cur_rank_ip, cur_rank_recv_port))
    # The 10 is an empirical value
    server_socket.listen(10)
    client_sockets = {}
    for process_group in all_process_groups:
        if cur_rank not in process_group.ranks:
            continue
        if len(process_group.ranks) == 2:
            index = process_group.ranks.index(cur_rank)
            is_send = True if index == 0 else False
            if is_send:
                recv_rank = process_group.ranks[1]
                recv_rank_ip, recv_rank_port = genv.trainer_endpoints[
1875 1876
                    recv_rank
                ].split(":")
1877
                connect_port = int(recv_rank_port) + magic_num
1878 1879 1880
                client_socket = socket.socket(
                    socket.AF_INET, socket.SOCK_STREAM
                )
1881 1882 1883 1884 1885 1886
                client_socket.connect((recv_rank_ip, connect_port))
                client_socket.send(str(cur_rank).encode('utf-8'))
                rank = client_socket.recv(buff_size).decode('utf-8')
                rank = int(rank)
                if rank != recv_rank:
                    raise ValueError(
1887 1888 1889 1890
                        "Please check comm pair, the recv rank should be {} but got {}.".format(
                            recv_rank, rank
                        )
                    )
1891
                else:
1892 1893 1894 1895 1896
                    print(
                        "It is able to instantiate {} as sender now.".format(
                            process_group.ranks
                        )
                    )
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
                client_socket.close()
            else:
                send_rank = process_group.ranks[0]
                while True:
                    if send_rank not in has_recv_by_socket:
                        client_socket, recv_addr = server_socket.accept()
                        rank = int(client_socket.recv(buff_size).decode())
                        client_sockets[rank] = client_socket
                        has_recv_by_socket.append(rank)
                    else:
                        client_sockets[send_rank].send(
1908 1909
                            str(cur_rank).encode("utf-8")
                        )
1910
                        client_sockets[send_rank].close()
1911 1912 1913 1914 1915
                        print(
                            "It is able to instantiate {} as recver now.".format(
                                process_group.ranks
                            )
                        )
1916 1917 1918
                        break
        process_group.instantiate()
    server_socket.close()
1919 1920


1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
def set_recompute_ckpts(model, strategy):
    from .interface import _g_recompute_idx

    if _g_recompute_idx > -1:
        return

    recompute = strategy.recompute
    if not recompute.enable:
        return

    # NOTE: hack to enable recompute in engine api for GPT-3
    # TODO support more PaddleNLP/CV models here
    # extract ckpts by specific model
    if isinstance(model, paddle.nn.Layer):
        if hasattr(model, "gpt") and model.__class__.__name__ in [
            'GPTForPretraining',
            'GPTForPretrainingAuto',
        ]:
            exact_ckpts = model.gpt.checkpoints
        else:
            exact_ckpts = recompute.checkpoints
    else:
        exact_ckpts = recompute.checkpoints

    # modify strategy
    recompute.checkpoints = exact_ckpts[:]
    logs = {
        'Model Class': model.__class__.__name__,
        'Applied Recompute ckpts': exact_ckpts,
    }
    logging.info(logs)


1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
def get_input_split_info(cur_rank, var, dist_context):
    # deduce how the input data is split among the cluster
    tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
    process_mesh = tensor_dist_attr.process_mesh
    dims_mapping = tensor_dist_attr.dims_mapping

    if cur_rank not in process_mesh.processes:
        rank_id = _get_corresponding_rank(dist_context, process_mesh, cur_rank)
    else:
        rank_id = cur_rank

    batch_size_axis = dims_mapping[0]
    if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
        group_ranks = _get_comm_group(
            process_mesh.processes,
            process_mesh.topology,
            batch_size_axis,
            rank_id,
        )
        return len(group_ranks), group_ranks.index(rank_id)

    return 1, 0


def validate_opt(optimizer):
    if optimizer is not None:
        optimizer._parameter_list = None
        optimizer._param_groups = None
    return optimizer
1983 1984


1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
def set_data_parallel(x):
    from .process_group import get_world_process_group
    from .interface import shard_tensor, ProcessMesh

    world_ranks = get_world_process_group().ranks
    process_mesh = ProcessMesh(world_ranks, ['dp'])
    shard_spec = ['dp' if len(world_ranks) > 1 else None] + [
        None for _ in range(len(x.shape) - 1)
    ]

    return shard_tensor(x, process_mesh, shard_spec)


def is_naive_data_parallel(dist_context):
    # Navie data parallel only completes dist_attr once from the front to back.
    if not dist_context.data_parallel:
        return False

    ops_type = [
        op.type
        for op in dist_context._original_serial_main_program.global_block().ops
    ]
    if (
        not set(ops_type) & set(__not_naive_data_parallel_op__)
    ) and dist_context.data_parallel:
        return True
    return False


