api.py 66.2 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18
# Temporary disable isort to avoid circular import
# This can be removed after the circular import is resolved
# isort: skip_file
19 20
from __future__ import annotations

21 22
import os
import pickle
23
import warnings
24
from collections import OrderedDict
25
import inspect
M
Ming-Xu Huang 已提交
26
import threading
H
hjyp 已提交
27
from typing import Any, List
28

29
import paddle
J
Jiabin Yang 已提交
30
from paddle.fluid import core, dygraph
31 32 33 34 35
from paddle.fluid.compiler import (
    BuildStrategy,
    CompiledProgram,
    ExecutionStrategy,
)
36
from paddle.fluid.data_feeder import check_type
37
from paddle.fluid.layers.utils import flatten, pack_sequence_as
38 39 40 41
from paddle.fluid.dygraph.base import (
    program_desc_tracing_guard,
    switch_to_static_graph,
)
42 43
from .dy2static import logging_utils
from .dy2static.convert_call_func import (
44 45
    ConversionOptions,
    CONVERSION_OPTIONS,
H
hjyp 已提交
46
    add_ignore_module,
47
)
48
from .dy2static.program_translator import (
49 50 51 52
    ProgramTranslator,
    StaticFunction,
    unwrap_decorators,
)
53
from paddle.jit.translated_layer import (
54 55 56 57 58 59
    TranslatedLayer,
    INFER_MODEL_SUFFIX,
    INFER_PARAMS_SUFFIX,
    INFER_PARAMS_INFO_SUFFIX,
    INFER_PROPERTY_SUFFIX,
)
60 61
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
62 63 64 65 66 67 68 69 70 71 72 73 74
from paddle.fluid.framework import (
    Block,
    ParamBase,
    Program,
    Variable,
    Parameter,
    EagerParamBase,
)
from paddle.fluid.framework import (
    _current_expected_place,
    _dygraph_guard,
    _dygraph_tracer,
)
J
Jiabin Yang 已提交
75
from paddle.fluid.framework import dygraph_only, _non_static_mode
76
from paddle.fluid.wrapped_decorator import wrap_decorator
77

78
__all__ = []
79 80 81 82 83 84 85 86 87 88


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


89
def _extract_vars(inputs, result_list, err_tag='inputs'):
90
    if isinstance(inputs, Variable):
91
        result_list.append(inputs)
92
    elif isinstance(inputs, (list, tuple)):
93
        for var in inputs:
94
            _extract_vars(var, result_list, err_tag)
95 96
    else:
        raise TypeError(
97
            "The type of 'each element of {}' in paddle.jit.TracedLayer.trace must be fluid.Variable, but received {}.".format(
98 99 100
                err_tag, type(inputs)
            )
        )
101 102


103
def extract_vars(inputs, err_tag='inputs'):
104
    result_list = []
105
    _extract_vars(inputs, result_list, err_tag)
106 107 108
    return result_list


109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
134
          from paddle.jit.api import dygraph_to_static_func
135 136 137

          @dygraph_to_static_func
          def func(x):
138
              if paddle.mean(x) < 0:
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
158 159
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
J
Jiabin Yang 已提交
160
        if _non_static_mode() or not program_translator.enable_to_static:
161
            logging_utils.warn(
162
                "The decorator 'dygraph_to_static_func' doesn't work in "
163
                "dygraph mode or set ProgramTranslator.enable to False. "
164 165
                "We will just return dygraph output."
            )
166 167 168
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
169 170 171 172

    return __impl__


173
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
174

175

176 177 178 179 180 181
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
182
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
183
    """
H
hjyp 已提交
184
    decorator_name = "to_static"
185 186 187 188 189 190 191 192 193 194 195

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


H
hjyp 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
def ignore_module(modules: List[Any]):
    """
    Adds modules that ignore transcription.
    Builtin modules that have been ignored are collections, pdb, copy, inspect, re, numpy, logging, six

