nn.py 79.0 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16 17 18 19 20
"""
All layers just related to the neural network.
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yangyaming 已提交
22
from tensor import concat
Y
Yu Yang 已提交
23 24

__all__ = [
Y
ying 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    'fc',
    'embedding',
    'dynamic_lstm',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'accuracy',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'sequence_pool',
    'pool2d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
53 54
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
55 56 57 58
    'l2_normalize',
    'matmul',
    'warpctc',
    'sequence_reshape',
59
    'transpose',
Y
Yu Yang 已提交
60 61 62 63 64 65 66 67 68
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
69
       name=None):
Y
Yu Yang 已提交
70
    """
71
    **Fully Connected Layer**
Y
Yu Yang 已提交
72

C
caoying03 已提交
73
    The fully connected layer can take multiple tensors as its inputs. It
Y
ying 已提交
74 75 76 77 78 79 80 81
    creates a variable (one for each input tensor) called weights for each
    input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer
    multiplies each input tensor with its coresponding weight to produce
    an output Tensor. If multiple input tensors are given, the results of
    multiple multiplications will be sumed up. If bias_attr is not None,
    a biases variable will be created and added to the output. Finally,
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
82

C
caoying03 已提交
83
    This process can be formulated as follows:
84 85 86

    .. math::

C
caoying03 已提交
87
        Out = Act({\sum_{i=0}^{N-1}W_iX_i + b})
88 89 90

    In the above equation:

C
caoying03 已提交
91 92 93 94
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
C
caoying03 已提交
95 96
    * :math:`Act`: The activation funtion.
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
97 98

    Args:
C
caoying03 已提交
99 100 101 102 103 104 105 106 107 108
       input(Variable|list): The input tensor(s) to the fully connected layer.
       size(int): The number of output units in the fully connected layer.
       num_flatten_dims(int): The fc layer can accept an input tensor with more
                              than two dimensions. If this happens, the
                              multidimensional tensor will first be flattened
                              into a 2-dimensional matrix. The parameter
                              `num_flatten_dims` determines how the input tensor
                              is flattened: the first `num_flatten_dims`
                              dimensions will be flatten to form the first
                              dimension of the final matrix (height of the
E
emailweixu 已提交
109
                              matrix), and the rest `rank(X) - num_flatten_dims`
C
caoying03 已提交
110 111 112 113
                              dimensions are flattened to form the second
                              dimension of the final matrix (width of the matrix).
                              For example, suppose `X` is a 6-dimensional tensor
                              with a shape [2, 3, 4, 5, 6], and
E
emailweixu 已提交
114
                              `num_flatten_dims` = 3. Then, the flattened matrix
C
caoying03 已提交
115
                              will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
E
emailweixu 已提交
116
                              By default, `num_flatten_dims` is set to 1.
C
caoying03 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
       param_attr(ParamAttr|list): The parameter attribute for learnable
                                   parameters/weights of the fully connected
                                   layer.
       param_initializer(ParamAttr|list): The initializer used for the
                                          weight/parameter. If set None,
                                          XavierInitializer() will be used.
       bias_attr(ParamAttr|list): The parameter attribute for the bias parameter
                                  for this layer. If set None, no bias will be
                                  added to the output units.
       bias_initializer(ParamAttr|list): The initializer used for the bias.
                                        If set None, then ConstantInitializer()
                                        will be used.
       act(str): Activation to be applied to the output of the fully connected
                 layer.
       name(str): Name/alias of the fully connected layer.
Y
Yu Yang 已提交
132 133


134
    Returns:
C
caoying03 已提交
135
        Variable: The output tensor variable.
136 137

    Raises:
C
caoying03 已提交
138
        ValueError: If rank of the input tensor is less than 2.
139 140 141 142

    Examples:
        .. code-block:: python

C
caoying03 已提交
143
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
144
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
145
    """
C
caoying03 已提交
146

C
caoying03 已提交
147
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
C
caoying03 已提交
167 168
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
Y
Yu Yang 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


184
def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'):
Y
Yu Yang 已提交
185
    """
186 187 188 189 190 191 192
    **Embedding Layer**

    This layer is used to lookup a vector of IDs, provided by *input*, in a lookup table.
    The result of this lookup is the embedding of each ID in the *input*.

