common.py 92.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiaoting 已提交
15
import warnings
16
import paddle
X
xiaoting 已提交
17
from paddle.fluid.layer_helper import LayerHelper
18 19 20 21
from paddle.fluid.layers.tensor import fill_constant
from ...tensor import concat
from ...tensor.creation import zeros
from paddle.static import Variable
22
from ...fluid import dygraph_utils
23
# TODO: define the common functions to build a neural network
24 25
from ...tensor.manipulation import squeeze
from ...tensor.manipulation import unsqueeze
Y
Yang Zhang 已提交
26 27 28
from ...tensor import clip
from ...tensor import sum
from ...tensor import sqrt
29
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype, check_type
H
hong 已提交
30
from ...fluid.framework import _varbase_creator, _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
X
xiaoting 已提交
31

Z
zhiboniu 已提交
32 33
from ...fluid import dygraph_utils

34
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
35 36 37
from paddle.framework import in_dynamic_mode
from paddle.tensor.creation import full
from paddle.framework import core
38
from paddle.fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
39
from paddle.static import default_main_program
40

41 42
__all__ = []

X
xiaoting 已提交
43

44 45 46
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

47
    Return a col buffer of sliding local blocks of input x, also known
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
94
        Tensor, The tensor corresponding to the sliding local blocks.
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    if in_dygraph_mode():
153
        return _C_ops.unfold(x, kernel_sizes, strides, paddings, dilations)
154 155

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
156 157 158 159 160 161 162 163 164
    helper.append_op(type="unfold",
                     inputs={"X": x},
                     outputs={"Y": out},
                     attrs={
                         "kernel_sizes": kernel_sizes,
                         "strides": strides,
                         "paddings": paddings,
                         "dilations": dilations
                     })
165 166 167
    return out


X
xiaoting 已提交
168
def interpolate(x,
169 170 171 172
                size=None,
                scale_factor=None,
                mode='nearest',
                align_corners=False,
X
xiaoting 已提交
173
                align_mode=0,
174 175
                data_format='NCHW',
                name=None):
X
xiaoting 已提交
176
    """
S
swtkiwi 已提交
177

178
    This API resizes a batch of images.
179

180 181
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
182
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
183 184
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
185
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
186

X
xiaoting 已提交
187
    Supporting resample methods:
188 189 190 191 192 193 194

    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation
    - 'area': Area interpolation
195

196 197 198
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
213
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
214 215 216 217 218 219 220
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

221 222
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
223 224
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
225 226
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
227 228 229 230
    Example:

    .. code-block:: text

231
        # For scale_factor:
X
xiaoting 已提交
232 233 234 235 236
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

237
        # Linear interpolation:
238 239 240 241 242 243 244 245 246
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
247

248
        # Nearest neighbor interpolation:
X
xiaoting 已提交
249

X
xiaoting 已提交
250 251 252 253 254
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
255

256
        # Bilinear interpolation:
X
xiaoting 已提交
257 258 259 260 261 262 263 264 265 266 267 268
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

269
        # Bicubic interpolation:
X
xiaoting 已提交
270 271 272 273 274 275 276 277 278 279 280 281
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

282
        # Trilinear interpolation:
X
xiaoting 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

297 298
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
299

X
xiaoting 已提交
300 301
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
302

X
xiaoting 已提交
303 304
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
305

X
xiaoting 已提交
306 307
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
308

X
xiaoting 已提交
309 310
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
311

X
xiaoting 已提交
312
    Parameters:
X
xiaoting 已提交
313
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
314
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
315
        size (list|tuple|Tensor|None): Output shape of image resize
316 317
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
318
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
319
             If a Tensor, its dimensions size should be a 1.
320 321 322
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
323
             Default: None.
324
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
325
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
326 327
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
328
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
329 330 331 332
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
333
        data_format (str, optional): Specify the data format of the input, and the data format of the output
334
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
335 336 337
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
338 339 340
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
341
    Returns:
342
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
343 344
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
345

346

X
xiaoting 已提交
347 348 349
    Examples:
        .. code-block:: python

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
		import paddle
		import paddle.nn.functional as F

		input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
		output_1 = F.interpolate(x=input_data, size=[12,12])
		print(output_1.shape)
		    # [2L, 3L, 12L, 12L]

		# given scale
		output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
		print(output_2.shape)
		# [2L, 3L, 12L, 10L]

		# bilinear interp
		output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
		print(output_2.shape)
		# [2L, 3L, 12L, 10L]
X
xiaoting 已提交
367
    """
368 369 370 371 372 373 374 375 376 377
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
378
        'AREA',
379
    ]
X
xiaoting 已提交
380 381
    if resample not in resample_methods:
        raise ValueError(
382
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
383
            " 'bicubic' or 'nearest' currently.")
X
xiaoting 已提交
384