    Args:
        modules (List[Any]): Ignored modules that you want to add

    Examples:
        .. code-block:: python

            import scipy
            import astor

            import paddle
            from paddle.jit import ignore_module

            modules = [
               scipy,
               astor
            ]

            ignore_module(modules)

    """
    add_ignore_module(modules)


H
hjyp 已提交
224
def to_static(
225 226
    function=None, input_spec=None, build_strategy=None, property=False
):
227 228
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
229
    @to_static handles the Program and Executor of static graph mode and returns
230 231 232 233
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
234

235
    Args:
236
        function (callable): callable imperative function.
237
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
238
            information of each input Tensor.
239 240 241 242 243
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
244
        property(bool, Optional): whether the fucntion is python property. The default is False.
245

246

247
    Returns:
248
        Tensor(s): containing the numerical result.
249

250 251
    Examples:
        .. code-block:: python
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
267

268
    """
269

270 271
    def decorated(python_func):
        """
272
        Decorates a python function into a StaticFunction object.
273 274 275
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
276

277
        # Step 2. copy some attributes from original python function.
278 279 280 281 282 283 284 285 286
        static_layer = copy_decorator_attrs(
            original_func=python_func,
            decorated_obj=StaticFunction(
                function=python_func,
                input_spec=input_spec,
                build_strategy=build_strategy,
                property=property,
            ),
        )
287 288

        return static_layer
289

290 291 292
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
293 294 295 296
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}".format(
                type(build_strategy).__name__
            )
        )
297

H
hjyp 已提交
298
    # for usage: `to_static(foo, ...)`
299
    if function is not None:
300
        if isinstance(function, Layer):
301
            if isinstance(function.forward, StaticFunction):
302
                class_name = function.__class__.__name__
303
                logging_utils.warn(
304 305 306 307
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".format(
                        class_name
                    )
                )
308 309 310 311
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
312

H
hjyp 已提交
313
    # for usage: `@to_static`
314
    return decorated
315 316


317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


357
class _SaveLoadConfig:
358 359 360 361 362
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
363 364
        # used for `paddle.load`
        self._keep_name_table = False
365 366 367 368

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

369 370
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
371 372 373 374 375
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
376
        self.with_hook = False
377

378 379 380
        # if True, multi `StaticFunction` will share params in one file.
        self.combine_params = False

381 382 383 384 385 386
    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
387 388
        if spec is None:
            return
389 390
        if not isinstance(spec, list):
            raise TypeError(
391
                "The config `output_spec` should be 'list', but received input type is %s."
392 393
                % type(input)
            )
394 395 396
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
397
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
398 399
                        % type(var)
                    )
400 401 402 403 404 405 406 407
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
408 409
        if filename is None:
            return
410
        if not isinstance(filename, str):
411
            raise TypeError(
412
                "The config `model_filename` should be str, but received input's type is %s."
413 414
                % type(filename)
            )
415
        if len(filename) == 0:
416
            raise ValueError("The config `model_filename` is empty string.")
417 418 419 420 421 422 423 424
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
425 426
        if filename is None:
            return
427
        if not isinstance(filename, str):
428
            raise TypeError(
429
                "The config `params_filename` should be str, but received input's type is %s."
430 431
                % type(filename)
            )
432
        if len(filename) == 0:
433
            raise ValueError("The config `params_filename` is empty string.")
434 435
        self._params_filename = filename

436 437 438 439 440 441
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
442 443
        if value is None:
            return
444 445
        if not isinstance(value, bool):
            raise TypeError(
446
                "The config `keep_name_table` should be bool value, but received input's type is %s."
447 448
                % type(value)
            )
449 450
        self._keep_name_table = value

451

452
def _parse_save_configs(configs):
453
    supported_configs = [
454 455 456 457 458
        'output_spec',
        "with_hook",
        "combine_params",
        "clip_extra",
        "skip_forward",
459
    ]
460 461 462 463 464 465

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
466 467
                % (key)
            )
468 469 470 471

