test_mean_op.py 2.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

L
liaogang 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
C
chengduo 已提交
20
import paddle.fluid.core as core
21 22
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
L
liaogang 已提交
23 24


Q
qijun 已提交
25
class TestMeanOp(OpTest):
L
liaogang 已提交
26
    def setUp(self):
Q
qijun 已提交
27
        self.op_type = "mean"
C
chengduo 已提交
28 29 30
        self.dtype = np.float32
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Q
qijun 已提交
31
        self.outputs = {'Out': np.mean(self.inputs["X"])}
L
liaogang 已提交
32

C
chengduo 已提交
33 34 35
    def init_dtype_type(self):
        pass

Q
qijun 已提交
36 37
    def test_check_output(self):
        self.check_output()
L
liaogang 已提交
38

Q
qijun 已提交
39 40
    def test_checkout_grad(self):
        self.check_grad(['X'], 'Out')
41 42


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
class TestMeanOpError(OpTest):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of mean_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.mean, input1)
            # The input dtype of mean_op must be float16, float32, float64.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.mean, input2)
            input3 = fluid.layers.data(
                name='input3', shape=[4], dtype="float16")
            fluid.layers.softmax(input3)


C
chengduo 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestFP16MeanOp(TestMeanOp):
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=2e-3)

    def test_checkout_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=0.8)


Q
qijun 已提交
76
if __name__ == "__main__":
L
liaogang 已提交
77
    unittest.main()