common.py 94.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiaoting 已提交
15
import warnings
16
import paddle
X
xiaoting 已提交
17
from paddle.fluid.layer_helper import LayerHelper
18 19 20 21
from paddle.fluid.layers.tensor import fill_constant
from ...tensor import concat
from ...tensor.creation import zeros
from paddle.static import Variable
22
from ...fluid import dygraph_utils
L
Ligoml 已提交
23

24
# TODO: define the common functions to build a neural network
25 26
from ...tensor.manipulation import squeeze
from ...tensor.manipulation import unsqueeze
Y
Yang Zhang 已提交
27 28 29
from ...tensor import clip
from ...tensor import sum
from ...tensor import sqrt
L
Ligoml 已提交
30 31 32 33 34 35 36 37 38 39 40
from ...fluid.data_feeder import (
    check_variable_and_dtype,
    check_dtype,
    check_type,
)
from ...fluid.framework import (
    _varbase_creator,
    _in_legacy_dygraph,
    in_dygraph_mode,
    _non_static_mode,
)
X
xiaoting 已提交
41

Z
zhiboniu 已提交
42 43
from ...fluid import dygraph_utils

44
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
45 46 47
from paddle.framework import in_dynamic_mode
from paddle.tensor.creation import full
from paddle.framework import core
48
from paddle.fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
49
from paddle.static import default_main_program
50

51 52
__all__ = []

X
xiaoting 已提交
53

54 55 56
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

57
    Return a col buffer of sliding local blocks of input x, also known
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
104
        Tensor, The tensor corresponding to the sliding local blocks.
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

L
Ligoml 已提交
125
    assert len(x.shape) == 4, "input should be the format of [N, C, H, W]"
126 127 128 129

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
L
Ligoml 已提交
130 131 132
        assert isinstance(kernel_sizes, list) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list of two integers"
133 134 135 136

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
L
Ligoml 已提交
137 138 139
        assert isinstance(strides, list) and (
            len(strides) == 2
        ), "strides should either be an integer or a list of two integers"
140 141 142 143

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
L
Ligoml 已提交
144 145 146
        assert isinstance(dilations, list) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list of two integers"
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
L
Ligoml 已提交
162 163
            "of 2 or 4 integers"
        )
164 165

    if in_dygraph_mode():
166
        return _C_ops.unfold(x, kernel_sizes, strides, paddings, dilations)
167 168

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
169 170 171 172 173 174 175 176 177 178 179
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations,
        },
    )
180 181 182
    return out


L
Ligoml 已提交
183 184 185 186 187 188 189 190 191 192
def interpolate(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
193
    """
S
swtkiwi 已提交
194

195
    This API resizes a batch of images.
196 197
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
198
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
199 200
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
201
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
202

X
xiaoting 已提交
203
    Supporting resample methods:
204 205 206 207 208
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
209
        'area': Area interpolation
210

L
Ligoml 已提交
211 212 213
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
228
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
229 230 231 232 233 234 235
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

236 237
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
L
Ligoml 已提交
238 239
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
240 241
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
242 243 244 245
    Example:

    .. code-block:: text

246
        For scale_factor:
X
xiaoting 已提交
247 248 249 250 251
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

252 253 254 255 256 257 258 259 260 261
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
L
Ligoml 已提交
262

X
xiaoting 已提交
263
        Nearest neighbor interpolation:
X
xiaoting 已提交
264

X
xiaoting 已提交
265 266 267 268 269
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
270

X
xiaoting 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

312 313
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
L
Ligoml 已提交
314

X
xiaoting 已提交
315 316
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
L
Ligoml 已提交
317

X
xiaoting 已提交
318 319
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
L
Ligoml 已提交
320

X
xiaoting 已提交
321 322
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
L
Ligoml 已提交
323

X
xiaoting 已提交
324 325
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
L
Ligoml 已提交
326

X
xiaoting 已提交
327
    Parameters:
X
xiaoting 已提交
328
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
329
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
330
        size (list|tuple|Tensor|None): Output shape of image resize
L
Ligoml 已提交
331 332
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
333
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
334
             If a Tensor, its dimensions size should be a 1.
335 336 337
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
338
             Default: None.
339
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
340
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
341 342
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
343
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
344 345 346 347
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
348
        data_format (str, optional): Specify the data format of the input, and the data format of the output
349
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
350 351 352
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
353 354 355
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
356
    Returns:
357
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
358 359
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
360

361

X
xiaoting 已提交
362 363 364
    Examples:
        .. code-block:: python

L
Ligoml 已提交
365 366
                import paddle
                import paddle.nn.functional as F
367

L
Ligoml 已提交
368 369 370 371
                input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
                output_1 = F.interpolate(x=input_data, size=[12,12])
                print(output_1.shape)
                    # [2L, 3L, 12L, 12L]
372

L
Ligoml 已提交
373 374 375 376
                # given scale
                output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
                print(output_2.shape)
                # [2L, 3L, 12L, 10L]
377

L
Ligoml 已提交
378 379 380 381
                # bilinear interp
                output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
                print(output_2.shape)
                # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
382
    """
383 384 385 386 387 388 389 390 391 392
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
393
        'AREA',
394
    ]
X
xiaoting 已提交
395 396
    if resample not in resample_methods:
        raise ValueError(
397
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
L
Ligoml 已提交
398 399
            " 'bicubic' or 'nearest' currently."
        )
X
xiaoting 已提交
400

X
xiaoting 已提交
401
    if resample in ['LINEAR'] and len(x.shape) != 3:
402
        raise ValueError("'linear' only support 3-D tensor.")
403