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
472
    inner_config.with_hook = configs.get('with_hook', False)
473
    inner_config.combine_params = configs.get("combine_params", False)
474
    inner_config.clip_extra = configs.get("clip_extra", True)
H
Hui Zhang 已提交
475
    inner_config.skip_forward = configs.get("skip_forward", False)
476 477 478 479 480 481 482 483 484 485 486 487

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
488 489
                % (key)
            )
490 491 492 493 494 495 496 497 498

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


499
def _get_input_var_names(inputs, input_spec):
500 501 502 503
    name_none_error = (
        "The %s's name is None. "
        "When using jit.save, please set InputSepc's name in "
        "to_static(input_spec=[]) and jit.save(input_spec=[]) "
504
        "and make sure they are consistent."
505 506 507 508 509
    )
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of InputSpec or example Tensor "
        "in input_spec is the same as the name of InputSpec in "
510
        "`to_static` decorated on the Layer.forward method."
511
    )
512
    result_list = []
513 514 515
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
516 517
    if input_spec is None:
        # no prune
518 519 520 521
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
522 523
            spec
            for spec in input_spec
524 525 526 527
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
528 529
        # no prune
        result_list = input_var_names
530
        # if input spec name not in input_var_names, only raise warning
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


554
def _get_output_vars(outputs, output_spec, with_hook=False):
555 556 557 558
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of example Tensor "
        "in configs.output_spec is the output tensor of "
559
        "Layer.forward method."
560
    )
561 562 563 564
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
565 566
    result_list = []
    output_vars_dict = OrderedDict()
567
    for var in flatten(outputs):
568 569 570
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
571
        result_list = list(output_vars_dict.values())
572
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
573
        result_list = list(output_vars_dict.values())
574 575 576 577 578 579 580 581 582 583 584 585
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
607 608
            "of ``path`` is unique." % (path, path)
        )
609
    elif not prefix_format_exist and not directory_format_exist:
610 611 612 613 614
        raise ValueError(
            "The ``path`` (%s) to load model not exists. "
            "Please make sure that *.pdmodel exists or "
            "don't using ``skip_forward=True`` to jit.save." % path
        )
615 616 617 618 619 620 621 622
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
623 624
                    "not take effect."
                )
625 626 627 628 629
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
630 631
                    "not take effect."
                )
632 633 634 635
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
636

637
    return model_path, config
638 639


M
Ming-Xu Huang 已提交
640 641 642 643
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


644
class HookRemoveHelper:
645
    """A HookRemoveHelper that can be used to remove hook."""
M
Ming-Xu Huang 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
681
                    super().__init__()
M
Ming-Xu Huang 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


728
@wrap_decorator
M
Ming-Xu Huang 已提交
729 730 731 732 733 734 735 736 737 738
def _run_save_pre_hooks(func):
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


739
def _save_property(filename: str, property_vals: list[tuple[Any, str]]):
740 741 742
    """class property serialization.

    Args:
743 744
        filename (str): *.meta
        property_vals (list[tuple[Any, str]]): class property.
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
    """

    def set_property(meta, key, val):
        if isinstance(val, float):
            meta.set_float(key, val)
        elif isinstance(val, int):
            meta.set_int(key, val)
        elif isinstance(val, str):
            meta.set_string(key, val)
        elif isinstance(val, (tuple, list)):
            if isinstance(val[0], float):
                meta.set_floats(key, val)
            elif isinstance(val[0], int):
                meta.set_ints(key, val)
            elif isinstance(val[0], str):
                meta.set_strings(key, val)
        else:
            raise ValueError(f"Note support val type: {type(val)}")
        return

    with open(filename, 'wb') as f:
        meta = paddle.framework.core.Property()
        for item in property_vals:
            val, key = item[0], item[1]
            set_property(meta, key, val)
        f.write(meta.serialize_to_string())


M
Ming-Xu Huang 已提交
773
@_run_save_pre_hooks
774
@switch_to_static_graph
775
def save(layer, path, input_spec=None, **configs):
776
    """
777
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
778 779
    format model, which can be used for inference or fine-tuning after loading.

