op_function_generator.cc 25.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
16 17 18
#include <fstream>
#include <iostream>
#include <string>
19 20 21
#ifndef _WIN32
#include <unistd.h>
#endif
22 23 24 25 26 27 28

#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"
29
#ifdef PADDLE_WITH_ASCEND_CL
30 31
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
#endif
32

L
Leo Chen 已提交
33 34 35 36 37 38 39 40
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
41 42
std::map<std::string, std::set<std::string>> op_ins_map = {
    {"layer_norm", {"X", "Scale", "Bias"}},
43 44 45
    {"fused_attention",
     {"X", "LnScale", "LnBias", "QKVW", "QKVBias", "SrcMask", "OutLinearW",
      "OutLinearBias", "Ln2Scale", "Ln2Bias"}},
C
ceci3 已提交
46
    {"instance_norm", {"X", "Scale", "Bias"}},
47 48 49
    {"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}},
    {"label_smooth", {"X", "PriorDist"}},
    {"assign", {"X"}},
50 51 52
    {"reshape2", {"X", "Shape"}},
    {"expand", {"X", "ExpandTimes"}},
    {"slice", {"Input", "StartsTensor", "EndsTensor"}},
L
Leo Chen 已提交
53 54
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"X", "InScale", "InAccum", "InState"}},
55
    {"nll_loss", {"X", "Label", "Weight"}},
56
    {"bilinear_tensor_product", {"X", "Y", "Weight", "Bias"}},
57
    {"gather", {"X", "Index", "Axis"}},
58 59
    {"roi_pool", {"X", "ROIs", "RoisNum"}},
    {"roi_align", {"X", "ROIs", "RoisNum"}},
60
    {"psroi_pool", {"X", "ROIs", "RoisNum"}},
61 62 63
    {"collect_fpn_proposals",
     {"MultiLevelRois", "MultiLevelScores", "MultiLevelRoIsNum"}},
    {"distribute_fpn_proposals", {"FpnRois", "RoisNum"}},
64
    {"warpctc", {"Logits", "Label", "LogitsLength", "LabelLength"}},
65 66
    {"hierarchical_sigmoid",
     {"X", "W", "Label", "PathTable", "PathCode", "Bias"}},
67
    {"moving_average_abs_max_scale", {"X", "InAccum", "InState"}},
68
    {"multiclass_nms3", {"BBoxes", "Scores", "RoisNum"}},
69
    {"box_coder", {"PriorBox", "PriorBoxVar", "TargetBox"}},
70
    {"momentum", {"Param", "Grad", "Velocity", "LearningRate", "MasterParam"}},
71
    {"sparse_momentum", {"Param", "Grad", "Velocity", "Index", "LearningRate"}},
72
    {"rnn", {"Input", "PreState", "WeightList", "SequenceLength"}},
73
    {"run_program", {"X", "Params"}},
74 75 76 77
    {"matrix_rank", {"X", "TolTensor"}},
    {"adam",
     {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow",
      "Beta2Pow", "MasterParam"}},
78 79 80
    {"adamw",
     {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow",
      "Beta2Pow", "MasterParam"}},
81
};
L
Leo Chen 已提交
82 83 84 85 86 87 88 89 90 91 92 93

// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_outs_map = {
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"Out", "OutScale", "OutAccum", "OutState"}},
94 95 96
    {"batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
97 98 99 100 101
    {"fused_attention",
     {"LnMean", "LnVariance", "LnOut", "QKVOut", "QKVBiasOut", "TransposeOut2",
      "QKOut", "QKTVOut", "SoftmaxOut", "AttnDropoutMaskOut", "AttnDropoutOut",
      "SrcMaskOut", "FMHAOut", "OutLinearOut", "DropoutMaskOut", "Ln2Mean",
      "Ln2Variance", "BiasDropoutResidualOut", "Y"}},
C
ceci3 已提交
102 103 104
    {"sync_batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
Z
Zhang Ting 已提交
105
    {"unique", {"Out", "Index", "Indices", "Counts"}},
D
duanboqiang 已提交
106
    {"unique_consecutive", {"Out", "Index", "Counts"}},
107 108
    {"generate_proposals", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
    {"collect_fpn_proposals", {"FpnRois", "RoisNum"}},
109
    {"matrix_nms", {"Out", "Index", "RoisNum"}},
110 111
    {"distribute_fpn_proposals",
     {"MultiFpnRois", "RestoreIndex", "MultiLevelRoIsNum"}},
112 113
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
114
    {"multiclass_nms3", {"Out", "NmsRoisNum"}},
115
    {"generate_proposals_v2", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
116
    {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
117
    {"sparse_momentum", {"ParamOut", "VelocityOut"}},
118
    {"rnn", {"DropoutState", "Reserve", "Out", "State"}},
119 120
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
121
    {"run_program", {"DOut"}},
122 123 124
    {"adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
125 126 127
    {"adamw",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
L
Leo Chen 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141
};

// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
// them in C++. There are mainly 2 reasons for that,
// (1) Optimizer OPs need to update the input param in-place, like sgd.
//     So they need to pass the output which is same as input param.
// (2) Very few python APIs has out in their arguments, like fill_constant.
//     So they need to pass the python output to C++.
//     Actually, this is not a good design, since it may break the SSA graph,
//     especially in declarative mode.
// For those OPs, we need to manually specify the outs need to pass in this map.
std::map<std::string, std::set<std::string>> op_passing_outs_map = {
142 143
    {"sgd", {"ParamOut"}},
    {"adam",
144 145
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
Z
zhaoyingli 已提交
146
    {"adamw",
147 148
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
149 150 151
    {"average_accumulates",
     {"out_sum_1", "out_sum_2", "out_sum_3", "out_num_accumulates",
      "out_old_num_accumulates", "out_num_updates"}},
152
    {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
153
    {"sparse_momentum", {"ParamOut", "VelocityOut"}},
154
    {"batch_norm", {"MeanOut", "VarianceOut"}},
C
ceci3 已提交
155
    {"sync_batch_norm", {"MeanOut", "VarianceOut"}},
156
    {"accuracy", {"Correct", "Total"}},
157
    {"fill_constant", {"Out"}},
L
lilong12 已提交
158
    {"recv_v2", {"Out"}},
159
    {"partial_recv", {"Out"}},
L
Leo Chen 已提交
160
    {"matmul", {"Out"}},
161
    {"c_broadcast", {"Out"}},
K
kuizhiqing 已提交
162 163
    {"c_sync_calc_stream", {"Out"}},
    {"c_sync_comm_stream", {"Out"}},
164 165 166 167 168 169 170
    {"c_reduce_sum", {"Out"}},
    {"c_reduce_max", {"Out"}},
    {"c_reduce_min", {"Out"}},
    {"c_reduce_prod", {"Out"}},
    {"c_reduce", {"Out"}},
    {"c_scatter", {"Out"}},
    {"barrier", {"Out"}},
L
Leo Chen 已提交
171
    {"fake_quantize_dequantize_moving_average_abs_max",
172
     {"Out", "OutScale", "OutAccum", "OutState"}},
173
    {"fake_quantize_dequantize_abs_max", {"Out", "OutScale"}},
H
huangxu96 已提交
174
    {"fake_channel_wise_quantize_dequantize_abs_max", {"Out", "OutScale"}},
175 176 177
    {"check_finite_and_unscale", {"Out", "FoundInfinite"}},
    {"update_loss_scaling",
     {"Out", "LossScaling", "OutGoodSteps", "OutBadSteps"}},
178 179
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
180 181
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
182
    {"rnn", {"DropoutState"}},
183
    {"run_program", {"Out", "DOut", "OutScope"}},
184 185
    {"clear_float_status", {"FloatStatusOut"}},
    {"get_float_status", {"FloatStatusOut"}},
L
Leo Chen 已提交
186
};
187