404 405 406 407 408
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
409
    if resample == 'TRILINEAR' and len(x.shape) != 5:
410 411 412 413
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
414 415 416

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
417

X
xiaoting 已提交
418 419
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
420 421 422 423
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
424

X
xiaoting 已提交
425
    if resample == 'AREA':
L
Ligoml 已提交
426 427 428 429 430
        if (
            isinstance(size, list)
            or isinstance(size, tuple)
            or isinstance(size, Variable)
        ):
X
xiaoting 已提交
431 432 433 434 435 436 437 438
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
439

X
xiaoting 已提交
440
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
441
    dtype = helper.input_dtype(input_param_name='x')
X
xiaoting 已提交
442
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
443
        raise ValueError(
L
Ligoml 已提交
444 445 446 447
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
X
xiaoting 已提交
448
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
449
        raise ValueError(
L
Ligoml 已提交
450 451 452 453
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
X
xiaoting 已提交
454
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
455
        raise ValueError(
L
Ligoml 已提交
456 457 458 459
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
X
xiaoting 已提交
460 461

    def _is_list_or_turple_(data):
L
Ligoml 已提交
462
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
463

464
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
465
        data_layout = 'NCHW'
466
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
467 468
        data_layout = 'NHWC'

X
xiaoting 已提交
469 470 471 472
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
473 474 475 476 477 478 479
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
L
Ligoml 已提交
480
        "data_layout": data_layout,
X
xiaoting 已提交
481 482
    }

483 484
    out_shape = size
    scale = scale_factor
485 486
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
487
    if out_shape is not None:
Z
zhiboniu 已提交
488
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
489 490 491
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
492
            if in_dynamic_mode():
493 494
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
495 496
                else:
                    out_shape = list(out_shape)
497 498 499
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
500
            if not (_is_list_or_turple_(out_shape)):
501
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
502 503 504 505 506 507
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
L
Ligoml 已提交
508 509 510
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
X
xiaoting 已提交
511 512 513 514 515 516 517 518 519 520

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
L
Ligoml 已提交
521
                        assert isinstance(dim, int)
X
xiaoting 已提交
522
                        temp_out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
523 524 525 526 527
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
X
xiaoting 已提交
528 529 530 531
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
532
            if len(x.shape) == 3:
533 534
                if len(out_shape) != 1:
                    raise ValueError(
L
Ligoml 已提交
535 536
                        "size length should be 2 for input 3-D tensor"
                    )
537 538 539 540 541
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
542
            if len(x.shape) == 4:
X
xiaoting 已提交
543
                if len(out_shape) != 2:
L
Ligoml 已提交
544 545 546
                    raise ValueError(
                        "size length should be 2 for " "input 4-D tensor."
                    )
X
xiaoting 已提交
547 548 549 550 551 552 553
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
554
            if len(x.shape) == 5:
X
xiaoting 已提交
555
                if len(out_shape) != 3:
L
Ligoml 已提交
556 557 558
                    raise ValueError(
                        "size length should be 3 for " "input 5-D tensor."
                    )
X
xiaoting 已提交
559 560 561 562 563 564 565 566 567 568 569
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
570
        if in_dynamic_mode() and isinstance(scale, Variable):
571
            scale = list(scale.numpy())
X
xiaoting 已提交
572 573 574 575 576 577
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
578 579 580 581
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
582
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
583
            if len(scale) != len(x.shape) - 2:
L
Ligoml 已提交
584 585 586 587
                raise ValueError(
                    "scale_shape length should be {} for "
                    "input {}-D tensor.".format(len(x.shape) - 2, len(x.shape))
                )
X
xiaoting 已提交
588 589 590 591
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
592 593
        else:
            raise TypeError(
594 595
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
596

Z
zhiboniu 已提交
597
    if in_dynamic_mode():
X
xiaoting 已提交
598 599 600 601 602 603 604
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
605
            if in_dygraph_mode():
606
                out = _C_ops.linear_interp(
L
Ligoml 已提交
607 608
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
609 610
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
L
Ligoml 已提交
611 612 613 614 615 616 617 618 619
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
620
            else:
621
                out = _legacy_C_ops.linear_interp_v2(x, *dy_attr)
622
        elif resample_type == "bilinear":
623
            if in_dygraph_mode():
624
                out = _C_ops.bilinear_interp(
L
Ligoml 已提交
625 626
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
627 628
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
L
Ligoml 已提交
629 630 631 632 633 634 635 636 637
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
638
            else:
639
                out = _legacy_C_ops.bilinear_interp_v2(x, *dy_attr)
640
        elif resample_type == "trilinear":
641
            if in_dygraph_mode():
642
                out = _C_ops.trilinear_interp(
L
Ligoml 已提交
643 644
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
645 646
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
L
Ligoml 已提交
647 648 649 650 651 652 653 654 655
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
656
            else:
657
                out = _legacy_C_ops.trilinear_interp_v2(x, *dy_attr)
658
        elif resample_type == "nearest":
659
            if in_dygraph_mode():
660
                out = _C_ops.nearest_interp(
L
Ligoml 已提交
661 662
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
663 664
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
L
Ligoml 已提交
665 666 667 668 669 670 671 672 673
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
674
            else:
675
                out = _legacy_C_ops.nearest_interp_v2(x, *dy_attr)
676
        elif resample_type == "bicubic":
677
            if in_dygraph_mode():
678
                out = _C_ops.bicubic_interp(
L
Ligoml 已提交
679 680
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
681 682
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
L
Ligoml 已提交
683 684 685 686 687 688 689 690 691
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
692
            else:
693
                out = _legacy_C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
694
        return out
X
xiaoting 已提交
695
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
696 697 698 699 700 701
    helper.append_op(
        type='{}_interp_v2'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
X
xiaoting 已提交
702
    return out
L
littletomatodonkey 已提交
703 704