780
    It will save the translated program and all related persistable
781
    variables of input Layer to given ``path`` .
782 783

    ``path`` is the prefix of saved objects, and the saved translated program file
784
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
785
    and here also saved some additional variable description information to a file,
786
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
787 788

    The saved model can be loaded by follow APIs:
789 790
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
791 792
      - Other C++ inference APIs

793
    .. note::
794
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to
795 796
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

797
    Args:
798
        layer (Layer|function): The Layer or function to be saved.
799
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
800 801 802
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
803
            the original Layer's forward method would be the inputs of the saved model. Default None.
804 805
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
806 807 808
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
809 810 811
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
812

813 814 815 816 817 818
    Returns:
        None

    Examples:
        .. code-block:: python

819
            # example 1: save layer
820
            import numpy as np
821 822 823
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
824

825 826 827
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
828

829 830 831 832 833 834 835
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
836

837 838 839 840
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
841

842 843
                def __len__(self):
                    return self.num_samples
844

845 846
            class LinearNet(nn.Layer):
                def __init__(self):
847
                    super().__init__()
848
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
849

850
                @paddle.jit.to_static
851 852 853
                def forward(self, x):
                    return self._linear(x)

854 855 856 857 858 859 860 861 862 863 864 865
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
866

867 868 869 870
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
871

872 873 874 875 876 877 878
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
879

880 881
            # train
            train(layer, loader, loss_fn, adam)
882

883
            # save
884 885
            path = "example_model/linear"
            paddle.jit.save(layer, path)
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
906

907
            save_function()
908 909
    """

910
    # 1. input build & check
911
    prog_translator = ProgramTranslator()
912
    if not prog_translator.enable_to_static:
913
        raise RuntimeError(
914
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
915
        )
916

917 918 919 920 921
    if not (
        isinstance(layer, Layer)
        or inspect.isfunction(layer)
        or isinstance(layer, StaticFunction)
    ):
922
        raise TypeError(
923
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
924 925
            % type(layer)
        )
926 927 928 929
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
930

931 932
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
933
    # function_spec, so here we save DataParallel._layers instead
934 935 936 937 938 939 940
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

941 942 943 944 945 946
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
947 948
            "file_prefix is empty string."
        )
949 950 951 952

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
953

954 955
    # avoid change user given input_spec
    inner_input_spec = None
956
    if input_spec is not None:
957 958 959
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
960 961 962 963
                if (
                    isinstance(static_func, StaticFunction)
                    and 'forward' != attr_func
                ):
964 965
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
966 967
                        % type(input_spec)
                    )
968

969
        if not isinstance(input_spec, (list, tuple)):
970 971
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
972 973
                % type(input_spec)
            )
974
        inner_input_spec = []
975
        for var in flatten(input_spec):
976 977
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
0
0x45f 已提交
978
            elif isinstance(var, (core.VarBase, core.eager.Tensor, Variable)):
979
                inner_input_spec.append(
980 981
                    paddle.static.InputSpec.from_tensor(var)
                )
982
            else:
983 984
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
985

986 987
    # parse configs
    configs = _parse_save_configs(configs)
988
    # whether outermost layer has pre/post hook, if does, we need also save
989
    # these operators in program.
990
    with_hook = configs.with_hook
991 992 993
    combine_params = configs.combine_params
    if combine_params:
        configs._program_only = True
994

995 996
    scope = core.Scope()
    extra_var_info = dict()
997 998
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
999 1000
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
1001 1002
    else:
        # layer is function
1003 1004 1005
        functions = [
            layer,
        ]
1006

1007
    combine_vars = {}
1008
    property_vals = []  # (value, key)
H
Hui Zhang 已提交
1009
    concrete_program = None
1010 1011 1012 1013
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
1014 1015 1016 1017
                if static_func.is_property:
                    # property method to be exported
                    immediate_val = static_func()
                    property_vals.append(
1018 1019 1020 1021 1022
                        (
                            immediate_val,
                            layer.__class__.__name__ + '.' + attr_func,
                        )
                    )
1023 1024
                    continue