X
xiaoting 已提交
385
    if resample in ['LINEAR'] and len(x.shape) != 3:
386
        raise ValueError("'linear' only support 3-D tensor.")
387

388 389 390 391 392
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
393
    if resample == 'TRILINEAR' and len(x.shape) != 5:
394 395 396 397
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
398 399 400

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
401

X
xiaoting 已提交
402 403
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
404 405 406 407
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
408

X
xiaoting 已提交
409
    if resample == 'AREA':
410 411
        if isinstance(size, list) or isinstance(size, tuple) or isinstance(
                size, Variable):
X
xiaoting 已提交
412 413 414 415 416 417 418 419
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
420

X
xiaoting 已提交
421
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
422
    dtype = helper.input_dtype(input_param_name='x')
X
xiaoting 已提交
423
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
424 425
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
426
            " received but only `NCW` or `NWC` supported for 3-D input.")
X
xiaoting 已提交
427
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
428 429 430
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
X
xiaoting 已提交
431
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
432 433 434 435 436 437 438
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

439
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
440
        data_layout = 'NCHW'
441
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
442 443
        data_layout = 'NHWC'

X
xiaoting 已提交
444 445 446 447
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
448 449 450 451 452 453 454 455 456 457
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
        "data_layout": data_layout
    }

458 459
    out_shape = size
    scale = scale_factor
460 461
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
462
    if out_shape is not None:
Z
zhiboniu 已提交
463
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
464 465 466
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
467
            if in_dynamic_mode():
468 469
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
470 471
                else:
                    out_shape = list(out_shape)
472 473 474
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
475
            if not (_is_list_or_turple_(out_shape)):
476
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
499 500 501 502 503
                        fill_constant([1],
                                      'int32',
                                      dim,
                                      force_cpu=True,
                                      out=temp_out)
X
xiaoting 已提交
504 505 506 507
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
508
            if len(x.shape) == 3:
509 510
                if len(out_shape) != 1:
                    raise ValueError(
511
                        "size length should be 2 for input 3-D tensor")
512 513 514 515 516
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
517
            if len(x.shape) == 4:
X
xiaoting 已提交
518
                if len(out_shape) != 2:
519
                    raise ValueError("size length should be 2 for "
X
xiaoting 已提交
520 521 522 523 524 525 526 527
                                     "input 4-D tensor.")
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
528
            if len(x.shape) == 5:
X
xiaoting 已提交
529
                if len(out_shape) != 3:
530
                    raise ValueError("size length should be 3 for "
X
xiaoting 已提交
531 532 533 534 535 536 537 538 539 540 541 542
                                     "input 5-D tensor.")
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
543
        if in_dynamic_mode() and isinstance(scale, Variable):
544
            scale = list(scale.numpy())
X
xiaoting 已提交
545 546 547 548 549 550
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
551 552 553 554
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
555
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
556 557 558 559 560 561 562 563
            if len(scale) != len(x.shape) - 2:
                raise ValueError("scale_shape length should be {} for "
                                 "input {}-D tensor.".format(
                                     len(x.shape) - 2, len(x.shape)))
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
564 565
        else:
            raise TypeError(
566 567
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
568

Z
zhiboniu 已提交
569
    if in_dynamic_mode():
X
xiaoting 已提交
570 571 572 573 574 575 576
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
577
            if in_dygraph_mode():
578
                out = _C_ops.linear_interp(
579 580 581 582 583 584 585
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
586
            else:
587
                out = _legacy_C_ops.linear_interp_v2(x, *dy_attr)
588
        elif resample_type == "bilinear":
589
            if in_dygraph_mode():
590
                out = _C_ops.bilinear_interp(
591 592 593 594 595 596 597 598
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
599
                out = _legacy_C_ops.bilinear_interp_v2(x, *dy_attr)
600
        elif resample_type == "trilinear":
601
            if in_dygraph_mode():
602
                out = _C_ops.trilinear_interp(
603 604 605 606 607 608 609 610
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
611
                out = _legacy_C_ops.trilinear_interp_v2(x, *dy_attr)
612
        elif resample_type == "nearest":
613
            if in_dygraph_mode():
614
                out = _C_ops.nearest_interp(
615 616 617 618 619 620 621 622
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
623
                out = _legacy_C_ops.nearest_interp_v2(x, *dy_attr)
624
        elif resample_type == "bicubic":
625
            if in_dygraph_mode():
626
                out = _C_ops.bicubic_interp(
627 628 629 630 631 632 633 634
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
635
                out = _legacy_C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
636
        return out
X
xiaoting 已提交
637
    out = helper.create_variable_for_type_inference(dtype)
638 639 640 641
    helper.append_op(type='{}_interp_v2'.format(resample_type),
                     inputs=inputs,
                     outputs={"Out": out},
                     attrs=attrs)
X
xiaoting 已提交
642
    return out
L
littletomatodonkey 已提交
643 644