L
Ligoml 已提交
705 706 707 708 709 710 711 712 713 714
def upsample(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
715
    """
716
    This API resizes a batch of images.
717

X
xiaoting 已提交
718 719 720
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
721 722
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
723 724 725 726 727 728 729 730
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
L
Ligoml 已提交
731 732 733
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
734 735 736 737 738 739 740 741
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
L
Ligoml 已提交
742

X
xiaoting 已提交
743 744 745 746
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
747

X
xiaoting 已提交
748 749 750
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
751

X
xiaoting 已提交
752 753 754
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
755 756 757 758 759 760 761

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
762 763
    Example:
    .. code-block:: text
L
Ligoml 已提交
764

X
xiaoting 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        For scale_factor:
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
L
Ligoml 已提交
793

X
xiaoting 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
L
Ligoml 已提交
834

X
xiaoting 已提交
835 836
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
L
Ligoml 已提交
837

X
xiaoting 已提交
838 839
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
L
Ligoml 已提交
840

X
xiaoting 已提交
841 842
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
L
Ligoml 已提交
843

X
xiaoting 已提交
844 845
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
L
Ligoml 已提交
846

X
xiaoting 已提交
847 848 849
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
850
        size (list|tuple|Tensor|None, optional): Output shape of image resize
L
Ligoml 已提交
851 852
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
853
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
854
             If a Tensor , its dimensions size should be a 1.
855
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
856
             least one of :attr:`size` or :attr:`scale_factor` must be set.
L
Ligoml 已提交
857
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if
858
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
859
             Default: None.
860
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
861
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
862
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
863 864 865
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
866
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
881

X
xiaoting 已提交
882 883 884
        Examples:
        .. code-block:: python

L
Ligoml 已提交
885 886 887 888 889
                import paddle
                import paddle.nn as nn

                input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
                upsample_out = paddle.nn.Upsample(size=[12,12])
890

L
Ligoml 已提交
891 892 893
                output = upsample_out(x=input_data)
                print(output.shape)
                # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
894 895

    """
L
Ligoml 已提交
896 897 898
    return interpolate(
        x, size, scale_factor, mode, align_corners, align_mode, data_format
    )
X
xiaoting 已提交
899 900


901 902 903 904
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
905
    See :ref:`api_nn_Bilinear` for details and output shape.
906 907 908 909 910 911 912 913 914 915

    Parameters:
       x1 (Tensor): the first input tensor, it's data type should be float32, float64.
       x2 (Tensor): the second input tensor, it's data type should be float32, float64.
       weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
       bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
916
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
917 918 919 920

    Examples:
       .. code-block:: python

L
Ligoml 已提交
921 922
                import paddle
                import paddle.nn.functional as F
923

L
Ligoml 已提交
924 925 926 927
                x1 = paddle.randn((5, 5)).astype(paddle.float32)
                x2 = paddle.randn((5, 4)).astype(paddle.float32)
                w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
                b = paddle.randn((1, 1000)).astype(paddle.float32)
928

L
Ligoml 已提交
929 930 931
                result = F.bilinear(x1, x2, w, b)
                print(result.shape)
                # [5, 1000]
932 933
    """

934
    if in_dygraph_mode():
W
wanghuancoder 已提交
935
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
936 937
    elif _non_static_mode():
        return _legacy_C_ops.bilinear_tensor_product(x1, x2, weight, bias)
938 939 940 941 942 943 944 945 946 947 948

    check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
    check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')

    inputs = {"X": x1, "Y": x2, "Weight": weight}
    if bias is not None:
        inputs["Bias"] = bias

    helper = LayerHelper("bilinear", **locals())
    out = helper.create_variable_for_type_inference(dtype=x1.dtype)

L
Ligoml 已提交
949 950 951
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
    )
952 953 954 955

    return out


L
Ligoml 已提交
956 957 958
def dropout(
    x, p=0.5, axis=None, training=True, mode="upscale_in_train", name=None
):
959 960 961 962 963 964 965 966
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
967 968 969 970
        p (float|int, optional): Probability of setting units to zero. Default 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default True.
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
971 972 973 974 975 976 977 978 979 980

                           1. upscale_in_train(default), upscale the output at training time

                              - train: out = input * mask / ( 1.0 - dropout_prob )
                              - inference: out = input

                           2. downscale_in_infer, downscale the output at inference

                              - train: out = input * mask
                              - inference: out = input * (1.0 - dropout_prob)
981
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
982 983 984 985

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

986

987 988
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
989

990
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
991 992 993

        ..  code-block:: text

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

1019 1020


1021
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
1022 1023 1024

        ..  code-block:: text

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
1053
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1064 1065 1066

        When x is a 4d tensor with shape `NCHW`, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1067 1068

        .. code-block:: python
1069

L
Ligoml 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
                import paddle

                x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
                y_train = paddle.nn.functional.dropout(x, 0.5)
                y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
                y_0 = paddle.nn.functional.dropout(x, axis=0)
                y_1 = paddle.nn.functional.dropout(x, axis=1)
                y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
                print(x)
                # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [[1., 2., 3.],
                #         [4., 5., 6.]])
                print(y_train)
                # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [[2. , 0. , 6. ],
                #         [8. , 0. , 12.]])
                print(y_test)
                # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [[1., 2., 3.],
                #         [4., 5., 6.]])
                print(y_0)
                # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [[0. , 0. , 0. ],
                #         [8. , 10., 12.]])
                print(y_1)
                # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [[2. , 0. , 6. ],
                #         [8. , 0. , 12.]])
                print(y_01)
                # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [[0. , 0. , 0. ],
                #         [8. , 0. , 12.]])
1102 1103

