test_mean_op.py 15.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

L
liaogang 已提交
17 18
import unittest
import numpy as np
A
arlesniak 已提交
19
from op_test import OpTest, OpTestTool
20
import paddle
C
chengduo 已提交
21
import paddle.fluid.core as core
22 23
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
24
from paddle.fluid.framework import _test_eager_guard
25
from test_sum_op import TestReduceOPTensorAxisBase
26 27 28
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
29

30 31
np.random.seed(10)

L
liaogang 已提交
32

33 34 35 36 37 38 39 40 41 42 43 44
def mean_wrapper(x, axis=None, keepdim=False, reduce_all=False):
    if reduce_all == True:
        return paddle.mean(x, range(len(x.shape)), keepdim)
    return paddle.mean(x, axis, keepdim)


def reduce_mean_wrapper(x, axis=0, keepdim=False, reduce_all=False):
    if reduce_all == True:
        return paddle.mean(x, range(len(x.shape)), keepdim)
    return paddle.mean(x, axis, keepdim)


Q
qijun 已提交
45
class TestMeanOp(OpTest):
46

L
liaogang 已提交
47
    def setUp(self):
Q
qijun 已提交
48
        self.op_type = "mean"
49
        self.python_api = paddle.mean
50
        self.dtype = np.float64
C
chengduo 已提交
51 52
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Q
qijun 已提交
53
        self.outputs = {'Out': np.mean(self.inputs["X"])}
L
liaogang 已提交
54

C
chengduo 已提交
55 56 57
    def init_dtype_type(self):
        pass

Q
qijun 已提交
58
    def test_check_output(self):
59
        self.check_output(check_eager=True)
L
liaogang 已提交
60

Q
qijun 已提交
61
    def test_checkout_grad(self):
62
        self.check_grad(['X'], 'Out', check_eager=True)
63 64


65
class TestMeanOpError(unittest.TestCase):
66

67 68 69 70
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of mean_op must be Variable.
            input1 = 12
71
            self.assertRaises(TypeError, paddle.mean, input1)
72
            # The input dtype of mean_op must be float16, float32, float64.
73 74 75
            input2 = fluid.layers.data(name='input2',
                                       shape=[12, 10],
                                       dtype="int32")
76
            self.assertRaises(TypeError, paddle.mean, input2)
77 78 79
            input3 = fluid.layers.data(name='input3',
                                       shape=[4],
                                       dtype="float16")
80 81 82
            fluid.layers.softmax(input3)


C
chengduo 已提交
83 84 85
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestFP16MeanOp(TestMeanOp):
86

C
chengduo 已提交
87 88
    def init_dtype_type(self):
        self.dtype = np.float16
S
sneaxiy 已提交
89
        self.__class__.no_need_check_grad = True
C
chengduo 已提交
90 91 92 93

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
94
            self.check_output_with_place(place, check_eager=True)
C
chengduo 已提交
95 96 97 98

    def test_checkout_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
S
sneaxiy 已提交
99 100 101 102
            with fluid.dygraph.guard():
                x_np = np.random.random((10, 10)).astype(self.dtype)
                x = paddle.to_tensor(x_np)
                x.stop_gradient = False
103
                y = paddle.mean(x)
S
sneaxiy 已提交
104 105 106
                dx = paddle.grad(y, x)[0].numpy()
                dx_expected = self.dtype(1.0 / np.prod(x_np.shape)) * np.ones(
                    x_np.shape).astype(self.dtype)
107
                np.testing.assert_array_equal(dx, dx_expected)
C
chengduo 已提交
108 109


A
arlesniak 已提交
110 111
@OpTestTool.skip_if_not_cpu_bf16()
class TestBF16MeanOp(TestMeanOp):
112

A
arlesniak 已提交
113 114 115 116 117
    def init_dtype_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        paddle.enable_static()
118
        self.check_output_with_place(core.CPUPlace(), check_eager=True)
A
arlesniak 已提交
119 120 121

    def test_checkout_grad(self):
        place = core.CPUPlace()
122
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
A
arlesniak 已提交
123 124


125 126 127 128 129 130 131 132
def ref_reduce_mean(x, axis=None, keepdim=False, reduce_all=False):
    if isinstance(axis, list):
        axis = tuple(axis)
    if reduce_all:
        axis = None
    return np.mean(x, axis=axis, keepdims=keepdim)


S
sneaxiy 已提交
133 134 135 136 137 138 139 140
def ref_reduce_mean_grad(x, axis, dtype):
    if reduce_all:
        axis = list(range(x.ndim))

    shape = [x.shape[i] for i in axis]
    return (1.0 / np.prod(shape) * np.ones(shape)).astype(dtype)


