Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bb45af02
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bb45af02
编写于
7月 09, 2020
作者:
Z
Zhen Wang
提交者:
GitHub
7月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add the c++ part of Imperative QAT. test=develop (#25446)
上级
090a331d
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
185 addition
and
37 deletion
+185
-37
paddle/fluid/operators/fake_dequantize_op.cc
paddle/fluid/operators/fake_dequantize_op.cc
+3
-3
paddle/fluid/operators/fake_quantize_op.cc
paddle/fluid/operators/fake_quantize_op.cc
+82
-23
paddle/fluid/operators/fake_quantize_op.cu
paddle/fluid/operators/fake_quantize_op.cu
+5
-1
paddle/fluid/operators/fake_quantize_op.h
paddle/fluid/operators/fake_quantize_op.h
+63
-10
paddle/fluid/platform/dynload/cusolver.h
paddle/fluid/platform/dynload/cusolver.h
+1
-0
paddle/fluid/pybind/op_function_generator.cc
paddle/fluid/pybind/op_function_generator.cc
+1
-0
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
+30
-0
未找到文件。
paddle/fluid/operators/fake_dequantize_op.cc
浏览文件 @
bb45af02
...
...
@@ -29,7 +29,7 @@ struct DequantizeFunctor<platform::CPUDeviceContext, T> {
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
auto
&
dev
=
*
dev_ctx
.
eigen_device
();
out_e
.
device
(
dev
)
=
scale_factor
[
0
]
*
in_e
/
max_range
;
out_e
.
device
(
dev
)
=
in_e
*
scale_factor
[
0
]
/
max_range
;
}
};
...
...
@@ -48,7 +48,7 @@ struct ChannelDequantizeFunctor<platform::CPUDeviceContext, T> {
auto
in_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_in
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
auto
&
dev
=
*
dev_ctx
.
eigen_device
();
out_e
.
device
(
dev
)
=
s
*
in_e
/
max_range
;
out_e
.
device
(
dev
)
=
in_e
*
s
/
max_range
;
}
}
else
if
(
scale_num
==
2
)
{
int
batch_size
=
in
->
dims
()[
0
];
...
...
@@ -67,7 +67,7 @@ struct ChannelDequantizeFunctor<platform::CPUDeviceContext, T> {
auto
in_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_in
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
auto
&
dev
=
*
dev_ctx
.
eigen_device
();
out_e
.
device
(
dev
)
=
(
s
*
scale_two
[
0
])
*
in_e
/
max_range
;
out_e
.
device
(
dev
)
=
in_e
*
s
*
scale_two
[
0
]
/
max_range
;
}
}
}
...
...
paddle/fluid/operators/fake_quantize_op.cc
浏览文件 @
bb45af02
...
...
@@ -82,7 +82,7 @@ struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
ClipFunctor
<
T
>
(
-
s
,
s
));
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
out_e
.
device
(
*
ctx
.
eigen_device
())
=
(
s
/
bin_cnt
)
*
(
bin_cnt
*
inv_s
*
out_e
).
round
(
);
(
bin_cnt
*
inv_s
*
out_e
).
round
()
*
s
/
static_cast
<
T
>
(
bin_cnt
);
}
};
template
struct
ClipAndFakeQuantDequantFunctor
<
platform
::
CPUDeviceContext
,
...
...
@@ -171,20 +171,21 @@ struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext, T> {
template
struct
FindMovingAverageAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
float
>;
class
FakeQuant
ize
AbsMaxOp
:
public
framework
::
OperatorWithKernel
{
class
FakeQuant
OrWithDequant
AbsMaxOp
:
public
framework
::
OperatorWithKernel
{
public:
FakeQuant
ize
AbsMaxOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
FakeQuant
OrWithDequant
AbsMaxOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"FakeQuantizeAbsMax"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"FakeQuantOrWithDequantAbsMaxOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"FakeQuant
izeAbsMax
"
);
"FakeQuant
OrWithDequantAbsMaxOp
"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"OutScale"
),
"Output"
,
"OutScale"
,
"FakeQuant
izeAbsMax
"
);
"FakeQuant
OrWithDequantAbsMaxOp
"
);
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
"OutScale"
,
{
1
});
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
...
...