1025 1026 1027 1028 1029
                concrete_program = (
                    static_func.concrete_program_specify_input_spec(
                        inner_input_spec, with_hook=with_hook
                    )
                )
1030
            elif 'forward' == attr_func:
H
Hui Zhang 已提交
1031 1032 1033 1034
                if configs.skip_forward:
                    # do not jit.save forward function
                    continue

1035
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
1036
                # inner_input_spec is list[InputSpec], it should be packed with same structure
1037 1038
                # as original input_spec here.
                if inner_input_spec:
1039 1040 1041
                    inner_input_spec = pack_sequence_as(
                        input_spec, inner_input_spec
                    )
H
hjyp 已提交
1042
                static_forward = to_static(
1043 1044 1045 1046 1047 1048 1049
                    inner_layer.forward, input_spec=inner_input_spec
                )
                concrete_program = (
                    static_forward.concrete_program_specify_input_spec(
                        with_hook=with_hook
                    )
                )
1050
                # the input_spec has been used in declarative, which is equal to
H
hjyp 已提交
1051
                # @to_static with input_spec and jit.save without input_spec,
1052 1053 1054 1055
                # avoid needless warning
                inner_input_spec = None
            else:
                continue
1056 1057 1058
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
1059 1060 1061 1062 1063 1064
                if attr_func.is_property:
                    # property method to be exported
                    immediate_val = attr_func()
                    property_vals.append((immediate_val, attr_func))
                    continue

1065 1066 1067 1068 1069
                concrete_program = (
                    attr_func.concrete_program_specify_input_spec(
                        inner_input_spec
                    )
                )
1070 1071
            else:
                if inner_input_spec:
1072 1073 1074
                    inner_input_spec = pack_sequence_as(
                        input_spec, inner_input_spec
                    )
H
hjyp 已提交
1075
                static_function = to_static(
1076 1077
                    attr_func, input_spec=inner_input_spec
                )
1078 1079 1080 1081
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
1082 1083 1084 1085
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'.format(
                            layer
                        )
                    )
1086

1087
        # when save multi `StaticFunction`, all `StaticFunction` share params.
1088 1089
        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
1090
            dygraph_state_dict = inner_layer.to_static_state_dict()
1091 1092
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
1093 1094
                dygraph_state_dict = (
                    attr_func._class_instance.to_static_state_dict()
1095
                )
1096 1097

        if dygraph_state_dict:
1098 1099 1100 1101 1102
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
1103
            state_var_dict = dict()
1104
            for structured_name, var in dygraph_state_dict.items():
1105
                state_names_dict[var.name] = structured_name
1106
                state_var_dict[var.name] = var
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        # 3. share parameters from Layer to scope & record var info
        with dygraph.guard():
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                    scr_tensor = param_or_buffer.value().get_map_tensor()
                    tgt_var = scope.var(param_or_buffer.name)
                    tgt_var.set_vocab(scr_tensor)
                else:
                    param_or_buffer_tensor = scope.var(
1118 1119 1120 1121 1122 1123 1124 1125
                        param_or_buffer.name
                    ).get_tensor()
                    # src_tensor = param_or_buffer.value().get_tensor()
                    src_tensor = (
                        state_var_dict[param_or_buffer.name]
                        .value()
                        .get_tensor()
                    )
1126 1127 1128 1129 1130 1131
                    param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
                    extra_info_dict = dict()
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
1132 1133
                            param_or_buffer.name
                        ]
1134
                    extra_info_dict[
1135 1136
                        'stop_gradient'
                    ] = param_or_buffer.stop_gradient
1137 1138 1139
                    if isinstance(param_or_buffer, (ParamBase, EagerParamBase)):
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
1140 1141

        # 4. build input & output of save_infernece_model
1142 1143 1144 1145 1146 1147 1148 1149
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
1150 1151 1152
        input_var_names = _get_input_var_names(
            concrete_program.inputs, inner_input_spec
        )
1153 1154