188 189 190
// NOTE(pangyoki): Tensor View Strategy.
// In this case, a new output varbase will be created, and this varbase will
// reuse the input varbase's allocation.
191 192 193
// It's a map. The key of outer map is the view op name, the value is
// a pair which implies the mapping relationship between the input and
// output varbase.
194 195 196 197 198 199 200
std::map<std::string, std::pair<std::string, std::string>> view_op_map = {
    {"squeeze2", {"X", "Out"}},  // "X" -> "Out"
    {"unsqueeze2", {"X", "Out"}},
    {"reshape2", {"X", "Out"}},
    {"flatten_contiguous_range", {"X", "Out"}},
};

201 202 203 204 205 206 207 208
// NOTE(pangyoki): Inplace OP with duplicable input.
// The set includes inplace ops that have duplicable input.
// The first Varbase in input needs to be specified for the inplace strategy
// and share Varbase with the output.
std::set<std::string> inplace_op_duplicable_ins_set = {
    "sum",
};

209
// clang-format off
210
const char* OUT_INITIALIZER_TEMPLATE =
211
    R"({"%s", {std::shared_ptr<imperative::VarBase>(new imperative::VarBase("auto_"+std::to_string(VarBaseUniqueNameID++)+"_"))}})";
212 213 214 215
const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})";

const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})";
const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})";
L
Leo Chen 已提交
216

217 218 219 220
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    if (%s != nullptr) {
      ins["%s"] = {%s};
    }
221
)";
L
Leo Chen 已提交
222

223
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
L
Leo Chen 已提交
224
    if (%s.size() != 0) {
225 226
      ins["%s"] = %s;
    }
L
Leo Chen 已提交
227 228
)";

229 230
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    outs["%s"] = {%s};
231 232
)";

233 234
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
    outs["%s"] = %s;
L
Leo Chen 已提交
235
)";
236 237 238 239
// if inputs is list, no need {}
const char* ARG_OUT_NUM = R"(%sNum)";
const char* ARG_OUT_NUM_TYPE = R"(size_t )";

240 241 242 243 244 245 246
const char* IN_VAR_TYPE = R"(py::handle)";
const char* IN_VAR_LIST_TYPE = R"(py::handle)";

const char* OUT_VAR_TYPE = R"(std::shared_ptr<imperative::VarBase>)";
const char* OUT_VAR_LIST_TYPE = R"(std::vector<std::shared_ptr<imperative::VarBase>>)";

const char* CAST_VAR_TEMPLATE = R"(
247
    auto %s = GetVarBaseFromArgs("%s", "%s", args, %d, %s);)";
248 249

const char* CAST_VAR_LIST_TEMPLATE = R"(
250
    auto %s = GetVarBaseListFromArgs("%s", "%s", args, %d, %s);)";
251

252 253
const char* CAST_SIZE_T_TEMPLATE = R"(
    auto %s = GetUnsignedLongFromArgs("%s", "%s", args, %d, %s);)";
254

255 256 257 258 259 260 261 262 263
const char* ARG_TEMPLATE = R"(const %s& %s)";

const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)";
const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))";
const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])";
const char* RETURN_TEMPLATE = R"(outs["%s"][0])";

const char* FUNCTION_ARGS = R"(%s, const py::args& args)";
const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)";
264

265
const char* HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT = R"(
266 267 268 269
    if (ins.count("%s") && outs.count("%s")) {
      HandleViewBetweenInputAndOutput(ins["%s"][0], outs["%s"][0]);
    })";

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
const char* INPLACE_DUPLICABLE_INPUT = R"([0])";

const char* INPLACE_LEAF_ERROR_MESSAGE = R"(Leaf Var (%s) that doesn't stop gradient can't use inplace strategy.)";

const char* INPLACE_STRATEGY_TEMPLATE =
R"(
    PADDLE_ENFORCE_EQ(
      %s->IsLeaf() && !%s->OverridedStopGradient(), false,
      platform::errors::InvalidArgument("%s", %s->Name()));
    %s->BumpInplaceVersion();
    VLOG(3) << "Var(" << %s->Name() << ") uses Inplace Strategy.";
)";

const char* INPLACE_MAPPING_TEMPLATE = R"({"%s", "%s"})";