X
xiaoting 已提交
645 646 647 648 649 650 651 652 653
def upsample(x,
             size=None,
             scale_factor=None,
             mode='nearest',
             align_corners=False,
             align_mode=0,
             data_format='NCHW',
             name=None):
    """
654
    This API resizes a batch of images.
655

X
xiaoting 已提交
656 657 658
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
659 660
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
661 662 663 664 665 666 667 668
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
669 670 671
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
672 673 674 675 676 677 678 679
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
680

X
xiaoting 已提交
681 682 683 684
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
685

X
xiaoting 已提交
686 687 688
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
689

X
xiaoting 已提交
690 691 692
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
693 694 695 696 697 698 699

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
700 701
    Example:
    .. code-block:: text
702

X
xiaoting 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
        For scale_factor:
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
731

X
xiaoting 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
772

X
xiaoting 已提交
773 774
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
775

X
xiaoting 已提交
776 777
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
778

X
xiaoting 已提交
779 780
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
781

X
xiaoting 已提交
782 783
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
784

X
xiaoting 已提交
785 786 787
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
788
        size (list|tuple|Tensor|None, optional): Output shape of image resize
789 790
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
791
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
792
             If a Tensor , its dimensions size should be a 1.
793
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
794
             least one of :attr:`size` or :attr:`scale_factor` must be set.
795
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if
796
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
797
             Default: None.
798
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
799
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
800
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
801 802 803
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
804
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
819

X
xiaoting 已提交
820 821
        Examples:
        .. code-block:: python
822

823 824
		import paddle
		import paddle.nn as nn
X
xiaoting 已提交
825

826 827 828 829 830 831
		input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
		upsample_out = paddle.nn.Upsample(size=[12,12])

		output = upsample_out(x=input_data)
		print(output.shape)
		# [2L, 3L, 12L, 12L]
X
xiaoting 已提交
832 833 834 835 836 837

    """
    return interpolate(x, size, scale_factor, mode, align_corners, align_mode,
                       data_format)


838 839 840 841
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
842
    See :ref:`api_nn_Bilinear` for details and output shape.
843 844 845 846 847 848 849 850 851 852

    Parameters:
       x1 (Tensor): the first input tensor, it's data type should be float32, float64.
       x2 (Tensor): the second input tensor, it's data type should be float32, float64.
       weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
       bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
853
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
854 855 856 857

    Examples:
       .. code-block:: python

858 859
		import paddle
		import paddle.nn.functional as F
860

861 862 863 864
		x1 = paddle.randn((5, 5)).astype(paddle.float32)
		x2 = paddle.randn((5, 4)).astype(paddle.float32)
		w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
		b = paddle.randn((1, 1000)).astype(paddle.float32)
865

866 867 868
		result = F.bilinear(x1, x2, w, b)
		print(result.shape)
		# [5, 1000]
869 870
    """

871
    if in_dygraph_mode():
W
wanghuancoder 已提交
872
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
873 874
    elif _non_static_mode():
        return _legacy_C_ops.bilinear_tensor_product(x1, x2, weight, bias)
875 876 877 878 879 880 881 882 883 884 885

    check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
    check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')

    inputs = {"X": x1, "Y": x2, "Weight": weight}
    if bias is not None:
        inputs["Bias"] = bias

    helper = LayerHelper("bilinear", **locals())
    out = helper.create_variable_for_type_inference(dtype=x1.dtype)

886 887 888
    helper.append_op(type="bilinear_tensor_product",
                     inputs=inputs,
                     outputs={"Out": out})
889 890 891 892

    return out


893 894 895 896 897 898 899 900 901 902 903 904 905 906
def dropout(x,
            p=0.5,
            axis=None,
            training=True,
            mode="upscale_in_train",
            name=None):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
907 908 909 910
        p (float|int, optional): Probability of setting units to zero. Default 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default True.
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
911

912 913 914 915
            1. upscale_in_train(default), upscale the output at training time

                - train: out = input * mask / ( 1.0 - dropout_prob )
                - inference: out = input
916

917
            2. downscale_in_infer, downscale the output at inference
918

919 920
                - train: out = input * mask
                - inference: out = input * (1.0 - dropout_prob)
921

922
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
923 924 925 926

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

927

928 929
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
930

931
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
932 933 934

        ..  code-block:: text

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

960 961


962
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
963 964 965

        ..  code-block:: text

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
994
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
995 996 997 998 999 1000 1001 1002 1003 1004
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1005 1006 1007

        When x is a 4d tensor with shape `NCHW`, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1008 1009