    """
1104 1105 1106 1107 1108
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
L
Ligoml 已提交
1109 1110
        if p == 0:
            return x
1111 1112
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1113 1114
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1115 1116
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1117
    if axis and not isinstance(axis, (int, list, tuple)):
1118 1119 1120 1121
        raise TypeError("datatype of axis argument should be int or list")

    if axis == None:  # commonly used dropout
        seed = None
L
Ligoml 已提交
1122 1123 1124
        mode = (
            'downgrade_in_infer' if mode == 'downscale_in_infer' else mode
        )  # semantic transfer
1125

H
hong 已提交
1126
        if _non_static_mode():
1127 1128
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1129 1130

            if in_dygraph_mode():
L
Ligoml 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139
                out, mask = _C_ops.dropout(
                    x,
                    None,
                    p,
                    not training,
                    mode,
                    seed if seed is not None else 0,
                    seed is not None,
                )
H
hong 已提交
1140 1141

                return out
L
Ligoml 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
            out, mask = _legacy_C_ops.dropout(
                x,
                'dropout_prob',
                p,
                'is_test',
                not training,
                'fix_seed',
                seed is not None,
                'seed',
                seed if seed is not None else 0,
                'dropout_implementation',
                mode,
            )
1155 1156 1157
            return out

        helper = LayerHelper('dropout', **locals())
L
Ligoml 已提交
1158 1159 1160
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'dropout'
        )
1161 1162 1163

        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
L
Ligoml 已提交
1164 1165
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
        )
1166

1167 1168 1169
        def get_attrs(prog, dropout_prob, is_test, seed):
            if (seed is None or seed == 0) and prog.random_seed != 0:
                seed = prog.random_seed
1170

L
Ligoml 已提交
1171 1172 1173
            if isinstance(
                dropout_prob, Variable
            ) and not dropout_prob.shape != [1]:
1174
                raise TypeError(
L
Ligoml 已提交
1175 1176 1177 1178
                    "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}".format(
                        p.shape
                    )
                )
1179 1180 1181 1182 1183 1184 1185 1186 1187
            attrs = {
                'dropout_prob': dropout_prob,
                'is_test': is_test,
                'fix_seed': seed is not None,
                'seed': seed if seed is not None else 0,
                'dropout_implementation': mode,
            }
            return attrs

1188 1189
        attrs = get_attrs(helper.main_program, p, not training, seed)

L
Ligoml 已提交
1190 1191 1192 1193 1194 1195
        helper.append_op(
            type='dropout',
            inputs={'X': [x]},
            outputs={'Out': [out], 'Mask': [mask]},
            attrs=attrs,
        )
1196
        return out
L
Ligoml 已提交
1197
    else:  # sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1198
        if not in_dynamic_mode():
1199 1200 1201 1202
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
L
Ligoml 已提交
1203 1204
            if in_dynamic_mode() and p == 1.0:
                return paddle.scale(x, scale=0.0)
1205

L
Ligoml 已提交
1206 1207 1208 1209 1210
            scale_input = (
                paddle.scale(x, scale=1 / keep_prob)
                if mode == 'upscale_in_train'
                else x
            )
1211

L
Ligoml 已提交
1212
            # get mask shape
1213
            input_shape = x.shape
Z
zhiboniu 已提交
1214
            if not in_dynamic_mode():
1215
                input_shape_tensor = paddle.shape(x)
1216
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1217
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
L
Ligoml 已提交
1218 1219 1220 1221 1222
                raise ValueError(
                    "axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} ".format(
                        len(input_shape), max(drop_axes)
                    )
                )
1223 1224
            if len(drop_axes) > len(input_shape):
                raise ValueError(
L
Ligoml 已提交
1225 1226 1227 1228
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}".format(
                        len(input_shape), len(drop_axes)
                    )
                )
1229
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1230
            if not in_dynamic_mode():
1231 1232 1233 1234 1235
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1236

L
Ligoml 已提交
1237 1238 1239 1240
            # get mask
            random_tensor = paddle.uniform(
                mask_shape, dtype='float32', min=0.0, max=1.0
            )
Z
zhiboniu 已提交
1241
            p = full(shape=[1], fill_value=p, dtype='float32')
1242
            keep_mask = paddle.greater_equal(random_tensor, p)
1243

1244 1245
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1246 1247 1248
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
L
Ligoml 已提交
1249 1250 1251 1252 1253
            ret = (
                paddle.scale(x, scale=keep_prob)
                if mode == 'downscale_in_infer'
                else x
            )
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1270
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . The default is `NCHW` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
1271 1272 1273 1274 1275
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1276

1277 1278
    Examples:
        .. code-block:: python
1279

1280 1281
            import paddle

1282
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1283 1284 1285 1286
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1287 1288 1289 1290
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1291 1292 1293
    """
    input_shape = x.shape
    if len(input_shape) != 4:
L
Ligoml 已提交
1294 1295 1296 1297 1298
        raise ValueError(
            "dimensions of x should be 4, but received {} != 4".format(
                len(input_shape)
            )
        )
1299 1300 1301 1302

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
L
Ligoml 已提交
1303 1304
            "Attr(data_format): %s." % str(data_format)
        )
1305