        # NOTE(chenweihang): [ Get output variables ]
1155 1156
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
1157
        # var name of output, and we don't recommended to use output_spec
1158 1159
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
1160 1161 1162
        output_vars = _get_output_vars(
            concrete_program.outputs, configs.output_spec, with_hook
        )
1163 1164 1165 1166 1167 1168 1169

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
1170
        # so we don't support set model_filename & params_filename
1171
        if 'forward' == attr_func or not isinstance(layer, Layer):
1172 1173 1174 1175
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
1176 1177 1178
            params_filename = (
                file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX
            )
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
1190
                program_only=configs._program_only,
1191 1192
                clip_extra=configs.clip_extra,
            )
1193

1194 1195 1196
        if combine_params:
            clone_main_program = concrete_program.main_program.clone()
            clone_main_program = clone_main_program._prune_with_input(
1197 1198
                input_var_names, output_vars
            )
1199 1200
            for block in clone_main_program.blocks:
                combine_vars.update(block.vars)
1201 1202 1203

    # save shared params
    if combine_params:
1204 1205 1206 1207 1208 1209
        # sort vars by name
        combine_vars = sorted(combine_vars.items(), key=lambda item: item[0])
        ordered_vars = []
        for name, var in combine_vars:
            ordered_vars.append(var)

1210 1211
        params_filename = file_prefix + INFER_PARAMS_SUFFIX
        with scope_guard(scope):
1212 1213 1214 1215 1216 1217
            paddle.static.save_vars(
                Executor(_current_expected_place()),
                dirname=model_path,
                vars=list(filter(paddle.fluid.io.is_persistable, ordered_vars)),
                filename=params_filename,
            )
1218
        # save property
1219 1220 1221
        property_save_path = os.path.join(
            os.path.normpath(model_path), file_prefix + INFER_PROPERTY_SUFFIX
        )
1222
        _save_property(property_save_path, property_vals)
1223

1224 1225 1226 1227 1228 1229 1230
    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1231 1232
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1233 1234
    # configure redundant information to proceed.
    #
1235 1236
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1237 1238
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1239 1240 1241

    # "layer" can only be Layer or function or StaticFunction.
    contain_parameter = False
H
Hui Zhang 已提交
1242 1243 1244
    if concrete_program is not None:
        for var in concrete_program.main_program.list_vars():
            contain_parameter |= isinstance(var, Parameter)
1245 1246

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1247 1248 1249 1250
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1251 1252 1253


@dygraph_only
1254
def load(path, **configs):
1255 1256 1257
    """
    :api_attr: imperative

1258 1259
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1260
    then performing inference or fine-tune training.
1261 1262

    .. note::
1263
        If you load model saved by ``paddle.static.save_inference_model`` ,
1264 1265
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1266
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1267 1268 1269 1270
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1271
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1272 1273
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1274 1275
            DO NOT use them. Default None.
            The following options are currently supported:
1276 1277 1278 1279
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1280 1281
            by default.

1282 1283 1284 1285 1286

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1287
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1288 1289 1290 1291

        .. code-block:: python

            import numpy as np
1292 1293 1294
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1295

1296 1297 1298
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1299

1300 1301
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1302

1303 1304 1305 1306
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1307

1308 1309 1310 1311
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1312

1313 1314 1315 1316 1317
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1318
                    super().__init__()
1319
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1320

1321
                @paddle.jit.to_static
1322 1323 1324
                def forward(self, x):
                    return self._linear(x)

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1336
            # 1. train & save model.
1337

1338
            # create network
1339 1340 1341 1342
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1343
            # create data loader
1344 1345 1346 1347 1348 1349
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1350

1351 1352
            # train
            train(layer, loader, loss_fn, adam)
1353

1354
            # save
1355 1356
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1357

1358
            # 2. load model
1359

1360
            # load
1361
            loaded_layer = paddle.jit.load(path)
1362 1363