        .. code-block:: python
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		import paddle

		x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
		y_train = paddle.nn.functional.dropout(x, 0.5)
		y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
		y_0 = paddle.nn.functional.dropout(x, axis=0)
		y_1 = paddle.nn.functional.dropout(x, axis=1)
		y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
		print(x)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[1., 2., 3.],
		#         [4., 5., 6.]])
		print(y_train)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[2. , 0. , 6. ],
		#         [8. , 0. , 12.]])
		print(y_test)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[1., 2., 3.],
		#         [4., 5., 6.]])
		print(y_0)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[0. , 0. , 0. ],
		#         [8. , 10., 12.]])
		print(y_1)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[2. , 0. , 6. ],
		#         [8. , 0. , 12.]])
		print(y_01)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[0. , 0. , 0. ],
		#         [8. , 0. , 12.]])
1043 1044

    """
1045 1046 1047 1048 1049 1050 1051 1052
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
        if p == 0: return x
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1053 1054
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1055 1056
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1057
    if axis and not isinstance(axis, (int, list, tuple)):
1058 1059 1060 1061 1062 1063
        raise TypeError("datatype of axis argument should be int or list")

    if axis == None:  # commonly used dropout
        seed = None
        mode = 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode  #semantic transfer

H
hong 已提交
1064
        if _non_static_mode():
1065 1066
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1067 1068

            if in_dygraph_mode():
1069
                out, mask = _C_ops.dropout( x, None, p, not training, mode, \
H
hong 已提交
1070 1071 1072
                    seed if seed is not None else 0, seed is not None)

                return out
1073 1074 1075 1076 1077
            out, mask = _legacy_C_ops.dropout(x, 'dropout_prob', p, 'is_test',
                                              not training, 'fix_seed', seed
                                              is not None, 'seed',
                                              seed if seed is not None else 0,
                                              'dropout_implementation', mode)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
            return out

        helper = LayerHelper('dropout', **locals())
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'dropout')

        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

1088 1089 1090
        def get_attrs(prog, dropout_prob, is_test, seed):
            if (seed is None or seed == 0) and prog.random_seed != 0:
                seed = prog.random_seed
1091 1092 1093 1094 1095 1096

            if isinstance(dropout_prob,
                          Variable) and not dropout_prob.shape != [1]:
                raise TypeError(
                    "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}"
                    .format(p.shape))
1097 1098 1099 1100 1101 1102 1103 1104 1105
            attrs = {
                'dropout_prob': dropout_prob,
                'is_test': is_test,
                'fix_seed': seed is not None,
                'seed': seed if seed is not None else 0,
                'dropout_implementation': mode,
            }
            return attrs

1106 1107
        attrs = get_attrs(helper.main_program, p, not training, seed)

1108 1109 1110 1111 1112 1113 1114
        helper.append_op(type='dropout',
                         inputs={'X': [x]},
                         outputs={
                             'Out': [out],
                             'Mask': [mask]
                         },
                         attrs=attrs)
1115 1116
        return out
    else:  #sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1117
        if not in_dynamic_mode():
1118 1119 1120 1121
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
1122
            if in_dynamic_mode() and p == 1.:
1123
                return paddle.scale(x, scale=0.)
1124

1125
            scale_input = paddle.scale(
1126 1127 1128 1129
                x, scale=1 / keep_prob) if mode == 'upscale_in_train' else x

            #get mask shape
            input_shape = x.shape
Z
zhiboniu 已提交
1130
            if not in_dynamic_mode():
1131
                input_shape_tensor = paddle.shape(x)
1132
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1133 1134
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
                raise ValueError("axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} " \
1135 1136 1137
                                 .format(len(input_shape), max(drop_axes)))
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1138 1139
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}"
                    .format(len(input_shape), len(drop_axes)))
1140
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1141
            if not in_dynamic_mode():
1142 1143 1144 1145 1146
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1147 1148

            #get mask
1149 1150 1151 1152
            random_tensor = paddle.uniform(mask_shape,
                                           dtype='float32',
                                           min=0.,
                                           max=1.0)
Z
zhiboniu 已提交
1153
            p = full(shape=[1], fill_value=p, dtype='float32')
1154
            keep_mask = paddle.greater_equal(random_tensor, p)
1155

1156 1157
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1158 1159 1160
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1161
            ret = paddle.scale(
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
                x, scale=keep_prob) if mode == 'downscale_in_infer' else x
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1179
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . The default is `NCHW` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
1180 1181 1182 1183 1184
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1185

1186 1187
    Examples:
        .. code-block:: python
1188

1189 1190
            import paddle

1191
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1192 1193 1194 1195
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1196 1197 1198 1199
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    """
    input_shape = x.shape
    if len(input_shape) != 4:
        raise ValueError("dimensions of x should be 4, but received {} != 4"\
        .format(len(input_shape)))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

1211 1212 1213 1214 1215 1216
    return dropout(x,
                   p=p,
                   axis=[0, 1] if data_format == 'NCHW' else [0, 3],
                   training=training,
                   mode="upscale_in_train",
                   name=name)
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1232
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. The default is ``NCDHW`` . When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
1233 1234 1235 1236 1237
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1238