L
Ligoml 已提交
1306 1307 1308 1309 1310 1311 1312 1313
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1329
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. The default is ``NCDHW`` . When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
1330 1331 1332 1333 1334
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1335

1336 1337
    Examples:
        .. code-block:: python
1338

L
Ligoml 已提交
1339
                import paddle
1340

L
Ligoml 已提交
1341 1342 1343 1344 1345 1346
                x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
                y_train = paddle.nn.functional.dropout3d(x)  #train
                y_test = paddle.nn.functional.dropout3d(x, training=False) #test
                print(x[0,0,:,:,:])
                print(y_train[0,0,:,:,:]) # may all 0
                print(y_test[0,0,:,:,:])
1347 1348 1349 1350 1351

    """

    input_shape = x.shape
    if len(input_shape) != 5:
L
Ligoml 已提交
1352 1353 1354 1355 1356
        raise ValueError(
            "dimensions of x should be 5, but received {} != 5".format(
                len(input_shape)
            )
        )
1357 1358 1359 1360

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
L
Ligoml 已提交
1361 1362
            "Attr(data_format): %s." % str(data_format)
        )
1363

L
Ligoml 已提交
1364 1365 1366 1367 1368 1369 1370 1371
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1372 1373


1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1392

L
Ligoml 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
                import paddle

                x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
                y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
                y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
                print(y_train)
                # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [[-0.10721093, -0.77919382],
                #         [-0.10721093,  1.66559887]]) (randomly)
                print(y_test)
                # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [[-1.,  1.],
                #         [-1.,  1.]])
1406 1407 1408 1409 1410 1411
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1412
    if not in_dynamic_mode():
L
Ligoml 已提交
1413 1414 1415
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'alpha_dropout'
        )
1416 1417

    if training:
1418
        if p == 1:
L
Ligoml 已提交
1419 1420
            return paddle.scale(x, scale=0.0)
        # get transformation params
1421 1422 1423
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
L
Ligoml 已提交
1424
        a = ((1 - p) * (1 + p * alpha_p**2)) ** -0.5
1425 1426 1427 1428 1429
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

L
Ligoml 已提交
1430 1431 1432 1433
        # get mask
        random_tensor = paddle.uniform(
            input_shape, dtype='float32', min=0.0, max=1.0
        )
Z
zhiboniu 已提交
1434
        p = full(shape=[1], fill_value=p, dtype='float32')
1435 1436 1437
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
L
Ligoml 已提交
1438 1439
            full(shape=input_shape, fill_value=1.0, dtype=dtype), keep_mask
        )
1440

L
Ligoml 已提交
1441
        # apply mask
Z
zhiboniu 已提交
1442
        b = full(shape=[1], fill_value=b, dtype=dtype)
L
Ligoml 已提交
1443 1444 1445 1446
        y = paddle.add(
            paddle.multiply(x, keep_mask),
            paddle.scale(drop_mask, scale=alpha_p),
        )
1447
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1448 1449 1450 1451 1452
        return res
    else:  # test
        return x


L
littletomatodonkey 已提交
1453 1454 1455
def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
    """
    Pad tensor according to 'pad' and 'mode'.
L
littletomatodonkey 已提交
1456 1457 1458
    If mode is 'constant' and length of pad is twice as length of x dimension,
    then the padding will be started from the first dimension and moved back onto x
    according to 'pad' and 'value'.
L
littletomatodonkey 已提交
1459 1460 1461 1462 1463
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1464
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
L
Ligoml 已提交
1465
            If mode is 'constant' and length of pad is twice as length of x dimension, then x will
1466 1467
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
L
Ligoml 已提交
1468 1469
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right,
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form
L
littletomatodonkey 已提交
1470
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1471 1472 1473 1474 1475 1476 1477 1478
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'. Default is 'constant'

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`,
1479
        data_format (str, optional): An string from: "NCL", "NLC", NHWC", "NCHW", "NCDHW", "NDHWC". Specify the data format of
1480 1481
           the input data. Default is "NCHW",
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
1482 1483

    Returns:
1484
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1485

1486
    Example:
L
Ligoml 已提交
1487

L
littletomatodonkey 已提交
1488 1489 1490 1491 1492 1493
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1494 1495 1496 1497 1498 1499 1500 1501 1502
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1503 1504 1505 1506 1507 1508 1509 1510
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1511
            Case 2:
L
littletomatodonkey 已提交
1512 1513 1514 1515 1516 1517 1518
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1519
            Case 3:
L
littletomatodonkey 已提交
1520 1521 1522 1523 1524 1525 1526
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1527
            Case 4:
L
littletomatodonkey 已提交
1528 1529 1530 1531 1532 1533 1534
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1535
    Examples:
L
littletomatodonkey 已提交
1536
        .. code-block:: python
L
littletomatodonkey 已提交
1537

L
littletomatodonkey 已提交
1538 1539
            import paddle
            import paddle.nn.functional as F
L
Ligoml 已提交
1540

L
littletomatodonkey 已提交
1541 1542
            # example 1
            x_shape = (1, 1, 3)
1543
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1544
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1545
            print(y)
L
littletomatodonkey 已提交
1546
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
L
Ligoml 已提交
1547

L
littletomatodonkey 已提交
1548
            # example 2
1549
            x_shape = (1, 1, 3)
1550
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1551 1552 1553
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
L
Ligoml 已提交
1554