285
const char* OP_FUNCTION_TEMPLATE =
286
R"(
287
static PyObject * %s(PyObject *self, PyObject *args, PyObject *kwargs)
288
{
289 290
  PyThreadState *tstate = nullptr;
  try
291
  {
292 293 294 295
    %s
    framework::AttributeMap attrs;
    ConstructAttrMapFromPyArgs("%s", args, %d, PyTuple_GET_SIZE(args) , attrs);
    tstate = PyEval_SaveThread();
296
    %s
297 298 299
    imperative::NameVarBaseMap outs = %s;
    imperative::NameVarBaseMap ins = %s;
    %s
300
    imperative::GetCurrentTracer()->TraceOp("%s", ins, outs, attrs, {%s});
301 302
    PyEval_RestoreThread(tstate);
    tstate = nullptr;
303
    %s
304
  }
305 306 307 308 309 310 311
  catch(...) {
    if (tstate) {
      PyEval_RestoreThread(tstate);
    }
    ThrowExceptionToPython(std::current_exception());
    return nullptr;
  }
312
})";
313

314
const char* PYBIND_ITEM_TEMPLATE = R"(  {"%s", (PyCFunction)(void(*)(void))%s, METH_VARARGS | METH_KEYWORDS, "C++ interface function for %s in dygraph."},)";
315

316
// clang-format on
L
Leo Chen 已提交
317 318
static inline bool FindInsMap(const std::string& op_type,
                              const std::string& in_name) {
319 320 321
  return op_ins_map[op_type].count(in_name);
}

L
Leo Chen 已提交
322 323 324 325 326 327 328 329
static inline bool FindOutsMap(const std::string& op_type,
                               const std::string& out_name) {
  return op_outs_map[op_type].count(out_name);
}

static inline bool FindPassingOutsMap(const std::string& op_type,
                                      const std::string& out_name) {
  return op_passing_outs_map[op_type].count(out_name);
330
}
331

332 333 334 335
static inline bool FindDuplicableInputInplaceOpSet(const std::string& op_type) {
  return inplace_op_duplicable_ins_set.count(op_type);
}

336 337 338 339
static inline bool FindViewOpMap(const std::string& op_type) {
  return view_op_map.count(op_type);
}

340 341 342 343
static inline std::string TempName(const std::string& name) {
  return name + '_';
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
std::string GenerateOpFunctionsBody(
    const paddle::framework::proto::OpProto* op_proto, std::string func_name,
    bool use_inplace_strategy = false,
    std::map<std::string, std::string> inplace_map = {}) {
  auto& op_type = op_proto->type();
  std::string input_args = "";
  std::string ins_initializer = "{";
  std::string ins_initializer_with_null = "";
  std::string py_arg = "";
  int arg_idx = 0;
  int input_args_num = 0;
  std::string ins_cast_str = "";
  std::string view_strategy_str = "";
  std::string inplace_strategy_str = "";
  for (auto& input : op_proto->inputs()) {
    auto& in_name = input.name();
    // skip those dispensable inputs, like ResidualData in conv2d
    if (input.dispensable() && !FindInsMap(op_type, in_name)) {
      continue;
    }
    const auto in_type = input.duplicable() ? IN_VAR_LIST_TYPE : IN_VAR_TYPE;
    auto input_arg =
        paddle::string::Sprintf(ARG_TEMPLATE, in_type, TempName(in_name));
    input_args += input_arg;
    input_args += ",";
    input_args_num++;
    const auto in_cast_type =
        input.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
    auto dispensable = input.dispensable() ? "true" : "false";
373 374
    ins_cast_str += paddle::string::Sprintf(in_cast_type, in_name, op_type,
                                            in_name, arg_idx++, dispensable);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