@@ -199,7 +200,8 @@ class FakeQuantizeAbsMaxOp : public framework::OperatorWithKernel {
}
};
class
FakeQuantizeAbsMaxOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
FakeQuantOrWithDequantAbsMaxOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) Input is float data type."
);
...
...
@@ -217,12 +219,19 @@ class FakeQuantizeAbsMaxOpMaker : public framework::OpProtoAndCheckerMaker {
bit_length
));
});
AddComment
(
R"DOC(
FakeQuantize operator
This is a Base Op which support FakeQuantAbsMaxOpMaker and FakeQuantDequantAbsMaxOpMaker.
FakeQuantAbsMaxOp operator is used in the dynamic quantization.
$$scale = max(abs(X))$$
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
FakeQuantDequantAbsMaxOp operator do the abs_max quant and then dequant.
$$scale = max(abs(X))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$
)DOC"
);
}
};
...
...
@@ -414,14 +423,14 @@ class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
"for training. Some layers may run faster when this is true."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
This is a Base Op which support FakeQuantMovingAverageAbsMaxOp and FakeQuantDequantMovingAverageAbsMaxOp
FakeQuantMovingAverageAbsMaxOp operator is used in static quantization.
This is a Base Op which support FakeQuantMovingAverageAbsMaxOp and FakeQuantDequantMovingAverageAbsMaxOp
.
FakeQuantMovingAverageAbsMaxOp operator is used in
the
static quantization.
$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range)$$
FakeQuantDequantMovingAverageAbsMaxOp operator do the moving_average_abs_max
op
quant and then dequant.
FakeQuantDequantMovingAverageAbsMaxOp operator do the moving_average_abs_max quant and then dequant.
$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
...
...
@@ -490,6 +499,46 @@ $$Out = X$$
}
};
class
FakeQuantDequantGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
out_grad_name
=
framework
::
GradVarName
(
"Out"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
out_grad_name
),
"Input"
,
out_grad_name
,
"FakeQuantDequantGradOp"
);
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
x_grad_name
),
true
,
platform
::
errors
::
PreconditionNotMet
(
"FakeQuantDequantGradOp doesn't have the output named %s."
,
x_grad_name
));
ctx
->
SetOutputDim
(
x_grad_name
,
ctx
->
GetInputDim
(
out_grad_name
));
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
));
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
};
template
<
typename
T
>
class
FakeQuantDequantGradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
grad_op
)
const
override
{
grad_op
->
SetType
(
"fake_quantize_dequantize_grad"
);
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
grad_op
->
SetAttrMap
(
this
->
Attrs
());
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -497,13 +546,21 @@ namespace ops = paddle::operators;
using
CPU
=
paddle
::
platform
::
CPUDeviceContext
;
REGISTER_OPERATOR
(
fake_quantize_abs_max
,
ops
::
FakeQuant
ize
AbsMaxOp
,
ops
::
FakeQuant
ize
AbsMaxOpMaker
,
fake_quantize_abs_max
,
ops
::
FakeQuant
OrWithDequant
AbsMaxOp
,
ops
::
FakeQuant
OrWithDequant
AbsMaxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
fake_quantize_abs_max
,
ops
::
FakeQuantizeAbsMaxKernel
<
CPU
,
float
>
);
REGISTER_OPERATOR
(
fake_quantize_dequantize_abs_max
,
ops
::
FakeQuantOrWithDequantAbsMaxOp
,
ops
::
FakeQuantOrWithDequantAbsMaxOpMaker
,
ops
::
FakeQuantDequantGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
FakeQuantDequantGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
fake_quantize_dequantize_abs_max
,
ops
::
FakeQuantizeDequantizeAbsMaxKernel
<
CPU
,
float
>
);
REGISTER_OPERATOR
(
fake_quantize_range_abs_max
,
ops
::
FakeQuantizeRangeAbsMaxOp
,
ops
::
FakeQuantizeRangeAbsMaxOpMaker
,
...
...