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
193 194

    Args:
195
       input(Variable): Input to the function
Y
yangyaming 已提交
196
       size(tuple|list|None): Shape of the look up table parameter
197 198 199
       is_sparse(bool): Boolean flag that specifying whether the input is sparse
       param_attr(ParamAttr): Parameters for this layer
       dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
200

201 202 203
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
204

205 206
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
207

C
chengduoZH 已提交
208
          dict_size = len(dataset.ids)
209
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
210
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
    return tmp


# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
236
                 dtype='float32'):
Y
Yibing Liu 已提交
237 238 239 240 241 242
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
243
    .. math::
Y
Yibing Liu 已提交
244

245
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
246

247
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
248

249
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
250

251 252 253
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
254

Y
Yibing Liu 已提交
255
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
256

257
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
258
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
259 260 261 262 263 264
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
    gate bias vector), :math:`\sigma` is the non-line activations, such as
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
265 266
    all of which have the same size as the cell output activation vector :math:`h`.

267 268 269 270
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
271 272 273
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
274 275 276
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
277 278 279
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
280 281

    Args:
282 283 284 285
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
286 287
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
288 289
        param_attr(ParamAttr): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yibing Liu 已提交
290

291 292
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yibing Liu 已提交
293 294
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
Y
Yibing Liu 已提交
295
        bias_attr(ParamAttr): The bias attribute for the learnable bias
296 297 298
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
299

300 301
                              1. `use_peepholes = False`
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
302
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
303 304
                              2. `use_peepholes = True`
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
305 306
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
307
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
308 309
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
310 311
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
312
                              "identity"], default "sigmoid".
313
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
314 315 316 317 318
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
Y
Yibing Liu 已提交
319 320

    Returns:
Y
Yibing Liu 已提交
321 322
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
323

Y
Yibing Liu 已提交
324
    Examples:
Y
Yibing Liu 已提交
325 326
        .. code-block:: python

Y
Yibing Liu 已提交
327 328
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
329
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
330 331
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
332
    """
Y
Yu Yang 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


def gru_unit(input,
             hidden,
             size,
             weight=None,
             bias=None,
             activation='tanh',
375
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
376
    """
377
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
378

379 380
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
381

382
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
383

384
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
385

386
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
387 388

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
389 390 391
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
392 393
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

394 395
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
396 397 398
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
399 400 401 402 403 404 405 406 407

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
        weight (ParamAttr): The weight parameters for gru unit. Default: None
        bias (ParamAttr): The bias parameters for gru unit. Default: None
        activation (string): The activation type for cell (actNode). Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate). Default: 'sigmoid'
Y
Yu Yang 已提交
408

409 410 411 412 413 414
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
415

416
             # assuming we have x_t_data and prev_hidden of size=10
417
             x_t = fluid.layers.fc(input=x_t_data, size=30)
418 419
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
    if weight is None:
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)

    # create bias
Y
Yibing Liu 已提交
440

Y
Yu Yang 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    if bias is None:
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru_unit',
        inputs={'Input': input,
                'HiddenPrev': hidden,
                'Weight': weight},
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
            'activation': 0,
            'gate_activation': 1,
        })

    return updated_hidden, reset_hidden_pre, gate


468
def linear_chain_crf(input, label, param_attr=None):
Y
Yu Yang 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


494
def crf_decoding(input, param_attr, label=None):
Y
Yu Yang 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


def cos_sim(X, Y, **kwargs):
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
def dropout(x, dropout_prob, is_test=False, seed=0, **kwargs):
    helper = LayerHelper('dropout', **kwargs)
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
        attrs={'dropout_prob': dropout_prob,
               'is_test': is_test,
               'seed': seed})
    return out


Y
Yu Yang 已提交
542 543
def cross_entropy(input, label, **kwargs):
    """
Y
Yibing Liu 已提交
544 545 546 547 548 549
    **Cross Entropy Layer**

    This layer computes the cross entropy between `input` and `label`. It supports
    both standard cross-entropy and soft-label cross-entropy loss computation.

    1) One-hot cross-entropy:
Y
Yibing Liu 已提交
550
	`soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
551

Y
Yibing Liu 已提交
552
        .. math::
Y
yangyaming 已提交
553

Y
Yibing Liu 已提交
554 555 556
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
Y
Yibing Liu 已提交
557
	`soft_label = True`, `Label[i, j]` indicates the soft label of class j
Y
Yibing Liu 已提交
558 559 560 561 562 563
	for sample i:

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
564
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
565 566 567 568
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
	 As a special case of 2), when each row of 'label' has only one
Y
Yibing Liu 已提交
569 570
	 non-zero element which is equal to 1, soft-label cross-entropy degenerates
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
571