    if (input.dispensable()) {
      const auto in_template = input.duplicable()
                                   ? INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                   : INPUT_INITIALIZER_TEMPLATE_WITH_NULL;
      ins_initializer_with_null +=
          paddle::string::Sprintf(in_template, in_name, in_name, in_name);
    } else {
      const auto in_template = input.duplicable()
                                   ? INPUT_LIST_INITIALIZER_TEMPLATE
                                   : INPUT_INITIALIZER_TEMPLATE;
      ins_initializer += paddle::string::Sprintf(in_template, in_name, in_name);
      ins_initializer += ",";
    }
  }
  if (ins_initializer.back() == ',') {
    ins_initializer.pop_back();
  }
  ins_initializer += "}";

395
  if (!input_args.empty() && input_args.back() == ',') {
396 397 398 399 400 401 402 403 404 405 406 407
    input_args.pop_back();
  }

  // Generate outs initializer
  std::string outs_initializer = "{";
  std::string outs_initializer_with_null = "";
  std::string inplace_mapping_str = "";
  std::string return_str = "";

  int outs_num = 0;
  for (auto& output : op_proto->outputs()) {
    auto& out_name = output.name();
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    // skip those dispensable oututs
    if (output.dispensable() && !FindOutsMap(op_type, out_name)) {
      continue;
    }
    const auto out_type =
        output.duplicable() ? OUT_VAR_LIST_TYPE : OUT_VAR_TYPE;
    const auto return_template =
        output.duplicable() ? RETURN_LIST_TEMPLATE : RETURN_TEMPLATE;

    if (FindPassingOutsMap(op_type, out_name)) {
      if (input_args != "") {
        input_args += ",";
      }
      input_args += out_type;
      input_args += out_name;
      input_args_num++;

      if (output.dispensable()) {
        const auto out_template =
            output.duplicable() ? OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                : OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL;
        outs_initializer_with_null +=
            paddle::string::Sprintf(out_template, out_name, out_name);
      } else {
        const auto out_template = output.duplicable()
                                      ? INPUT_LIST_INITIALIZER_TEMPLATE
                                      : INPUT_INITIALIZER_TEMPLATE;
        outs_initializer +=
            paddle::string::Sprintf(out_template, out_name, out_name);
        outs_initializer += ",";
      }
440 441 442 443 444 445

      const auto in_cast_type =
          output.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
      auto dispensable = output.dispensable() ? "true" : "false";
      ins_cast_str += paddle::string::Sprintf(in_cast_type, out_name, op_type,
                                              out_name, arg_idx++, dispensable);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    } else if (use_inplace_strategy && inplace_map.count(out_name)) {
      PADDLE_ENFORCE_NE(
          inplace_map[out_name], "",
          paddle::platform::errors::InvalidArgument(
              "Inplace op %s has no input corresponding to output %s.", op_type,
              out_name));

      // TODO(pangyoki): Inplace op don't have duplicable output in temporary,
      // so don't support duplicable output now.
      const auto out_template = INPUT_INITIALIZER_TEMPLATE;

      auto inplace_input_name = inplace_map[out_name];
      inplace_mapping_str += paddle::string::Sprintf(
          INPLACE_MAPPING_TEMPLATE, inplace_input_name, out_name);
      inplace_mapping_str += ",";

      // If inplace op has duplicable input, the first Varbase in input will
      // share Varbase with output.
      if (FindDuplicableInputInplaceOpSet(op_type)) {
        inplace_input_name += INPLACE_DUPLICABLE_INPUT;
      }