141
class TestReduceMeanOp(OpTest):
142

143 144
    def setUp(self):
        self.op_type = 'reduce_mean'
145
        self.python_api = reduce_mean_wrapper
146 147 148 149 150 151 152 153
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]
        self.axis = [0]
        self.keepdim = False
        self.set_attrs()

        np.random.seed(10)
        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
S
sneaxiy 已提交
154 155 156
        if not hasattr(self, "reduce_all"):
            self.reduce_all = (not self.axis) or len(self.axis) == len(x_np)

157 158 159 160 161 162 163 164 165
        out_np = ref_reduce_mean(x_np, self.axis, self.keepdim, self.reduce_all)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}
        self.attrs = {
            'dim': self.axis,
            'keep_dim': self.keepdim,
            'reduce_all': self.reduce_all
        }

S
sneaxiy 已提交
166 167 168
        if self.dtype == 'float16':
            self.__class__.no_need_check_grad = True

169 170 171 172
    def set_attrs(self):
        pass

    def test_check_output(self):
S
sneaxiy 已提交
173
        if self.dtype != 'float16':
174
            self.check_output(check_eager=True)
S
sneaxiy 已提交
175 176 177 178 179
        else:
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            self.check_output_with_place(place=place)
180 181

    def test_check_grad(self):
S
sneaxiy 已提交
182
        if self.dtype != 'float16':
183
            self.check_grad(['X'], ['Out'], check_eager=True)
S
sneaxiy 已提交
184 185 186 187 188 189 190 191 192
        else:
            return
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            if core.is_float16_supported(place):
                return
            with fluid.dygraph.guard(place=place):
                x = paddle.tensor(self.inputs['X'])
193 194 195
                y = paddle.mean(x,
                                axis=self.attrs['dim'],
                                keepdim=self.attrs['keep_dim'])
S
sneaxiy 已提交
196
                dx = paddle.grad(y, x)[0].numpy()
197 198 199
                dx_expected = ref_reduce_mean_grad(self.inputs['X'],
                                                   self.attrs['dim'],
                                                   self.dtype)
200
                np.testing.assert_array_equal(dx, dx_expected)
201 202 203


class TestReduceMeanOpDefaultAttrs(TestReduceMeanOp):
204

205 206
    def setUp(self):
        self.op_type = 'reduce_mean'
207
        self.python_api = reduce_mean_wrapper
208 209 210 211 212 213 214 215 216 217
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]

        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out_np = np.mean(x_np, axis=0)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}


class TestReduceMeanOpFloat32(TestReduceMeanOp):
218

219 220 221 222
    def set_attrs(self):
        self.dtype = 'float32'


S
sneaxiy 已提交
223
class TestReduceMeanOpFloat16(TestReduceMeanOp):
224

S
sneaxiy 已提交
225 226 227 228
    def set_attrs(self):
        self.dtype = 'float16'


229
class TestReduceMeanOpShape1D(TestReduceMeanOp):
230

231 232 233 234
    def set_attrs(self):
        self.shape = [100]


S
sneaxiy 已提交
235
class TestReduceMeanOpShape1DFP16(TestReduceMeanOp):
236

S
sneaxiy 已提交
237 238 239 240 241
    def set_attrs(self):
        self.shape = [100]
        self.dtype = 'float16'


242
class TestReduceMeanOpShape6D(TestReduceMeanOp):
243

244 245 246 247
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]


S
sneaxiy 已提交
248
class TestReduceMeanOpShape6DFP16(TestReduceMeanOp):
249

S
sneaxiy 已提交
250 251 252 253 254
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]
        self.dtype = 'float16'


255
class TestReduceMeanOpAxisAll(TestReduceMeanOp):
256

257 258 259 260
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]


S
sneaxiy 已提交
261
class TestReduceMeanOpAxisAllFP16(TestReduceMeanOp):
262

S
sneaxiy 已提交
263 264 265 266 267
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.dtype = 'float16'


268
class TestReduceMeanOpAxisTuple(TestReduceMeanOp):
269

270 271 272 273
    def set_attrs(self):
        self.axis = (0, 1, 2)


S
sneaxiy 已提交
274
class TestReduceMeanOpAxisTupleFP16(TestReduceMeanOp):
275

S
sneaxiy 已提交
276 277 278 279 280
    def set_attrs(self):
        self.axis = (0, 1, 2)
        self.dtype = 'float16'


281
class TestReduceMeanOpAxisNegative(TestReduceMeanOp):
282

283 284 285 286
    def set_attrs(self):
        self.axis = [-2, -1]


S
sneaxiy 已提交
287
class TestReduceMeanOpAxisNegativeFP16(TestReduceMeanOp):
288

S
sneaxiy 已提交
289 290 291 292 293
    def set_attrs(self):
        self.axis = [-2, -1]
        self.dtype = 'float16'


294
class TestReduceMeanOpKeepdimTrue1(TestReduceMeanOp):
295

296 297 298 299
    def set_attrs(self):
        self.keepdim = True


S
sneaxiy 已提交
300
class TestReduceMeanOpKeepdimTrue1FP16(TestReduceMeanOp):
301

S
sneaxiy 已提交
302 303 304 305 306
    def set_attrs(self):
        self.keepdim = True
        self.dtype = 'float16'