Y
Yibing Liu 已提交
572
    Args:
Y
yangyaming 已提交
573 574
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
            batch size and D is the number of classes. This input is a probability
Y
Yibing Liu 已提交
575 576
            computed by the previous operator, which is almost always the result
            of a softmax operator.
Y
yangyaming 已提交
577 578 579
        label (Variable|list): the ground truth which is a 2-D tensor. When
              `soft_label` is set to `False`, `label` is a tensor<int64> with shape
              [N x 1]. When `soft_label` is set to `True`, `label` is a
Y
Yibing Liu 已提交
580
              tensor<float/double> with shape [N x D].
Y
Yibing Liu 已提交
581
        soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate
Y
Yibing Liu 已提交
582
              the given labels as soft labels, default `False`.
Y
Yibing Liu 已提交
583 584 585 586 587

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
Y
yangyaming 已提交
588
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal; 2) when \
Y
Yibing Liu 已提交
589 590
              `soft_label == True`, and the 2nd dimension of `input` and `label` are not \
               equal; 3) when `soft_label == False`, and the 2nd dimension of `label` is not 1.
Y
Yibing Liu 已提交
591 592 593 594 595 596

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610
    """
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
    """
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    **Square error cost layer**

    This layer accepts input predictions and target label and returns the squared error cost.
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
       input(Variable): Input tensor, has predictions.
       label(Variable): Label tensor, has target labels.

    Returns:
        Variable: The tensor variable storing the element-wise squared error difference \
                  of input and label.

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
641 642 643 644 645 646 647 648 649 650 651
    """
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
652 653
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
    return square_out


def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out = helper.create_tmp_variable(dtype="float32")
    if correct is None:
        correct = helper.create_tmp_variable(dtype="int64")
    if total is None:
        total = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="accuracy",
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
    return acc_out


def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
               excluded_chunk_types=None,
               **kwargs):
    """
Y
yangyaming 已提交
698
    This function computes and outputs the precision, recall and
699
    F1-score of chunk detection.
Y
Yu Yang 已提交
700 701 702 703 704 705 706
    """
    helper = LayerHelper("chunk_eval", **kwargs)

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
707 708 709
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
710 711 712 713 714 715 716 717

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
718 719 720 721
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
722 723 724
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
725 726
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
727
        })
728
    return precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks
Y
Yu Yang 已提交
729 730 731 732 733 734 735 736 737


def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
738
                  act=None):
Y
Yu Yang 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


def conv2d(input,
           num_filters,
           filter_size,
           stride=None,
           padding=None,
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
780
           use_cudnn=True,
C
chengduoZH 已提交
781
           act=None):
Y
Yu Yang 已提交
782
    """
C
chengduoZH 已提交
783 784 785 786 787 788 789 790
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels, H is the height
    of the feature, and W is the width of the feature.
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
C
refine  
chengduoZH 已提交
791
    If bias attribution and activation type are provided, bias is added to the output of the convolution,
C
chengduoZH 已提交
792 793 794
    and the corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:

C
refine  
chengduoZH 已提交
795

C
chengduoZH 已提交
796 797
    .. math::

C
refine  
chengduoZH 已提交
798
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
799

C
chengduoZH 已提交
800
    In the above equation:
C
chengduoZH 已提交
801 802 803

        * :math:`X`: Input value, a tensor with NCHW format.
        * :math:`W`: Filter value, a tensor with MCHW format.
C
chengduoZH 已提交
804
        * :math:`\\ast`: Convolution operation.
C
refine  
chengduoZH 已提交
805
        * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
C
chengduoZH 已提交
806
        * :math:`\\sigma`: Activation function.
C
chengduoZH 已提交
807 808 809 810
        * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

C
chengduoZH 已提交
811 812
        Input:
            Input shape: $(N, C_{in}, H_{in}, W_{in})$
C
refine  
chengduoZH 已提交
813

C
chengduoZH 已提交
814
            Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
refine  
chengduoZH 已提交
815

C
chengduoZH 已提交
816 817
        Output:
            Output shape: $(N, C_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
818
        Where
C
chengduoZH 已提交
819
    .. math::
C
chengduoZH 已提交
820

C
chengduoZH 已提交
821 822
        H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
        W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
823 824

    Args:
C
chengduoZH 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        groups(int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
844 845
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduoZH 已提交
846
        act(str): Activation type. Default: None
C
chengduoZH 已提交
847 848 849 850 851

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
852 853 854
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch.

