mkldnn_reuse.h 18.7 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"
28
#include "paddle/phi/backends/onednn/onednn_reuse.h"
J
Jacek Czaja 已提交
29 30 31 32

namespace paddle {
namespace platform {

33 34
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
35
using user_function = std::function<std::shared_ptr<float>(const float*)>;
36
using memory = dnnl::memory;
J
Jacek Czaja 已提交
37

38 39
template <typename T,
          typename TForward,
40 41
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
42 43
using MKLDNNHandlerT =
    phi::funcs::OneDNNHandlerT<T, TForward, TBackward, TBackward_params>;
44

45 46
template <typename T,
          typename TForward,
47 48
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
49 50
using MKLDNNHandlerNoCachingT = phi::funcs::
    OneDNNHandlerNoCachingT<T, TForward, TBackward, TBackward_params>;
51

52
template <typename T>
53
using ReductionMKLDNNHandler = phi::funcs::ReductionOneDNNHandler<T>;
54

55
template <typename T>
56
using BroadcastDataMKLDNNHandler = phi::funcs::BroadcastDataOneDNNHandler<T>;
57

58 59
template <typename T>
using BinaryMKLDNNHandler = phi::funcs::BinaryOneDNNHandler<T>;
60

61
static void AppendActivation(const framework::ExecutionContext& ctx,
62
                             dnnl::post_ops& post_ops,  // NOLINT
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
                             float activation_scale = 1.0f) {
  const auto invalid_attribute =
      ctx.HasAttr("fuse_activation")
          ? ctx.Attr<std::string>("fuse_activation").empty()
          : true;
  if (invalid_attribute) return;

  const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
  const auto fuse_alpha =
      ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
  const auto fuse_beta =
      ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

  if (fuse_activation == "hard_sigmoid") {
    post_ops.append_eltwise(activation_scale,
                            dnnl::algorithm::eltwise_linear,
                            fuse_alpha,
                            fuse_beta);
    post_ops.append_eltwise(
        activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
  } else {
    const std::unordered_map<std::string, dnnl::algorithm> activation_map = {
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"mish", dnnl::algorithm::eltwise_mish},
        {"relu", dnnl::algorithm::eltwise_relu},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"tanh", dnnl::algorithm::eltwise_tanh}};

    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        platform::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
  }
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static void SetOutMemDescWithUnsqueeze2FuseSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  const std::vector<int>& fused_unsqueeze2_axes =
      ctx.Attr<std::vector<int>>("fused_unsqueeze2_axes");
  const std::vector<int64_t>& op_tz = out_md.dims();
  std::vector<int64_t> unsqueezed_op_tz(
      op_tz.size() + fused_unsqueeze2_axes.size(), 0);

  for (const auto& axis : fused_unsqueeze2_axes) {
    int positive_axis = axis < 0 ? unsqueezed_op_tz.size() + axis : axis;
    unsqueezed_op_tz[positive_axis] = 1;
  }

  int j = 0;
  for (size_t i = 0; i < unsqueezed_op_tz.size(); ++i) {
    if (unsqueezed_op_tz[i] == 0) {
      unsqueezed_op_tz[i] = op_tz[j++];
    }
  }
  out->set_mem_desc(out_md.reshape(unsqueezed_op_tz));
  out->Resize(phi::make_ddim(unsqueezed_op_tz));
}

static void SetOutMemDescWithReshape2FuseSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  std::vector<int64_t> fused_reshape2_shape(
      ctx.Attr<std::vector<int>>("fused_reshape2_shape").begin(),
      ctx.Attr<std::vector<int>>("fused_reshape2_shape").end());

  const int out_shape_numel = out->numel();
  const int new_shape_numel = std::accumulate(fused_reshape2_shape.begin(),
                                              fused_reshape2_shape.end(),
                                              1,
                                              std::multiplies<int64_t>());

  for (size_t i = 0; i < fused_reshape2_shape.size(); ++i) {
    if (fused_reshape2_shape[i] == -1) {
      fused_reshape2_shape[i] = -out_shape_numel / new_shape_numel;
      break;
    }
  }

  out->set_mem_desc(out_md.reshape(fused_reshape2_shape));
  out->Resize(phi::make_ddim(fused_reshape2_shape));
}

static void SetOutMemDescWithLogicalLayoutFusesSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  if (ctx.HasAttr("fused_unsqueeze2_axes")) {
    SetOutMemDescWithUnsqueeze2FuseSupport(ctx, out, out_md);
  } else if (ctx.HasAttr("fused_reshape2_shape")) {
    SetOutMemDescWithReshape2FuseSupport(ctx, out, out_md);
  } else {
    out->set_mem_desc(out_md);
  }
}