1239 1240
    Examples:
        .. code-block:: python
1241

1242 1243 1244 1245 1246 1247 1248 1249
		import paddle

		x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
		y_train = paddle.nn.functional.dropout3d(x)  #train
		y_test = paddle.nn.functional.dropout3d(x, training=False) #test
		print(x[0,0,:,:,:])
		print(y_train[0,0,:,:,:]) # may all 0
		print(y_test[0,0,:,:,:])
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

    """

    input_shape = x.shape
    if len(input_shape) != 5:
        raise ValueError("dimensions of x should be 5, but received {} != 5" \
        .format(len(input_shape)))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

1263 1264 1265 1266 1267 1268
    return dropout(x,
                   p=p,
                   axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
                   training=training,
                   mode="upscale_in_train",
                   name=name)
1269 1270


1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		import paddle

		x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
		y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
		y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
		print(y_train)
		# Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[-0.10721093, -0.77919382],
		#         [-0.10721093,  1.66559887]]) (randomly)
		print(y_test)
		# Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[-1.,  1.],
		#         [-1.,  1.]])
1303 1304 1305 1306 1307 1308
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1309
    if not in_dynamic_mode():
1310 1311 1312 1313
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'alpha_dropout')

    if training:
1314
        if p == 1:
1315
            return paddle.scale(x, scale=0.)
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
        #get transformation params
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
        a = ((1 - p) * (1 + p * alpha_p**2))**-0.5
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

        #get mask
1327 1328 1329 1330
        random_tensor = paddle.uniform(input_shape,
                                       dtype='float32',
                                       min=0.,
                                       max=1.0)
Z
zhiboniu 已提交
1331
        p = full(shape=[1], fill_value=p, dtype='float32')
1332 1333 1334
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1335
            full(shape=input_shape, fill_value=1., dtype=dtype), keep_mask)
1336 1337

        #apply mask
Z
zhiboniu 已提交
1338
        b = full(shape=[1], fill_value=b, dtype=dtype)
1339
        y = paddle.add(paddle.multiply(x, keep_mask),
1340
                       paddle.scale(drop_mask, scale=alpha_p))
1341
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1342 1343 1344 1345 1346
        return res
    else:  # test
        return x


L
littletomatodonkey 已提交
1347 1348 1349
def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
    """
    Pad tensor according to 'pad' and 'mode'.
L
littletomatodonkey 已提交
1350 1351 1352
    If mode is 'constant' and length of pad is twice as length of x dimension,
    then the padding will be started from the first dimension and moved back onto x
    according to 'pad' and 'value'.
L
littletomatodonkey 已提交
1353 1354 1355 1356 1357
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1358
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
1359
            If mode is 'constant' and length of pad is twice as length of x dimension, then x will
1360 1361
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
1362 1363
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right,
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form
L
littletomatodonkey 已提交
1364
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1365 1366 1367 1368 1369 1370 1371 1372
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'. Default is 'constant'

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`,
1373
        data_format (str, optional): An string from: "NCL", "NLC", NHWC", "NCHW", "NCDHW", "NDHWC". Specify the data format of
1374 1375
           the input data. Default is "NCHW",
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1376 1377

    Returns:
1378
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1379

1380
    Example:
1381

L
littletomatodonkey 已提交
1382 1383 1384 1385 1386 1387
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1388 1389 1390 1391 1392 1393 1394 1395 1396
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1397 1398 1399 1400 1401 1402 1403 1404
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1405
            Case 2:
L
littletomatodonkey 已提交
1406 1407 1408 1409 1410 1411 1412
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1413
            Case 3:
L
littletomatodonkey 已提交
1414 1415 1416 1417 1418 1419 1420
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1421
            Case 4:
L
littletomatodonkey 已提交
1422 1423 1424 1425 1426 1427 1428
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1429
    Examples:
L
littletomatodonkey 已提交
1430
        .. code-block:: python
L
littletomatodonkey 已提交
1431

L
littletomatodonkey 已提交
1432 1433
            import paddle
            import paddle.nn.functional as F
1434

L
littletomatodonkey 已提交
1435 1436
            # example 1
            x_shape = (1, 1, 3)
1437
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1438
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1439
            print(y)
L
littletomatodonkey 已提交
1440
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1441

L
littletomatodonkey 已提交
1442
            # example 2
1443
            x_shape = (1, 1, 3)
1444
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1445 1446 1447
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1448

1449
            # example 3
L
littletomatodonkey 已提交
1450
            x_shape = (1, 1, 2, 3)
1451
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1452 1453
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
    assert mode in ['reflect', 'replicate', 'constant', 'circular'], \
            "mode should be one of constant, reflect, replicate, circular, but got {}.".format(mode)

    data_format = data_format.upper()
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], \
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], " \
        "but got {}".format(data_format)

    x_dim = len(x.shape)