2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
def _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.dims_mapping = py_dist_attr.dims_mapping
    cpp_dist_attr.annotated = py_dist_attr._is_annotated


def _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
    if not cpp_process_mesh.empty():
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.dims_mapping = cpp_dist_attr.dims_mapping
    py_dist_attr._is_annotated = cpp_dist_attr.annotated


def _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.impl_type = py_dist_attr.impl_type
    cpp_dist_attr.impl_idx = py_dist_attr.impl_idx
    cpp_dist_attr.annotated = py_dist_attr._is_annotated
    for name, py_tensor_dist_attr in py_dist_attr.inputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)
    for name, py_tensor_dist_attr in py_dist_attr.outputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)


def _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
    if not cpp_process_mesh.empty():
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.impl_type = cpp_dist_attr.impl_type
    py_dist_attr.impl_idx = cpp_dist_attr.impl_idx
    py_dist_attr._is_annotated = cpp_dist_attr.annotated
    py_dist_attr.op_type = cpp_dist_attr.op.type()
    for name, cpp_tensor_dist_attr in cpp_dist_attr.inputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )
    for name, cpp_tensor_dist_attr in cpp_dist_attr.outputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )


def _copy_dist_attr_to_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_to_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_to_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_from_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_from_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_from_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_to_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)


def _copy_dist_attr_from_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
2129 2130 2131 2132 2133 2134


def insert_dependencies_for_two_ops(
    block,
    idx,
    prior_op,
2135
    posterior_op,
2136 2137 2138 2139 2140
    dist_context,
    is_recompute=False,
    sync=False,
):
    """
2141
    dependency: prior_op should be run before posterior_op
2142 2143 2144 2145 2146 2147 2148 2149
    """

    assert (
        len(prior_op.output_arg_names) >= 1
    ), "first op of dependency should at least have one output. [{}]".format(
        str(prior_op)
    )
    assert (
2150
        len(posterior_op.input_arg_names) >= 1
2151
    ), "second op of dependency should at least have one input. [{}]".format(
2152
        str(posterior_op)
2153 2154 2155 2156 2157
    )
    prior_op_mesh = dist_context.get_op_dist_attr_for_program(
        prior_op
    ).process_mesh
    posterior_mesh = dist_context.get_op_dist_attr_for_program(
2158
        posterior_op
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
    ).process_mesh
    assert (
        prior_op_mesh == posterior_mesh
    ), "two ops of dependency should have same mesh but got [{}] and [{}]".format(
        str(prior_op_mesh), str(posterior_mesh)
    )

    def _select_best_depend_var(vars):

        vars_with_numels = [(var, get_var_numel(var)) for var in vars]
        vars_with_numels.sort(key=lambda x: x[1])

        return vars_with_numels[-1][0]

    first_var = _select_best_depend_var(
        [block.var(name) for name in prior_op.output_arg_names]
    )
    second_var = _select_best_depend_var(
2177
        [block.var(name) for name in posterior_op.input_arg_names]
2178 2179
    )

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
    return insert_dependencies_for_two_vars(
        block,
        idx,
        first_var,
        second_var,
        dist_context,
        OpRole.Backward,
        prior_op_mesh,
        is_recompute,
        sync,
    )


def insert_dependencies_for_two_vars(
    block,
    idx,
    prior_var,
    post_var,
    dist_context,
    oprole,
    process_mesh=None,
    is_recompute=False,
    sync=False,
):
    """
    dependency: op that generates prior_var should be run before op that generates post_var
    """
    assert block.has_var(prior_var.name)
    assert block.has_var(post_var.name)
    if process_mesh is None:
        process_mesh = dist_context.get_tensor_dist_attr_for_program(
            post_var
        ).process_mesh
    assert process_mesh is not None

2215 2216 2217 2218
    depend_op = block._insert_op_without_sync(
        idx,
        type='nop',
        inputs={
2219
            "X": prior_var,
2220
        },
2221
        outputs={"Out": post_var},
2222 2223
    )
    # depend_op.desc.set_type("depend")
2224
    depend_op._set_attr(OP_ROLE_KEY, oprole)
2225 2226 2227 2228
    # depend_op.desc.set_input("Dep", [first_var.name])
    # self.desc.set_output(out_proto.name, out_arg_names)

    naive_set_dist_op_attr_for_program_by_mesh(
2229
        depend_op, process_mesh, dist_context, is_recompute
2230 2231 2232 2233
    )

    if sync:
        block._sync_with_cpp()
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

    return depend_op


def use_standalone_executor():
    return os.environ.get('FLAGS_CONVERT_GRAPH_TO_PROGRAM', None) in [
        1,
        '1',
        True,
        'True',
        'true',
    ]