1555
            # example 3
L
littletomatodonkey 已提交
1556
            x_shape = (1, 1, 2, 3)
1557
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1558 1559
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1560 1561 1562 1563 1564
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
L
Ligoml 已提交
1565 1566 1567 1568 1569 1570 1571 1572
    assert mode in [
        'reflect',
        'replicate',
        'constant',
        'circular',
    ], "mode should be one of constant, reflect, replicate, circular, but got {}.".format(
        mode
    )
L
littletomatodonkey 已提交
1573 1574

    data_format = data_format.upper()
L
Ligoml 已提交
1575 1576
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], (
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
L
littletomatodonkey 已提交
1577
        "but got {}".format(data_format)
L
Ligoml 已提交
1578
    )
L
littletomatodonkey 已提交
1579 1580 1581

    x_dim = len(x.shape)

L
Ligoml 已提交
1582 1583 1584 1585 1586
    if (
        mode == "constant"
        and isinstance(pad, (list, tuple))
        and len(pad) == x_dim * 2
    ):
1587 1588
        paddings = pad
        pad_value = value
1589 1590

        if in_dygraph_mode():
1591
            out = _C_ops.pad(x, paddings, float(pad_value))
1592 1593
            return out

L
Ligoml 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            "pad",
        )
1608

1609 1610 1611 1612
        check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
        if isinstance(pad_value, int):
            pad_value = float(pad_value)

1613 1614 1615
        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
1616 1617 1618 1619 1620 1621
        helper.append_op(
            type='pad',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'paddings': paddings, 'pad_value': pad_value},
        )
1622
        return out
L
littletomatodonkey 已提交
1623

1624
    assert x_dim in [
L
Ligoml 已提交
1625 1626 1627
        3,
        4,
        5,
1628 1629 1630 1631 1632 1633 1634
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
L
Ligoml 已提交
1635 1636 1637 1638 1639
    assert (
        data_format in supported_format_map[x_dim]
    ), "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format
    )
1640

L
littletomatodonkey 已提交
1641 1642 1643 1644 1645 1646
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
L
Ligoml 已提交
1647
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1648
                unsqueezed_dim = [3, 4]
1649
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1650
            elif x_dim == 4:
L
Ligoml 已提交
1651
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1652
                unsqueezed_dim = [2]
1653
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1654 1655 1656
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
L
Ligoml 已提交
1657
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1658
                unsqueezed_dim = [2, 3]
1659
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1660
            elif x_dim == 4:
L
Ligoml 已提交
1661
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1662
                unsqueezed_dim = [1]
1663
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1664
    else:
1665
        pad = list(pad)
L
littletomatodonkey 已提交
1666 1667 1668 1669 1670
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1671
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1672 1673 1674
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1675
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1676 1677 1678 1679 1680
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1681
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1682 1683 1684
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1685
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1686

J
Jiabin Yang 已提交
1687
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1688
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1689
            pad = pad.numpy().tolist()
1690
        out = _C_ops.pad3d(x, pad, mode, value, data_format)
J
Jiabin Yang 已提交
1691
    else:
1692
        if _in_legacy_dygraph():
J
Jiabin Yang 已提交
1693 1694
            if isinstance(pad, Variable):
                pad = pad.numpy().tolist()
L
Ligoml 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
            out = _legacy_C_ops.pad3d(
                x,
                "paddings",
                pad,
                "mode",
                mode,
                "value",
                value,
                "data_format",
                data_format,
                "name",
                name,
            )
1708
        else:
J
Jiabin Yang 已提交
1709 1710 1711 1712 1713 1714 1715
            attrs = {'mode': mode, 'value': value, 'data_format': data_format}
            inputs = {'X': [x]}
            if isinstance(pad, Variable):
                inputs['Paddings'] = [pad]
                attrs['paddings'] = []
            else:
                attrs['paddings'] = pad
L
littletomatodonkey 已提交
1716

J
Jiabin Yang 已提交
1717
            helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1718

J
Jiabin Yang 已提交
1719 1720
            dtype = helper.input_dtype(input_param_name='input')
            out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
1721 1722 1723
            helper.append_op(
                type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs
            )
L
littletomatodonkey 已提交
1724 1725

    if len(unsqueezed_dim) != 0:
1726
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1727 1728 1729 1730

    return out


1731 1732 1733 1734 1735 1736 1737 1738 1739
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1740
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1741 1742 1743 1744
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
            to set this property.

L
Ligoml 已提交
1745
    Returns:
1746
        Tensor, padded with 0 according to pad and data type is same as input.
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F

            x_shape = (1, 1, 2, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.zeropad2d(x, [1, 2, 1, 1])
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

L
Ligoml 已提交
1764 1765 1766 1767 1768 1769 1770 1771
    return pad(
        x,
        pad=padding,
        mode='constant',
        value=0,
        data_format=data_format,
        name=name,
    )
1772 1773


Y
Yang Zhang 已提交
1774
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1775
    """
Y
Yang Zhang 已提交
1776
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1777 1778 1779 1780

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1781 1782
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
L
Ligoml 已提交
1783 1784

    Returns:
1785
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1786 1787 1788

    Examples:
        .. code-block:: text
1789

L
littletomatodonkey 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1799
                axis = 1
L
littletomatodonkey 已提交
1800 1801 1802 1803 1804
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1805

L
littletomatodonkey 已提交
1806 1807 1808
            import paddle
            import paddle.nn as nn

1809 1810 1811 1812
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1813
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1814
            print(result)
1815
            # [0.97689527,  0.99996042, -0.55138415]
L
Ligoml 已提交
1816