1469 1470
    if mode == "constant" and isinstance(
            pad, (list, tuple)) and len(pad) == x_dim * 2:
1471 1472
        paddings = pad
        pad_value = value
1473 1474

        if in_dygraph_mode():
1475
            out = _C_ops.pad(x, paddings, float(pad_value))
1476 1477
            return out

1478 1479 1480 1481 1482
        check_variable_and_dtype(x, 'x', [
            'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
            'complex128'
        ], "pad")

1483 1484 1485 1486
        check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
        if isinstance(pad_value, int):
            pad_value = float(pad_value)

1487 1488 1489
        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1490 1491 1492 1493 1494
        helper.append_op(type='pad',
                         inputs={'X': x},
                         outputs={'Out': out},
                         attrs={
                             'paddings': paddings,
1495
                             'pad_value': pad_value
1496
                         })
1497
        return out
L
littletomatodonkey 已提交
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
    assert x_dim in [
        3, 4, 5
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
    assert data_format in supported_format_map[x_dim], \
    "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format)

L
littletomatodonkey 已提交
1512 1513 1514 1515 1516 1517 1518 1519
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [3, 4]
1520
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1521 1522 1523
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [2]
1524
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1525 1526 1527 1528 1529
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [2, 3]
1530
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1531 1532 1533
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [1]
1534
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1535
    else:
1536
        pad = list(pad)
L
littletomatodonkey 已提交
1537 1538 1539 1540 1541
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1542
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1543 1544 1545
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1546
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1547 1548 1549 1550 1551
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1552
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1553 1554 1555
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1556
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1557

J
Jiabin Yang 已提交
1558
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1559
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1560
            pad = pad.numpy().tolist()
1561
        out = _C_ops.pad3d(x, pad, mode, value, data_format)
J
Jiabin Yang 已提交
1562
    else:
1563
        if _in_legacy_dygraph():
J
Jiabin Yang 已提交
1564 1565
            if isinstance(pad, Variable):
                pad = pad.numpy().tolist()
1566 1567 1568
            out = _legacy_C_ops.pad3d(x, "paddings", pad, "mode", mode, "value",
                                      value, "data_format", data_format, "name",
                                      name)
1569
        else:
J
Jiabin Yang 已提交
1570 1571 1572 1573 1574 1575 1576
            attrs = {'mode': mode, 'value': value, 'data_format': data_format}
            inputs = {'X': [x]}
            if isinstance(pad, Variable):
                inputs['Paddings'] = [pad]
                attrs['paddings'] = []
            else:
                attrs['paddings'] = pad
L
littletomatodonkey 已提交
1577

J
Jiabin Yang 已提交
1578
            helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1579

J
Jiabin Yang 已提交
1580 1581
            dtype = helper.input_dtype(input_param_name='input')
            out = helper.create_variable_for_type_inference(dtype)
1582 1583 1584 1585
            helper.append_op(type='pad3d',
                             inputs=inputs,
                             outputs={"Out": out},
                             attrs=attrs)
L
littletomatodonkey 已提交
1586 1587

    if len(unsqueezed_dim) != 0:
1588
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1589 1590 1591 1592

    return out


1593 1594 1595 1596 1597 1598 1599 1600 1601
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1602
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1603 1604 1605 1606
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
            to set this property.

1607
    Returns:
1608
        Tensor, padded with 0 according to pad and data type is same as input.
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F

            x_shape = (1, 1, 2, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.zeropad2d(x, [1, 2, 1, 1])
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

    return pad(x,
               pad=padding,
               mode='constant',
               value=0,
               data_format=data_format,
               name=name)


Y
Yang Zhang 已提交
1634
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1635
    """
Y
Yang Zhang 已提交
1636
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1637 1638 1639 1640

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1641 1642
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
1643 1644

    Returns:
1645
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1646 1647 1648

    Examples:
        .. code-block:: text
1649

L
littletomatodonkey 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1659
                axis = 1
L
littletomatodonkey 已提交
1660 1661 1662 1663 1664
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1665

L
littletomatodonkey 已提交
1666 1667 1668
            import paddle
            import paddle.nn as nn

1669 1670 1671 1672
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1673
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1674
            print(result)
1675
            # [0.97689527,  0.99996042, -0.55138415]
1676

L
littletomatodonkey 已提交
1677
    """
1678 1679 1680
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1681
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1682 1683
    cos_sim = w12 / n12
    return cos_sim
1684 1685 1686


def linear(x, weight, bias=None, name=None):
1687
    r"""
1688

1689 1690
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1691 1692 1693

    .. math::