      // Leaf Var that doesn't stop gradient can't use inplace strategy.
      // Increase inplace_version.
      inplace_strategy_str += paddle::string::Sprintf(
          INPLACE_STRATEGY_TEMPLATE, inplace_input_name, inplace_input_name,
          INPLACE_LEAF_ERROR_MESSAGE, inplace_input_name, inplace_input_name,
          inplace_input_name);
      outs_initializer +=
          paddle::string::Sprintf(out_template, out_name, inplace_input_name);
      outs_initializer += ",";
    } else {
      // There are few Operators that have duplicable output, like `Out` in
      // split op. We need to specify the number of variables for the
      // duplicable output, as the argument OutNum;
      if (output.duplicable()) {
        if (input_args != "") {
          input_args += ",";
        }
        auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name);
        input_args += ARG_OUT_NUM_TYPE;
        input_args += out_num_str;
        input_args_num++;
        outs_initializer += paddle::string::Sprintf(
            OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str);
491 492 493 494 495

        auto dispensable = output.dispensable() ? "true" : "false";
        ins_cast_str +=
            paddle::string::Sprintf(CAST_SIZE_T_TEMPLATE, out_num_str, op_type,
                                    out_num_str, arg_idx++, dispensable);
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
      } else {
        outs_initializer +=
            paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name);
      }
      outs_initializer += ",";
    }

    return_str += paddle::string::Sprintf(return_template, out_name);
    return_str += ",";
    outs_num += 1;
  }
  if (outs_initializer.back() == ',') {
    outs_initializer.pop_back();
    return_str.pop_back();
  }
  outs_initializer += "}";
512
  if (!inplace_mapping_str.empty() && inplace_mapping_str.back() == ',') {
513 514 515 516 517 518 519 520 521 522
    inplace_mapping_str.pop_back();
  }
  if (!use_inplace_strategy && FindViewOpMap(op_type)) {
    std::string viwe_input_name = view_op_map[op_type].first;
    std::string viwe_output_name = view_op_map[op_type].second;
    view_strategy_str += paddle::string::Sprintf(
        HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT, viwe_input_name, viwe_output_name,
        viwe_input_name, viwe_output_name);
  }
  if (outs_num == 0) {
523
    return_str = "Py_INCREF(Py_None);\n    return Py_None;";
524
  } else if (outs_num == 1) {
525
    return_str = "return MakeReturnPyObject(" + return_str + ");";
526
  } else {
527
    return_str = "return MakeReturnPyObject(" +
528
                 paddle::string::Sprintf(RETURN_TUPLE_TEMPLATE, return_str) +
529
                 ");";
530 531 532 533 534 535 536 537 538 539
  }
  std::string function_args = "";
  if (input_args == "") {
    function_args = FUNCTION_ARGS_NO_INPUT;
  } else {
    function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args);
  }

  // generate op funtcion body
  auto op_function_str = paddle::string::Sprintf(
540 541 542 543
      OP_FUNCTION_TEMPLATE, func_name, ins_cast_str, op_type, input_args_num,
      inplace_strategy_str, outs_initializer, ins_initializer,
      ins_initializer_with_null + outs_initializer_with_null +
          view_strategy_str,
544 545 546 547 548
      op_type, inplace_mapping_str, return_str);

  return op_function_str;
}

549
static std::tuple<std::vector<std::string>, std::vector<std::string>>
550
GenerateOpFunctions() {
551 552
  auto& op_info_map = paddle::framework::OpInfoMap::Instance().map();

553
  std::vector<std::string> op_function_list, bind_function_list;
554 555
  auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();

556 557 558 559 560 561 562
  for (auto& pair : op_info_map) {
    auto& op_info = pair.second;
    auto op_proto = op_info.proto_;
    if (op_proto == nullptr) {
      continue;
    }
    auto& op_type = op_proto->type();
563 564 565 566 567
    // Skip ooerator which is not inherit form OperatorWithKernel, like while,
    // since only OperatorWithKernel can run in dygraph mode.
    if (!all_kernels.count(op_type)) {
      continue;
    }
568

569 570 571 572 573 574 575 576 577 578 579 580 581 582
    // NOTE(pangyoki): Inplace Strategy.
    // In this case, output will reuse input varbase.
    // Dygraph mode needs to be aligned with the in-place strategy in static
    // mode, and the mapping relationships between output and input that have
    // been defined in static mode should be used in dygraph mode.
    // Find which ops need to use Inplace strategy in static mode, and get the
    // mapping relationship between Inplace output and input.
    auto& infer_inplace =
        paddle::framework::OpInfoMap::Instance().Get(op_type).infer_inplace_;
    std::map<std::string, std::string> inplace_map;
    if (infer_inplace) {
      auto in_to_outs = infer_inplace(true);
      for (auto& inplace_pair : in_to_outs) {
        inplace_map[inplace_pair.second] = inplace_pair.first;
583 584
      }
    }
585