307
class TestReduceMeanOpKeepdimTrue2(TestReduceMeanOp):
308

309 310 311 312 313
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True


S
sneaxiy 已提交
314
class TestReduceMeanOpKeepdimTrue2FP16(TestReduceMeanOp):
315

S
sneaxiy 已提交
316 317 318 319 320 321
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True
        self.dtype = 'float16'


322
class TestReduceMeanOpReduceAllTrue(TestReduceMeanOp):
323

324 325 326 327
    def set_attrs(self):
        self.reduce_all = True


S
sneaxiy 已提交
328
class TestReduceMeanOpReduceAllTrueFP16(TestReduceMeanOp):
329

S
sneaxiy 已提交
330 331 332 333 334
    def set_attrs(self):
        self.reduce_all = True
        self.dtype = 'float16'


335
class TestMeanAPI(unittest.TestCase):
336
    # test paddle.tensor.stat.mean
337 338 339 340 341 342 343 344

    def setUp(self):
        self.x_shape = [2, 3, 4, 5]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_api_static(self):
Z
Fix  
zhupengyang 已提交
345
        paddle.enable_static()
346
        with paddle.static.program_guard(paddle.static.Program()):
347
            x = paddle.fluid.data('X', self.x_shape)
348 349 350 351 352 353 354 355 356 357 358 359
            out1 = paddle.mean(x)
            out2 = paddle.tensor.mean(x)
            out3 = paddle.tensor.stat.mean(x)
            axis = np.arange(len(self.x_shape)).tolist()
            out4 = paddle.mean(x, axis)
            out5 = paddle.mean(x, tuple(axis))

            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x},
                          fetch_list=[out1, out2, out3, out4, out5])
        out_ref = np.mean(self.x)
        for out in res:
360
            np.testing.assert_allclose(out, out_ref, rtol=0.0001)
361

Z
Fix  
zhupengyang 已提交
362 363 364
    def test_api_dygraph(self):
        paddle.disable_static(self.place)

365
        def test_case(x, axis=None, keepdim=False):
Z
Zhou Wei 已提交
366
            x_tensor = paddle.to_tensor(x)
367 368 369 370 371 372
            out = paddle.mean(x_tensor, axis, keepdim)
            if isinstance(axis, list):
                axis = tuple(axis)
                if len(axis) == 0:
                    axis = None
            out_ref = np.mean(x, axis, keepdims=keepdim)
373
            np.testing.assert_allclose(out.numpy(), out_ref, rtol=0.0001)
374 375 376 377 378 379 380 381 382 383 384

        test_case(self.x)
        test_case(self.x, [])
        test_case(self.x, -1)
        test_case(self.x, keepdim=True)
        test_case(self.x, 2, keepdim=True)
        test_case(self.x, [0, 2])
        test_case(self.x, (0, 2))
        test_case(self.x, [0, 1, 2, 3])
        paddle.enable_static()

385 386 387 388 389 390 391 392
    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data("x", shape=[10, 10], dtype="float32")
            out = fluid.layers.reduce_mean(input=x, dim=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x_np = np.random.rand(10, 10).astype(np.float32)
            res = exe.run(feed={"x": x_np}, fetch_list=[out])
393
        np.testing.assert_allclose(res[0], np.mean(x_np, axis=1), rtol=1e-05)
394 395 396 397 398

        with fluid.dygraph.guard():
            x_np = np.random.rand(10, 10).astype(np.float32)
            x = fluid.dygraph.to_variable(x_np)
            out = fluid.layers.reduce_mean(input=x, dim=1)
399 400 401
        np.testing.assert_allclose(out.numpy(),
                                   np.mean(x_np, axis=1),
                                   rtol=1e-05)
402

403
    def test_errors(self):
404 405 406 407 408
        paddle.disable_static()
        x = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        x = paddle.to_tensor(x)
        self.assertRaises(Exception, paddle.mean, x, -3)
        self.assertRaises(Exception, paddle.mean, x, 2)
Z
Fix  
zhupengyang 已提交
409
        paddle.enable_static()
410
        with paddle.static.program_guard(paddle.static.Program()):
411
            x = paddle.fluid.data('X', [10, 12], 'int32')
412 413 414
            self.assertRaises(TypeError, paddle.mean, x)


415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
class TestMeanWithTensorAxis1(TestReduceOPTensorAxisBase):

    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([1, 2], dtype='int64')
        self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64')


class TestMeanWithTensorAxis2(TestReduceOPTensorAxisBase):

    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 10, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
            paddle.to_tensor([2], 'int64')
        ]


439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
class TestMeanDoubleGradCheck(unittest.TestCase):

    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.mean_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMeanTripleGradCheck(unittest.TestCase):

    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.mean_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
513
if __name__ == "__main__":
514
    paddle.enable_static()
L
liaogang 已提交
515
    unittest.main()