177
template <typename T>
178 179 180 181 182 183 184 185 186 187
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

template <typename XT, typename YT, typename OT>
188
class MatMulV2MKLDNNHandler
189
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
190
 public:
191 192
  MatMulV2MKLDNNHandler(const framework::ExecutionContext& ctx,
                        const dnnl::engine engine,
193
                        paddle::platform::Place cpu_place,
194 195 196 197
                        const std::vector<int64_t>& x_org_dims,
                        bool trans_x,
                        const std::vector<int64_t>& y_org_dims,
                        bool trans_y,
198 199 200
                        bool is_output_fused,
                        const std::vector<int64_t>& x_strides_override,
                        const std::vector<int64_t>& y_strides_override)
201 202
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!x_strides_override.empty()) {
      x_strides = x_strides_override;
    } else {
      if (!trans_x) {
        x_strides.insert(x_strides.end(), {M * K, K, 1});
      } else {
        x_strides.insert(x_strides.end(), {M * K, 1, M});
      }
    }

    if (!y_strides_override.empty()) {
      y_strides = y_strides_override;
    } else {
      if (!trans_y) {
        y_strides.insert(y_strides.end(), {N * K, N, 1});
      } else {
        y_strides.insert(y_strides.end(), {N * K, 1, K});
      }
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      if (x_strides_override.empty()) {
        x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      }
      if (y_strides_override.empty()) {
        y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      }
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

262
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && is_output_fused) {
263 264 265
      out_strides = FakeTransposeStrides(out_ddims);
    }

266 267 268
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<OT>(), out_strides);
269

270 271 272 273 274
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);

    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
  }

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  float ComputeOutputScale(const framework::ExecutionContext& ctx) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
    if (ctx.HasAttr("Scale_x") && ctx.HasAttr("Scale_y") &&
        ctx.HasAttr("Scale_out")) {
      float scale_x = ctx.Attr<float>("Scale_x");
      float scale_y = ctx.Attr<float>("Scale_y");
      bool force_fp32_out = ctx.HasAttr("force_fp32_output")
                                ? ctx.Attr<bool>("force_fp32_output")
                                : false;
      float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
      alpha *= scale_out / (scale_x * scale_y);
    }
    return alpha;
  }

290 291 292 293 294
  dnnl::primitive_attr CreateMatmulAttrs(
      const framework::ExecutionContext& ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

295 296 297
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
298 299
    }

300 301 302 303
    if (ctx.HasInput("ResidualData")) {
      auto* residual_data = ctx.Input<Tensor>("ResidualData");
      auto residual_data_tz = phi::vectorize(residual_data->dims());
      auto residual_data_md = memory::desc(residual_data_tz,
304 305
                                           MKLDNNGetDataType<OT>(),
                                           dnnl::memory::format_tag::any);
306 307
      post_operations.append_binary(dnnl::algorithm::binary_add,
                                    residual_data_md);
308 309 310 311
      if (ctx.HasAttr("Scale_in_eltwise")) {
        float sum_scale = scale_out / ctx.Attr<float>("Scale_in_eltwise");
        post_operations.append_sum(sum_scale);
      }
312 313
    }

314 315
    AppendActivation(ctx, post_operations);

316 317 318 319 320 321
    if (ctx.HasAttr("fused_output_scale")) {
      float scale_alpha = ctx.Attr<float>("fused_output_scale");
      post_operations.append_eltwise(
          1.0, dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f);
    }

322 323
    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  }

  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
345
    const YT* input_data = input->data<YT>();
346
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
                                            to_void_cast<YT>(input_data));
  }

  std::shared_ptr<dnnl::memory> AcquireDstMemory(
      paddle::framework::Tensor* output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
362 363 364
  }
};