586
    std::string func_name = "imperative_" + op_type;
587
    std::string op_function_str = GenerateOpFunctionsBody(op_proto, func_name);
588 589

    // generate pybind item
590
    auto bind_function_str = paddle::string::Sprintf(
591
        PYBIND_ITEM_TEMPLATE, op_type, func_name, op_type);
592 593 594

    op_function_list.emplace_back(std::move(op_function_str));
    bind_function_list.emplace_back(std::move(bind_function_str));
595 596 597 598 599 600 601 602 603 604 605

    if (infer_inplace) {
      // Reuse Varbase Inplace OP: op_type_.
      // The inplace OP needs a new implementation method.
      std::string inplace_op_type = op_type + "_";
      std::string inplace_func_name = "imperative_" + inplace_op_type;
      std::string inplace_op_function_str = GenerateOpFunctionsBody(
          op_proto, inplace_func_name, true, inplace_map);

      // generate pybind item
      auto inplace_bind_function_str =
606 607
          paddle::string::Sprintf(PYBIND_ITEM_TEMPLATE, inplace_op_type,
                                  inplace_func_name, inplace_op_type);
608 609 610 611

      op_function_list.emplace_back(std::move(inplace_op_function_str));
      bind_function_list.emplace_back(std::move(inplace_bind_function_str));
    }
612
  }
613
  return std::make_tuple(op_function_list, bind_function_list);
614 615 616 617 618 619 620 621
}

int main(int argc, char* argv[]) {
  if (argc != 2) {
    std::cerr << "argc must be 2" << std::endl;
    return -1;
  }

622
#ifdef PADDLE_WITH_ASCEND_CL
623 624 625 626
  auto ascend_ptr = paddle::framework::AscendInstance::GetInstance();
  ascend_ptr->InitGEForUT();
#endif

627 628 629
  std::vector<std::string> headers{"\"paddle/fluid/imperative/tracer.h\"",
                                   "\"pybind11/detail/common.h\"",
                                   "<Python.h>"};
630 631 632 633 634 635 636 637 638

  std::ofstream out(argv[1], std::ios::out);

  out << "#pragma once\n\n";

  for (auto& header : headers) {
    out << "#include  " + header + "\n";
  }

639 640 641
  out << "\n\n";

  auto op_funcs = GenerateOpFunctions();
642

643
  out << "namespace paddle {\n"
644 645
      << "namespace pybind {\n\n";
  out << "std::atomic<int> VarBaseUniqueNameID{0};\n";
646 647
  out << paddle::string::join_strings(std::get<0>(op_funcs), '\n');
  out << "\n\n";
648

649 650 651 652
  out << "static PyMethodDef ExtestMethods[] = {\n"
      << paddle::string::join_strings(std::get<1>(op_funcs), '\n')
      << "\n  {nullptr,nullptr,0,nullptr}"
      << "};\n\n";
653

654 655 656 657 658 659 660 661
  out << "inline void BindOpFunctions(pybind11::module *module) {\n"
      << "  auto m = module->def_submodule(\"ops\");\n"
      << "  if (PyModule_AddFunctions(m.ptr(), ExtestMethods) < 0) {\n"
      << "    PADDLE_THROW(platform::errors::Fatal (\"Add functions to "
         "core.ops failed!\"));\n"
      << "  }\n\n"
      << "  InitOpsAttrTypeMap();"
      << "}\n\n"
662 663 664 665
      << "} // namespace pybind\n"
      << "} // namespace paddle\n";

  out.close();
666

667
#ifdef PADDLE_WITH_ASCEND_CL
668 669
  ge::GEFinalize();
#endif
670

671 672
  return 0;
}