            # inference
1364 1365 1366
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1367 1368

            # fine-tune
1369 1370 1371
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1372 1373


1374
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1375 1376 1377 1378

        .. code-block:: python

            import numpy as np
1379
            import paddle
1380
            import paddle.static as static
1381 1382
            import paddle.nn as nn
            import paddle.optimizer as opt
1383
            import paddle.nn.functional as F
1384

1385 1386 1387
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1388

1389 1390 1391 1392 1393 1394 1395
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1396

1397 1398 1399 1400
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1401

1402 1403
                def __len__(self):
                    return self.num_samples
1404

1405 1406
            paddle.enable_static()

1407 1408
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1409
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1410 1411
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1412

1413
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1414 1415
            optimizer.minimize(avg_loss)

1416 1417 1418
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1419

1420 1421 1422 1423 1424
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1425
                batch_size=BATCH_SIZE,
1426 1427
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1428
                return_list=False,
1429
                num_workers=2)
1430 1431 1432 1433

            # 1. train and save inference model
            for data in loader():
                exe.run(
1434
                    static.default_main_program(),
1435
                    feed=data,
1436 1437 1438
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1439
            paddle.fluid.io.save_inference_model(
1440 1441 1442
                model_path, ["image"], [pred], exe)

            # 2. load model
1443 1444

            # enable dygraph mode
1445 1446 1447 1448
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1449

1450 1451 1452
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1453 1454
            pred = fc(x)

1455
            # fine-tune
1456
            fc.train()
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1474
    """
1475 1476 1477 1478
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1479
    return TranslatedLayer._construct(model_path, config)
1480 1481


1482
@dygraph_only
1483 1484 1485
def _trace(
    layer, inputs, feed_prefix='feed_', fetch_prefix='fetch_', tmp_prefix='t_'
):
1486
    assert isinstance(layer, Layer)
1487 1488 1489 1490 1491 1492 1493 1494 1495

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1496
        original_outputs = layer(*inputs)
1497 1498 1499 1500
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1501
        out_vars = extract_vars(outputs, err_tag='outputs')
1502

1503 1504 1505 1506 1507 1508 1509 1510
        (
            program_desc,
            feed_names,
            fetch_names,
            parameters,
        ) = tracer.create_program_desc(
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix
        )
1511 1512 1513 1514 1515
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1516
    return original_outputs, program, feed_names, fetch_names, parameters
1517 1518


1519
class TracedLayer:
1520
    """
1521
    :api_attr: imperative
1522

1523 1524 1525 1526 1527
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1528 1529 1530 1531

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1532 1533

    All TracedLayer objects should not be created by constructor and should
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1545
        self._params = parameters
1546 1547 1548 1549 1550

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1551
            src_tensor = p.value().get_tensor()
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1575
        This method is the only allowed method to create TracedLayer object.
1576 1577 1578 1579
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1580
            layer (paddle.nn.Layer): the layer object to be traced.
1581 1582
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1583 1584

        Returns:
1585
            tuple: A tuple of 2 items, whose the first item is the output of
1586 1587
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1588

1589
        Examples:
1590 1591
            .. code-block:: python:

1592
                import paddle
1593

1594
                class ExampleLayer(paddle.nn.Layer):
1595
                    def __init__(self):
1596
                        super().__init__()
1597
                        self._fc = paddle.nn.Linear(3, 10)
1598 1599 1600 1601

                    def forward(self, input):
                        return self._fc(input)

1602

1603 1604 1605 1606 1607 1608
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1609

1610 1611
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1612

1613
                # save the static graph model for inference
1614
                static_layer.save_inference_model('./saved_infer_model')
1615

1616
        """
1617 1618
        assert isinstance(
            layer, Layer
1619
        ), "The type of 'layer' in paddle.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
1620 1621
            type(layer)
        )
1622 1623
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1624 1625 1626 1627 1628 1629 1630
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1631
            build_strategy (BuildStrategy, optional): build strategy of
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1642
                import paddle
1643