L
littletomatodonkey 已提交
1817
    """
1818 1819 1820
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1821
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1822 1823
    cos_sim = w12 / n12
    return cos_sim
1824 1825 1826


def linear(x, weight, bias=None, name=None):
1827
    r"""
1828

1829 1830
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1831 1832 1833

    .. math::

1834
        Out = XW + b
1835

1836
    where :math:`W` is the weight and :math:`b` is the bias.
1837

1838 1839 1840 1841
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
L
Ligoml 已提交
1842
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` ,
1843 1844
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1845

1846 1847 1848 1849 1850 1851 1852
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1853 1854

    Returns:
1855 1856
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1857 1858 1859

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1860

1861
          import paddle
L
Ligoml 已提交
1862

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1876
    """
J
Jiabin Yang 已提交
1877
    if in_dygraph_mode():
L
Ligoml 已提交
1878
        # TODO(jiabin): using addmm for fast forward route
1879
        return _C_ops.linear(x, weight, bias)
1880
    else:
J
Jiabin Yang 已提交
1881
        if _in_legacy_dygraph():
L
Ligoml 已提交
1882 1883 1884
            pre_bias = _legacy_C_ops.matmul_v2(
                x, weight, 'trans_x', False, 'trans_y', False
            )
1885

J
Jiabin Yang 已提交
1886 1887
            if bias is None:
                return pre_bias
1888

1889
            return _legacy_C_ops.elementwise_add(pre_bias, bias)
1890
        else:
J
Jiabin Yang 已提交
1891 1892 1893
            helper = LayerHelper('linear', **locals())
            dtype = x.dtype

L
Ligoml 已提交
1894 1895 1896 1897 1898 1899
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'linear'
            )
            check_dtype(
                dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear'
            )
J
Jiabin Yang 已提交
1900 1901 1902 1903

            inputs = {'X': [x], 'Y': [weight]}
            attrs = {'trans_x': False, 'trans_y': False}
            tmp = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
1904 1905 1906 1907 1908 1909
            helper.append_op(
                type='matmul_v2',
                inputs=inputs,
                outputs={'Out': tmp},
                attrs=attrs,
            )
J
Jiabin Yang 已提交
1910 1911
            if bias is not None:
                res = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
1912 1913 1914 1915 1916 1917
                helper.append_op(
                    type='elementwise_add',
                    inputs={'X': [tmp], 'Y': [bias]},
                    outputs={'Out': [res]},
                    attrs={'axis': len(x.shape) - 1},
                )
J
Jiabin Yang 已提交
1918 1919 1920
            else:
                res = tmp
            return res
1921 1922 1923


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1924
    r"""
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
    Label smoothing is a mechanism to regularize the classifier layer and is called
    label-smoothing regularization (LSR).

    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
L
Ligoml 已提交
1969

1970 1971 1972 1973 1974 1975
            x_data = np.array([[[0, 1, 0],
                                [ 1,  0, 1]]]).astype("float32")
            print(x_data.shape)
            paddle.disable_static()
            x = paddle.to_tensor(x_data, stop_gradient=False)
            output = paddle.nn.functional.label_smooth(x)
1976
            print(output)
L
Ligoml 已提交
1977

1978 1979 1980
            #[[[0.03333334 0.93333334 0.03333334]
            #  [0.93333334 0.03333334 0.93333334]]]
    """
L
Ligoml 已提交
1981
    if epsilon > 1.0 or epsilon < 0.0:
1982 1983
        raise ValueError("The value of epsilon must be between 0 and 1.")

1984
    if in_dygraph_mode():
1985
        return _C_ops.label_smooth(label, prior_dist, float(epsilon))
1986

1987
    elif paddle.in_dynamic_mode():
L
Ligoml 已提交
1988 1989 1990
        return _legacy_C_ops.label_smooth(
            label, prior_dist, 'epsilon', float(epsilon)
        )
1991

L
Ligoml 已提交
1992 1993 1994
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'label_smooth'
    )
1995 1996 1997 1998

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
L
Ligoml 已提交
1999 2000 2001 2002 2003 2004 2005 2006
    helper.append_op(
        type="label_smooth",
        inputs={"X": label, "PriorDist": prior_dist}
        if prior_dist
        else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)},
    )
2007
    return smooth_label
2008 2009


G
Guoxia Wang 已提交
2010
def class_center_sample(label, num_classes, num_samples, group=None):
2011 2012
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
L
Ligoml 已提交
2013
    The process of sampling subset class centers is straightforward:
2014 2015 2016 2017

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

L
Ligoml 已提交
2018
    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly
2019 2020 2021 2022
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
L
Ligoml 已提交
2023

2024
    .. hint::
L
Ligoml 已提交
2025
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive
2026
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
2027

2028 2029
        The API supports CPU, single GPU and multi GPU.

2030 2031 2032 2033
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

2034
    Args:
G
Guoxia Wang 已提交
2035 2036
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
2037
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
2038
        num_samples (int): A positive integer to specify the number of class center to sample.
L
Ligoml 已提交
2039
        group (Group, optional): The group instance return by paddle.distributed.new_group
2040 2041
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2042 2043 2044 2045 2046 2047 2048 2049

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
2050
        :name: code-example1
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
2073
        :name: code-example2
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
L
Ligoml 已提交
2105

2106 2107 2108 2109 2110 2111 2112 2113
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
2114 2115 2116
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
L
Ligoml 已提交
2117 2118 2119 2120
             (got group: {})'.format(
                group
            )
        )
2121 2122 2123
        return

    if hasattr(group, 'is_member') and not group.is_member():
2124 2125
        return