@@ -518,16 +575,14 @@ REGISTER_OPERATOR(
ops
::
FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
fake_quantize_moving_average_abs_max
,
ops
::
FakeQuantizeMovingAverageAbsMaxKernel
<
CPU
,
float
>
);
REGISTER_OPERATOR
(
fake_quantize_dequantize_moving_average_abs_max
,
ops
::
FakeQuantOrWithDequantMovingAverageAbsMaxOp
,
ops
::
FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
fake_quantize_dequantize_moving_average_abs_max
,
ops
::
FakeQuantOrWithDequantMovingAverageAbsMaxOp
,
ops
::
FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
,
ops
::
FakeQuantDequantGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
FakeQuantDequantGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
fake_quantize_dequantize_moving_average_abs_max
,
ops
::
FakeQuantizeDequantizeMovingAverageAbsMaxKernel
<
CPU
,
float
>
);
...
...
@@ -547,3 +602,7 @@ REGISTER_OPERATOR(
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
moving_average_abs_max_scale
,
ops
::
MovingAverageAbsMaxScaleKernel
<
CPU
,
float
>
);
REGISTER_OPERATOR
(
fake_quantize_dequantize_grad
,
ops
::
FakeQuantDequantGradOp
);
REGISTER_OP_CPU_KERNEL
(
fake_quantize_dequantize_grad
,
ops
::
FakeQuantDequantGradKernel
<
CPU
,
float
>
);
paddle/fluid/operators/fake_quantize_op.cu
浏览文件 @
bb45af02
...
...
@@ -138,9 +138,9 @@ __global__ void ClipAndQuantDequantKernel(const T* in, const T* scale,
int
tid
=
threadIdx
.
x
;
T
s
=
scale
[
0
];
T
inv_s
=
inverse
(
s
);
for
(
int
i
=
bid
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
x
=
in
[
i
];
T
inv_s
=
inverse
(
s
);
T
v
=
x
>
s
?
s
:
x
;
v
=
v
<
-
s
?
-
s
:
v
;
v
=
bin_cnt
*
inv_s
*
v
;
...
...
@@ -335,6 +335,8 @@ namespace ops = paddle::operators;
using
CUDA
=
paddle
::
platform
::
CUDADeviceContext
;
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_abs_max
,
ops
::
FakeQuantizeAbsMaxKernel
<
CUDA
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_dequantize_abs_max
,
ops
::
FakeQuantizeDequantizeAbsMaxKernel
<
CUDA
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_channel_wise_quantize_abs_max
,
ops
::
FakeChannelWiseQuantizeAbsMaxKernel
<
CUDA
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_range_abs_max
,
...
...
@@ -347,3 +349,5 @@ REGISTER_OP_CUDA_KERNEL(moving_average_abs_max_scale,
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_dequantize_moving_average_abs_max
,
ops
::
FakeQuantizeDequantizeMovingAverageAbsMaxKernel
<
CUDA
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_dequantize_grad
,
ops
::
FakeQuantDequantGradKernel
<
CUDA
,
float
>
);
paddle/fluid/operators/fake_quantize_op.h
浏览文件 @
bb45af02
...
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/hostdevice.h"
#include "paddle/fluid/platform/transform.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -81,7 +82,7 @@ struct FindMovingAverageAbsMaxFunctor {
};
template
<
typename
DeviceContext
,
typename
T
>
class
Fake
QuantizeAbsMaxKernel
:
public
framework
::
OpKernel
<
T
>
{
class
Fake
AbsMaxKernelBase
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
...
...
@@ -95,8 +96,38 @@ class FakeQuantizeAbsMaxKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
const
T
*
in_data
=
in
->
data
<
T
>
();
FindAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in_data
,
in
->
numel
(),
out_s
);
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
out
);
RunClipFunctor
(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
out
);
}
virtual
~
FakeAbsMaxKernelBase
()
=
default
;
protected:
virtual
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
=
0
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
FakeQuantizeAbsMaxKernel
:
public
FakeAbsMaxKernelBase
<
DeviceContext
,
T
>
{
protected:
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
override
{
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
,
scale
,
bin_cnt
,
out
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
FakeQuantizeDequantizeAbsMaxKernel
:
public
FakeAbsMaxKernelBase
<
DeviceContext
,
T
>
{
protected:
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
override
{
ClipAndFakeQuantDequantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
,
scale
,
bin_cnt
,
out
);
}
};
...
...
@@ -167,11 +198,6 @@ class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
template
<
typename
DeviceContext
,
typename
T
>
class
FakeMovingAverageAbsMaxKernelBase
:
public
framework
::
OpKernel
<
T
>
{
public:
~
FakeMovingAverageAbsMaxKernelBase
()
{}
virtual
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
in_scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
=
0
;
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in_scale
=
context
.