1644
                class ExampleLayer(paddle.nn.Layer):
1645
                    def __init__(self):
1646
                        super().__init__()
1647
                        self._fc = paddle.nn.Linear(3, 10)
1648 1649 1650 1651

                    def forward(self, input):
                        return self._fc(input)

1652 1653 1654 1655
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1656

1657 1658
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1659

1660 1661
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1662

1663 1664
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1665 1666 1667

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1668 1669
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
1670
        ), "The type of 'build_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
1671 1672
            type(build_strategy)
        )
1673 1674
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
1675
        ), "The type of 'exec_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
1676 1677
            type(exec_strategy)
        )
1678 1679 1680 1681 1682 1683
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
1684 1685 1686 1687 1688 1689
            self._program
        ).with_data_parallel(
            build_strategy=self._build_strategy,
            exec_strategy=self._exec_strategy,
            places=self._place,
        )
1690 1691

    def _build_feed(self, inputs):
1692 1693 1694
        assert isinstance(
            inputs, (list, tuple)
        ), "Inputs should be a list or tuple of variables"
1695 1696
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
J
Jiabin Yang 已提交
1697
        if _non_static_mode():
1698
            for x, name in zip(inputs, self._feed_names):
1699
                feed_dict[name] = x.value().get_tensor()
1700 1701 1702 1703 1704 1705 1706 1707
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
1708 1709 1710
        return self._exe.run(
            self._compiled_program, feed=feed, fetch_list=self._fetch_names
        )
1711 1712 1713 1714 1715 1716 1717 1718 1719

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1720
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1721
        """
1722 1723
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1724

1725 1726 1727
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1728
        Args:
1729
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1730
            feed (list[int], optional): the input variable indices of the saved
1731
                inference model. If None, all input variables of the
1732 1733 1734 1735 1736 1737
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1738
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1739 1740

        Returns:
1741
            None
1742 1743 1744 1745 1746

        Examples:
            .. code-block:: python:

                import numpy as np
1747
                import paddle
1748

1749
                class ExampleLayer(paddle.nn.Layer):
1750
                    def __init__(self):
1751
                        super().__init__()
1752
                        self._fc = paddle.nn.Linear(3, 10)
1753 1754 1755 1756

                    def forward(self, input):
                        return self._fc(input)

1757 1758
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1759 1760
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1761

1762 1763
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1764

1765 1766 1767 1768
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1769
                                                    exe)
1770 1771 1772

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1773
        """
1774 1775 1776 1777
        check_type(
            path,
            "path",
            str,
1778
            "paddle.jit.TracedLayer.save_inference_model",
1779 1780 1781 1782 1783
        )
        check_type(
            feed,
            "feed",
            (type(None), list),
1784
            "paddle.jit.TracedLayer.save_inference_model",
1785
        )
1786 1787
        if isinstance(feed, list):
            for f in feed:
1788
                check_type(
1789 1790 1791
                    f,
                    "each element of feed",
                    int,
1792
                    "paddle.jit.TracedLayer.save_inference_model",
1793 1794 1795 1796 1797
                )
        check_type(
            fetch,
            "fetch",
            (type(None), list),
1798
            "paddle.jit.TracedLayer.save_inference_model",
1799
        )
1800 1801
        if isinstance(fetch, list):
            for f in fetch:
1802
                check_type(
1803 1804 1805
                    f,
                    "each element of fetch",
                    int,
1806
                    "paddle.jit.TracedLayer.save_inference_model",
1807
                )
1808
        clip_extra = kwargs.get('clip_extra', True)
1809 1810 1811 1812 1813 1814
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
1815 1816
                "file_prefix is empty string."
            )
1817 1818 1819 1820 1821

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1822
        from paddle.fluid.io import save_inference_model
1823 1824 1825 1826 1827

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1828
            return [all_vars[idx] for idx in partial_vars]
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1839 1840 1841
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
            save_inference_model(
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                clip_extra=clip_extra,
            )