2126
    ring_id = 0
2127 2128
    rank = 0
    nranks = 1
2129 2130 2131 2132
    if group != False:
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
L
Ligoml 已提交
2133 2134 2135 2136 2137
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2138
            nranks = parallel_env.world_size if group is None else group.nranks
2139 2140 2141

    if num_samples > num_classes:
        raise ValueError(
L
Ligoml 已提交
2142 2143 2144 2145
            'Expected num_samples less than or equal to {}, got num_samples {}'.format(
                num_classes, num_samples
            )
        )
2146

G
Guoxia Wang 已提交
2147 2148 2149
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
2150
    if label_size != -1 and label_size < 1:
L
Ligoml 已提交
2151 2152 2153 2154 2155 2156
        raise ValueError(
            'Expected label_size > 0 \
             (got label_size: {})'.format(
                label_size
            )
        )
G
Guoxia Wang 已提交
2157 2158 2159

    label_dims = len(list(label.shape))
    if label_dims != 1:
L
Ligoml 已提交
2160 2161 2162 2163 2164 2165
        raise ValueError(
            'Expected label_dims == 1 \
             (got label_dims: {})'.format(
                label_dims
            )
        )
G
Guoxia Wang 已提交
2166 2167

    seed = None
2168 2169 2170
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2171
    if in_dygraph_mode():
L
Ligoml 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
        return _C_ops.class_center_sample(
            label,
            num_classes,
            num_samples,
            ring_id,
            rank,
            nranks,
            seed is not None,
            seed if seed is not None else 0,
        )
2182
    elif paddle.in_dynamic_mode():
L
Ligoml 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
        (
            remapped_label,
            sampled_class_center,
        ) = _legacy_C_ops.class_center_sample(
            label,
            'num_classes',
            num_classes,
            'num_samples',
            num_samples,
            'ring_id',
            ring_id,
            'nranks',
            nranks,
            'rank',
            rank,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
        )
2203 2204
        return remapped_label, sampled_class_center

L
Ligoml 已提交
2205 2206 2207
    check_variable_and_dtype(
        label, 'label', ['int64', 'int32'], 'class_center_sample'
    )
2208 2209 2210
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
L
Ligoml 已提交
2211 2212
        dtype=label.dtype
    )
2213
    sampled_class_center = helper.create_variable_for_type_inference(
L
Ligoml 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
        dtype=label.dtype
    )
    helper.append_op(
        type=op_type,
        inputs={'Label': label},
        outputs={
            'RemappedLabel': remapped_label,
            'SampledLocalClassCenter': sampled_class_center,
        },
        attrs={
            'num_classes': num_classes,
            'num_samples': num_samples,
            'ring_id': ring_id,
            'nranks': nranks,
            'rank': rank,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
        },
    )
2233
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2234 2235


L
Ligoml 已提交
2236 2237 2238
def fold(
    x, output_sizes, kernel_sizes, strides=1, paddings=0, dilations=1, name=None
):
X
xiaoting 已提交
2239 2240
    r"""
    
2241
    Combines an array of sliding local blocks into a large containing
X
xiaoting 已提交
2242 2243 2244 2245 2246 2247 2248 2249
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each 
    combined value in the resulting large tensor by summing all values from all containing blocks. 


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2250 2251 2252 2253
    
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2254 2255 2256 2257

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2258
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2259
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2260
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2261
                                  or an integer k treated as [k, k].
2262
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2263 2264
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2265
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2266 2267 2268 2269 2270 2271
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2272
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2291 2292 2293
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2294 2295 2296 2297 2298 2299 2300

    """

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

L
Ligoml 已提交
2301
    assert len(x.shape) == 3, "input should be the format of [N, C, L]"
X
xiaoting 已提交
2302

X
xiaoting 已提交
2303
    def _is_list_or_turple_(data):
L
Ligoml 已提交
2304
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
2305

X
xiaoting 已提交
2306 2307 2308
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
L
Ligoml 已提交
2309 2310 2311
        assert _is_list_or_turple_(output_sizes) and (
            len(output_sizes) == 2
        ), "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2312 2313 2314 2315

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
L
Ligoml 已提交
2316 2317 2318
        assert _is_list_or_turple_(kernel_sizes) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2319 2320 2321 2322

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
L
Ligoml 已提交
2323 2324 2325
        assert _is_list_or_turple_(strides) and (
            len(strides) == 2
        ), "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2326 2327 2328 2329

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
L
Ligoml 已提交
2330 2331 2332
        assert _is_list_or_turple_(dilations) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
L
Ligoml 已提交
2348 2349
            "of 2 or 4 integers"
        )
X
xiaoting 已提交
2350

X
xiaoting 已提交
2351
    if in_dygraph_mode():
L
Ligoml 已提交
2352 2353 2354
        out = _C_ops.fold(
            x, output_sizes, kernel_sizes, strides, paddings, dilations
        )
X
xiaoting 已提交
2355
    elif in_dynamic_mode():
L
Ligoml 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
        out = _legacy_C_ops.fold(
            x,
            "output_sizes",
            output_sizes,
            "kernel_sizes",
            kernel_sizes,
            "strides",
            strides,
            "paddings",
            paddings,
            "dilations",
            dilations,
        )
X
xiaoting 已提交
2369 2370
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
        helper.append_op(
            type="fold",
            inputs={"X": x},
            outputs={"Y": out},
            attrs={
                "output_sizes": output_sizes,
                "kernel_sizes": kernel_sizes,
                "strides": strides,
                "paddings": paddings,
                "dilations": dilations,
            },
        )
X
xiaoting 已提交
2383
    return out