365 366 367
static std::unordered_map<std::string, std::string> GetAttributeMap(
    std::string act_type) {
  std::unordered_map<std::string, std::string> attr_map;
368
  if (act_type == "swish") {
369
    attr_map.emplace("beta", "fuse_alpha");
370
  } else if (act_type == "relu6") {
371
    attr_map.emplace("threshold", "fuse_alpha");
372
  } else if (act_type == "hard_sigmoid") {
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    attr_map.emplace("slope", "fuse_alpha");
    attr_map.emplace("offset", "fuse_beta");
  } else if (act_type == "clip") {
    attr_map.emplace("min", "fuse_alpha");
    attr_map.emplace("max", "fuse_beta");
  } else {
    attr_map.emplace("alpha", "fuse_alpha");
    attr_map.emplace("beta", "fuse_beta");
  }
  return attr_map;
}

static std::vector<std::string> GetSupportedActivations() {
  return std::vector<std::string>{"abs",
                                  "clip",
                                  "gelu",
                                  "hard_sigmoid",
                                  "hard_swish",
                                  "leaky_relu",
                                  "mish",
                                  "relu",
                                  "relu6",
                                  "sigmoid",
                                  "sqrt",
                                  "swish",
                                  "tanh"};
399 400
}

401
class ReorderMKLDNNHandler {
402
 public:
A
Adam 已提交
403
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
404
                       framework::proto::VarType::Type vtype,
405 406
                       dnnl::memory::data_type dtype,
                       dnnl::engine engine)
407
      : dims_(dims),
408
        vtype_(vtype),
409 410
        vtype_dst_(vtype),
        dtype_(dtype),
411 412
        dtype_dst_(dtype),
        engine_(engine) {}
413 414 415

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
416
                       dnnl::memory::data_type dtype,
417
                       framework::proto::VarType::Type vtype_dst,
418 419
                       dnnl::memory::data_type dtype_dst,
                       dnnl::engine engine)
420
      : dims_(dims),
421 422 423
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
424 425
        dtype_dst_(dtype_dst),
        engine_(engine) {}
426

427 428 429 430 431
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const dnnl::memory::desc& md,
                                                 void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

432 433 434 435
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const MKLDNNMemoryFormat& fmt,
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
436 437
  }

438
  std::shared_ptr<dnnl::memory> AcquireSubmemory(
439 440
      const std::vector<int64_t>& dims,
      const std::vector<int64_t>& offset,
441
      const std::shared_ptr<dnnl::memory>& mem_p) {
442
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
443 444
    auto sub_mem_p = std::make_shared<dnnl::memory>(
        sub_md, engine_, mem_p->get_data_handle());
445 446 447
    return sub_mem_p;
  }

448 449 450
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output,
                                                 const MKLDNNMemoryFormat& fmt,
                                                 platform::Place place) {
451
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
452
    auto dst_data = output->mutable_data(
453
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
454
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
455 456
  }

457
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
458 459
      framework::Tensor* output,
      const dnnl::memory::desc& src_md,
460 461 462 463 464 465 466 467 468 469 470 471 472 473
      platform::Place place) {
    if (vtype_dst_ == vtype_) {
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), src_md.get_size());
      return std::make_shared<dnnl::memory>(src_md, engine_, dst_data);
    } else {
      auto dst_md = src_md;
      dst_md.data.data_type = static_cast<dnnl_data_type_t>(dtype_dst_);
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
      return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
    }
  }

474
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
475 476 477 478
      framework::Tensor* output,
      const std::vector<int64_t>& dims,
      const MKLDNNMemoryFormat& fmt,
      platform::Place place) {
479
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
480
    auto dst_data = output->mutable_data(
481
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
482
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
483 484
  }

485 486 487 488
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
489 490
  }

491 492 493 494
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p,
      const dnnl::primitive_attr& attrs) {
495 496
    return std::make_shared<dnnl::reorder>(
        *(src_memory_p), *(dst_memory_p), attrs);
497 498
  }

499
 private:
A
Adam 已提交
500
  std::vector<int64_t> dims_;
501
  framework::proto::VarType::Type vtype_, vtype_dst_;
502 503
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
504
};
J
Jacek Czaja 已提交
505 506
}  // namespace platform
}  // namespace paddle