1694
        Out = XW + b
1695

1696
    where :math:`W` is the weight and :math:`b` is the bias.
1697

1698 1699 1700 1701
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
1702
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` ,
1703 1704
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1705

1706 1707 1708 1709 1710 1711 1712
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1713 1714

    Returns:
1715 1716
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1717 1718 1719

    Examples:
        .. code-block:: python
1720

1721
          import paddle
1722

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1736
    """
J
Jiabin Yang 已提交
1737
    if in_dygraph_mode():
1738
        #TODO(jiabin): using addmm for fast forward route
1739
        return _C_ops.linear(x, weight, bias)
1740
    else:
J
Jiabin Yang 已提交
1741
        if _in_legacy_dygraph():
1742 1743
            pre_bias = _legacy_C_ops.matmul_v2(x, weight, 'trans_x', False,
                                               'trans_y', False)
1744

J
Jiabin Yang 已提交
1745 1746
            if bias is None:
                return pre_bias
1747

1748
            return _legacy_C_ops.elementwise_add(pre_bias, bias)
1749
        else:
J
Jiabin Yang 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
            helper = LayerHelper('linear', **locals())
            dtype = x.dtype

            check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                        'linear')

            inputs = {'X': [x], 'Y': [weight]}
            attrs = {'trans_x': False, 'trans_y': False}
            tmp = helper.create_variable_for_type_inference(dtype)
1761 1762 1763 1764
            helper.append_op(type='matmul_v2',
                             inputs=inputs,
                             outputs={'Out': tmp},
                             attrs=attrs)
J
Jiabin Yang 已提交
1765 1766
            if bias is not None:
                res = helper.create_variable_for_type_inference(dtype)
1767 1768 1769 1770 1771 1772 1773
                helper.append_op(type='elementwise_add',
                                 inputs={
                                     'X': [tmp],
                                     'Y': [bias]
                                 },
                                 outputs={'Out': [res]},
                                 attrs={'axis': len(x.shape) - 1})
J
Jiabin Yang 已提交
1774 1775 1776
            else:
                res = tmp
            return res
1777 1778 1779


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1780
    r"""
1781
    Label smoothing is a mechanism to regularize the classifier layer and is called
1782 1783 1784 1785
    label-smoothing regularization (LSR).Label smoothing is proposed to encourage
    the model to be less confident, since optimizing the log-likelihood of the
    correct label directly may cause overfitting and reduce the ability of the
    model to adapt.
1786

1787
    Label smoothing replaces the ground-truth label :math:`y` with the weighted sum
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
1825

1826 1827 1828 1829 1830 1831
            x_data = np.array([[[0, 1, 0],
                                [ 1,  0, 1]]]).astype("float32")
            print(x_data.shape)
            paddle.disable_static()
            x = paddle.to_tensor(x_data, stop_gradient=False)
            output = paddle.nn.functional.label_smooth(x)
1832
            print(output)
1833

1834 1835 1836
            #[[[0.03333334 0.93333334 0.03333334]
            #  [0.93333334 0.03333334 0.93333334]]]
    """
1837 1838 1839
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")

1840
    if in_dygraph_mode():
1841
        return _C_ops.label_smooth(label, prior_dist, float(epsilon))
1842

1843
    elif paddle.in_dynamic_mode():
1844 1845
        return _legacy_C_ops.label_smooth(label, prior_dist, 'epsilon',
                                          float(epsilon))
1846 1847 1848 1849 1850 1851 1852

    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'label_smooth')

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1853 1854 1855 1856 1857 1858 1859
    helper.append_op(type="label_smooth",
                     inputs={
                         "X": label,
                         "PriorDist": prior_dist
                     } if prior_dist else {"X": label},
                     outputs={"Out": smooth_label},
                     attrs={"epsilon": float(epsilon)})
1860
    return smooth_label
1861 1862


G
Guoxia Wang 已提交
1863
def class_center_sample(label, num_classes, num_samples, group=None):
1864 1865
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
1866
    The process of sampling subset class centers is straightforward:
1867 1868 1869 1870

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

1871
    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly
1872 1873 1874 1875
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
1876

1877
    .. hint::
1878
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive
1879
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
1880

1881 1882
        The API supports CPU, single GPU and multi GPU.

