test_mean_op.py 8.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

L
liaogang 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle
C
chengduo 已提交
21
import paddle.fluid.core as core
22 23
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
L
liaogang 已提交
24

25 26
np.random.seed(10)

L
liaogang 已提交
27

Q
qijun 已提交
28
class TestMeanOp(OpTest):
L
liaogang 已提交
29
    def setUp(self):
Q
qijun 已提交
30
        self.op_type = "mean"
31
        self.dtype = np.float64
C
chengduo 已提交
32 33
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Q
qijun 已提交
34
        self.outputs = {'Out': np.mean(self.inputs["X"])}
L
liaogang 已提交
35

C
chengduo 已提交
36 37 38
    def init_dtype_type(self):
        pass

Q
qijun 已提交
39 40
    def test_check_output(self):
        self.check_output()
L
liaogang 已提交
41

Q
qijun 已提交
42 43
    def test_checkout_grad(self):
        self.check_grad(['X'], 'Out')
44 45


46
class TestMeanOpError(unittest.TestCase):
47 48 49 50 51 52 53 54 55 56 57 58 59 60
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of mean_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.mean, input1)
            # The input dtype of mean_op must be float16, float32, float64.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.mean, input2)
            input3 = fluid.layers.data(
                name='input3', shape=[4], dtype="float16")
            fluid.layers.softmax(input3)


C
chengduo 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestFP16MeanOp(TestMeanOp):
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=2e-3)

    def test_checkout_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=0.8)


79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
def ref_reduce_mean(x, axis=None, keepdim=False, reduce_all=False):
    if isinstance(axis, list):
        axis = tuple(axis)
    if reduce_all:
        axis = None
    return np.mean(x, axis=axis, keepdims=keepdim)


class TestReduceMeanOp(OpTest):
    def setUp(self):
        self.op_type = 'reduce_mean'
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]
        self.axis = [0]
        self.keepdim = False
        self.reduce_all = False
        self.set_attrs()

        np.random.seed(10)
        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out_np = ref_reduce_mean(x_np, self.axis, self.keepdim, self.reduce_all)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}
        self.attrs = {
            'dim': self.axis,
            'keep_dim': self.keepdim,
            'reduce_all': self.reduce_all
        }

    def set_attrs(self):
        pass

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['Out'])


class TestReduceMeanOpDefaultAttrs(TestReduceMeanOp):
    def setUp(self):
        self.op_type = 'reduce_mean'
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]

        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out_np = np.mean(x_np, axis=0)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}


class TestReduceMeanOpFloat32(TestReduceMeanOp):
    def set_attrs(self):
        self.dtype = 'float32'


class TestReduceMeanOpShape1D(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [100]


class TestReduceMeanOpShape6D(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]


class TestReduceMeanOpAxisAll(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]


class TestReduceMeanOpAxisTuple(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = (0, 1, 2)


class TestReduceMeanOpAxisNegative(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [-2, -1]


class TestReduceMeanOpKeepdimTrue1(TestReduceMeanOp):
    def set_attrs(self):
        self.keepdim = True


class TestReduceMeanOpKeepdimTrue2(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True


class TestReduceMeanOpReduceAllTrue(TestReduceMeanOp):
    def set_attrs(self):
        self.reduce_all = True


176
class TestMeanAPI(unittest.TestCase):
177
    # test paddle.tensor.stat.mean
178 179 180 181 182 183 184 185

    def setUp(self):
        self.x_shape = [2, 3, 4, 5]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_api_static(self):
Z
Fix  
zhupengyang 已提交
186
        paddle.enable_static()
187 188 189 190 191 192 193 194 195 196 197 198 199 200
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_shape)
            out1 = paddle.mean(x)
            out2 = paddle.tensor.mean(x)
            out3 = paddle.tensor.stat.mean(x)
            axis = np.arange(len(self.x_shape)).tolist()
            out4 = paddle.mean(x, axis)
            out5 = paddle.mean(x, tuple(axis))

            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x},
                          fetch_list=[out1, out2, out3, out4, out5])
        out_ref = np.mean(self.x)
        for out in res:
201
            self.assertEqual(np.allclose(out, out_ref, rtol=1e-04), True)
202

Z
Fix  
zhupengyang 已提交
203 204 205
    def test_api_dygraph(self):
        paddle.disable_static(self.place)

206 207 208 209 210 211 212 213
        def test_case(x, axis=None, keepdim=False):
            x_tensor = paddle.to_variable(x)
            out = paddle.mean(x_tensor, axis, keepdim)
            if isinstance(axis, list):
                axis = tuple(axis)
                if len(axis) == 0:
                    axis = None
            out_ref = np.mean(x, axis, keepdims=keepdim)
214 215 216
            self.assertEqual(
                np.allclose(
                    out.numpy(), out_ref, rtol=1e-04), True)
217 218 219 220 221 222 223 224 225 226 227

        test_case(self.x)
        test_case(self.x, [])
        test_case(self.x, -1)
        test_case(self.x, keepdim=True)
        test_case(self.x, 2, keepdim=True)
        test_case(self.x, [0, 2])
        test_case(self.x, (0, 2))
        test_case(self.x, [0, 1, 2, 3])
        paddle.enable_static()

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data("x", shape=[10, 10], dtype="float32")
            out = fluid.layers.reduce_mean(input=x, dim=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x_np = np.random.rand(10, 10).astype(np.float32)
            res = exe.run(feed={"x": x_np}, fetch_list=[out])
        self.assertEqual(np.allclose(res[0], np.mean(x_np, axis=1)), True)

        with fluid.dygraph.guard():
            x_np = np.random.rand(10, 10).astype(np.float32)
            x = fluid.dygraph.to_variable(x_np)
            out = fluid.layers.reduce_mean(input=x, dim=1)
        self.assertEqual(np.allclose(out.numpy(), np.mean(x_np, axis=1)), True)

244
    def test_errors(self):
245 246 247 248 249
        paddle.disable_static()
        x = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        x = paddle.to_tensor(x)
        self.assertRaises(Exception, paddle.mean, x, -3)
        self.assertRaises(Exception, paddle.mean, x, 2)
Z
Fix  
zhupengyang 已提交
250
        paddle.enable_static()
251
        with paddle.static.program_guard(paddle.static.Program()):
252
            x = paddle.data('X', [10, 12], 'int32')
253 254 255
            self.assertRaises(TypeError, paddle.mean, x)


Q
qijun 已提交
256
if __name__ == "__main__":
L
liaogang 已提交
257
    unittest.main()