Input
<
framework
::
Tensor
>
(
"InScale"
);
...
...
@@ -212,12 +238,20 @@ class FakeMovingAverageAbsMaxKernelBase : public framework::OpKernel<T> {
RunClipFunctor
(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
out
);
}
virtual
~
FakeMovingAverageAbsMaxKernelBase
()
=
default
;
protected:
virtual
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
in_scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
=
0
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
FakeQuantizeMovingAverageAbsMaxKernel
:
public
FakeMovingAverageAbsMaxKernelBase
<
DeviceContext
,
T
>
{
p
ublic
:
p
rotected
:
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
in_scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
override
{
...
...
@@ -229,7 +263,7 @@ class FakeQuantizeMovingAverageAbsMaxKernel
template
<
typename
DeviceContext
,
typename
T
>
class
FakeQuantizeDequantizeMovingAverageAbsMaxKernel
:
public
FakeMovingAverageAbsMaxKernelBase
<
DeviceContext
,
T
>
{
p
ublic
:
p
rotected
:
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
in_scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
override
{
...
...
@@ -277,5 +311,24 @@ class MovingAverageAbsMaxScaleKernel : public framework::OpKernel<T> {
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
FakeQuantDequantGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
d_out
=
context
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
auto
*
d_x
=
context
.
Output
<
framework
::
LoDTensor
>
(
x_grad_name
);
PADDLE_ENFORCE_NOT_NULL
(
d_x
,
platform
::
errors
::
PreconditionNotMet
(
"FakeQuantDequantGradOp doesn't have the output named %s."
,
x_grad_name
));
// Initialize dx as same as d_out
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
framework
::
TensorCopy
(
*
d_out
,
context
.
GetPlace
(),
d_x
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/platform/dynload/cusolver.h
浏览文件 @
bb45af02
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cuda.h>
#include <cusolverDn.h>
#include <mutex> // NOLINT
...
...
paddle/fluid/pybind/op_function_generator.cc
浏览文件 @
bb45af02
...
...
@@ -80,6 +80,7 @@ std::map<std::string, std::set<std::string>> op_passing_outs_map = {
{
"matmul"
,
{
"Out"
}},
{
"fake_quantize_dequantize_moving_average_abs_max"
,
{
"Out"
,
"OutScale"
,
"OutAccum"
,
"OutState"
}},
{
"fake_quantize_dequantize_abs_max"
,
{
"Out"
,
"OutScale"
}},
{
"amp_check_finite_and_scale"
,
{
"Out"
,
"FoundInfinite"
}},
};
...
...
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
浏览文件 @
bb45af02
...
...
@@ -242,6 +242,36 @@ class TestFakeQuantDequantMovingOp(TestMovingOpBase):
return
np
.
round
(
self
.
inputs
[
'X'
]
/
out_scale
*
range_v
)
*
out_scale
/
range_v
def
test_check_grad
(
self
):
x
=
self
.
inputs
[
"X"
]
gradient
=
[
np
.
ones
(
x
.
shape
)
/
np
.
product
(
x
.
shape
)]
self
.
check_grad
([
"X"
],
"Out"
,
user_defined_grads
=
gradient
)
class
TestFakeQuantDequantAbsOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"fake_quantize_dequantize_abs_max"
self
.
attrs
=
{
'bit_length'
:
8
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
124
,
240
)).
astype
(
"float32"
),
}
scale
=
np
.
max
(
np
.
abs
(
self
.
inputs
[
'X'
])).
astype
(
"float32"
)
out_data
=
self
.
calc_output
(
scale
)
self
.
outputs
=
{
'Out'
:
out_data
,
'OutScale'
:
np
.
array
(
scale
).
astype
(
"float32"
),
}
def
calc_output
(
self
,
scale
):
range_v
=
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
return
np
.
round
(
self
.
inputs
[
'X'
]
/
scale
*
range_v
)
*
scale
/
range_v
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
x
=
self
.
inputs
[
"X"
]
gradient
=
[
np
.
ones
(
x
.
shape
)
/
np
.
product
(
x
.
shape
)]
self
.
check_grad
([
"X"
],
"Out"
,
user_defined_grads
=
gradient
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录