1883 1884 1885 1886
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

1887
    Args:
G
Guoxia Wang 已提交
1888 1889
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
1890
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
1891
        num_samples (int): A positive integer to specify the number of class center to sample.
1892
        group (Group, optional): The group instance return by paddle.distributed.new_group
1893 1894
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1895 1896 1897 1898 1899 1900 1901 1902

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1903
        :name: code-example1
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
1926
        :name: code-example2
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
1958

1959 1960 1961 1962 1963 1964 1965 1966
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
1967 1968 1969 1970 1971 1972 1973
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
             (got group: {})'.format(group))
        return

    if hasattr(group, 'is_member') and not group.is_member():
1974 1975
        return

1976
    ring_id = 0
1977 1978
    rank = 0
    nranks = 1
1979 1980 1981 1982 1983 1984 1985
    if group != False:
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
            rank = global_rank if group is None else group.get_group_rank(
                global_rank)
            nranks = parallel_env.world_size if group is None else group.nranks
1986 1987 1988 1989 1990 1991

    if num_samples > num_classes:
        raise ValueError(
            'Expected num_samples less than or equal to {}, got num_samples {}'.
            format(num_classes, num_samples))

G
Guoxia Wang 已提交
1992 1993 1994
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
1995
    if label_size != -1 and label_size < 1:
G
Guoxia Wang 已提交
1996
        raise ValueError('Expected label_size > 0 \
1997
             (got label_size: {})'.format(label_size))
G
Guoxia Wang 已提交
1998 1999 2000 2001

    label_dims = len(list(label.shape))
    if label_dims != 1:
        raise ValueError('Expected label_dims == 1 \
2002
             (got label_dims: {})'.format(label_dims))
G
Guoxia Wang 已提交
2003 2004

    seed = None
2005 2006 2007
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2008
    if in_dygraph_mode():
2009 2010 2011 2012
        return _C_ops.class_center_sample(label, num_classes, num_samples,
                                          ring_id, rank, nranks, seed
                                          is not None,
                                          seed if seed is not None else 0)
2013
    elif paddle.in_dynamic_mode():
2014
        remapped_label, sampled_class_center = _legacy_C_ops.class_center_sample(
2015
            label, 'num_classes', num_classes, 'num_samples', num_samples,
2016 2017
            'ring_id', ring_id, 'nranks', nranks, 'rank', rank, 'fix_seed', seed
            is not None, 'seed', seed if seed is not None else 0)
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
        return remapped_label, sampled_class_center

    check_variable_and_dtype(label, 'label', ['int64', 'int32'],
                             'class_center_sample')
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
        dtype=label.dtype)
    sampled_class_center = helper.create_variable_for_type_inference(
        dtype=label.dtype)
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
    helper.append_op(type=op_type,
                     inputs={'Label': label},
                     outputs={
                         'RemappedLabel': remapped_label,
                         'SampledLocalClassCenter': sampled_class_center
                     },
                     attrs={
                         'num_classes': num_classes,
                         'num_samples': num_samples,
                         'ring_id': ring_id,
                         'nranks': nranks,
                         'rank': rank,
                         'fix_seed': seed is not None,
                         'seed': seed if seed is not None else 0
                     })
2043
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053


def fold(x,
         output_sizes,
         kernel_sizes,
         strides=1,
         paddings=0,
         dilations=1,
         name=None):
    r"""
2054

2055
    Combines an array of sliding local blocks into a large containing
2056 2057
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
2058 2059 2060 2061 2062 2063


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2064

2065 2066 2067
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2068 2069 2070 2071

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2072
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2073
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2074
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2075
                                  or an integer k treated as [k, k].
2076
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2077 2078
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2079
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2080 2081 2082 2083 2084 2085
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2086
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2105 2106 2107
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

    """

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

    assert len(x.shape) == 3, \
            "input should be the format of [N, C, L]"

X
xiaoting 已提交
2118 2119 2120
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

X
xiaoting 已提交
2121 2122 2123
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
X
xiaoting 已提交
2124 2125
        assert _is_list_or_turple_(output_sizes) and (len(output_sizes) == 2), \
            "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2126 2127 2128 2129

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
X
xiaoting 已提交
2130 2131
        assert _is_list_or_turple_(kernel_sizes) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2132 2133 2134 2135

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
X
xiaoting 已提交
2136 2137
        assert _is_list_or_turple_(strides) and (len(strides) == 2), \
            "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2138 2139 2140 2141

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
X
xiaoting 已提交
2142 2143
        assert _is_list_or_turple_(dilations) and (len(dilations) == 2), \
            "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

X
xiaoting 已提交
2161
    if in_dygraph_mode():
2162 2163
        out = _C_ops.fold(x, output_sizes, kernel_sizes, strides, paddings,
                          dilations)
X
xiaoting 已提交
2164
    elif in_dynamic_mode():
2165 2166 2167 2168
        out = _legacy_C_ops.fold(x, "output_sizes", output_sizes,
                                 "kernel_sizes", kernel_sizes, "strides",
                                 strides, "paddings", paddings, "dilations",
                                 dilations)
X
xiaoting 已提交
2169 2170
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
        helper.append_op(type="fold",
                         inputs={"X": x},
                         outputs={"Y": out},
                         attrs={
                             "output_sizes": output_sizes,
                             "kernel_sizes": kernel_sizes,
                             "strides": strides,
                             "paddings": paddings,
                             "dilations": dilations
                         })
X
xiaoting 已提交
2181
    return out