C
chengduoZH 已提交
855 856 857
    Examples:
        .. code-block:: python

C
refine  
chengduoZH 已提交
858
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
C
chengduoZH 已提交
859
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
    """

    if stride is None:
        stride = [1, 1]
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
C
chengduoZH 已提交
881 882
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
900
        type='conv2d',
Y
Yu Yang 已提交
901 902 903 904 905
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
906 907 908 909 910 911
        attrs={
            'strides': stride,
            'paddings': padding,
            'groups': groups,
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
912 913 914 915 916 917 918 919

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


def sequence_pool(input, pool_type, **kwargs):
    """
Y
yangyaming 已提交
920 921 922
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
F
fengjiayi 已提交
948

L
Luo Tao 已提交
949 950
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
951
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
952 953 954 955 956 957 958 959
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
960

Y
yangyaming 已提交
961
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
962 963 964 965 966
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
Y
Yu Yang 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979
    """
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
980 981 982 983 984
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
985 986 987
    return pool_out


988
def sequence_first_step(input, **kwargs):
L
Luo Tao 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
    """
    This funciton get the first step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1003

L
Luo Tao 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1013

Y
yangyaming 已提交
1014
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1015 1016 1017
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1018 1019 1020 1021
    return sequence_pool(input=input, pool_type="first")


def sequence_last_step(input, **kwargs):
L
Luo Tao 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    """
    This funciton get the last step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1036

L
Luo Tao 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1046

Y
yangyaming 已提交
1047
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1048 1049 1050
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1051 1052 1053
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1054 1055 1056 1057 1058
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=None,
           pool_padding=None,
C
caoying03 已提交
1059
           global_pooling=False,
C
chengduoZH 已提交
1060
           use_cudnn=True,
C
caoying03 已提交
1061
           name=None):
Y
Yu Yang 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
    if pool_padding is None:
        pool_padding = [0, 0]
    if pool_stride is None:
        pool_stride = [1, 1]
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]
C
chengduoZH 已提交
1080 1081
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1096 1097
            "paddings": pool_padding,
            "use_cudnn": use_cudnn
Y
Yu Yang 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1110 1111
               data_layout='NCHW',
               name=None):
Y
Yu Yang 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1138
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1139 1140

    mean = helper.create_global_variable(
Q
QI JUN 已提交
1141 1142 1143 1144
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1145 1146 1147
    helper.set_variable_initializer(var=mean, initializer=Constant(0.0))

    variance = helper.create_global_variable(
Q
QI JUN 已提交
1148 1149 1150 1151
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1152 1153 1154 1155 1156 1157 1158
    helper.set_variable_initializer(var=variance, initializer=Constant(1.0))

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1159 1160
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


C
caoying03 已提交
1187
def beam_search_decode(ids, scores, name=None):
Y
Yu Yang 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=None,
                     stride=None,
C
chengduoZH 已提交
1210
                     dilation=None,
C
caoying03 已提交
1211
                     param_attr=None,
C
chengduoZH 已提交
1212
                     use_cudnn=True,
C
caoying03 已提交
1213
                     name=None):
Y
Yu Yang 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    """
    The transpose of conv2d layer.

    This layer is also known as deconvolution layer.

    Args:
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.  None if use output size to
            calculate filter_size
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride.
C
chengduoZH 已提交
1236 1237 1238
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation.
Y
Yu Yang 已提交
1239
        param_attr: Parameter Attribute.
1240 1241
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
caoying03 已提交
1242 1243
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
Yu Yang 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

    Returns:
        Variable: Output image.
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

    op_attr = dict()

    if isinstance(padding, int):
        op_attr['paddings'] = [padding, padding]
    elif padding is not None:
        op_attr['paddings'] = padding

    if isinstance(stride, int):
C
chengduoZH 已提交
1261
        op_attr['strides'] = [stride, stride]
Y
Yu Yang 已提交
1262 1263 1264
    elif stride is not None:
        op_attr['strides'] = stride

C
chengduoZH 已提交
1265 1266 1267 1268 1269
    if isinstance(dilation, int):
        op_attr['dilations'] = [dilation, dilation]
    elif dilation is not None:
        op_attr['dilations'] = dilation

C
chengduoZH 已提交
1270 1271 1272 1273
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
    op_attr['use_cudnn'] = use_cudnn

Y
Yu Yang 已提交
1274 1275 1276 1277 1278 1279 1280 1281
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        padding = op_attr.get('paddings', [0, 0])
        stride = op_attr.get('strides', [1, 1])
C
chengduoZH 已提交
1282
        dilation = op_attr.get('dilations', [1, 1])
Y
Yu Yang 已提交
1283 1284 1285

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1286 1287 1288 1289 1290

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1291
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1292

Y
Yu Yang 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
    elif isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
        attrs=op_attr)

    return out
Y
yangyaming 已提交
1309 1310


C
caoying03 已提交
1311
def sequence_expand(x, y, name=None):
1312 1313
    """Sequence Expand Layer. This layer will expand the input variable **x**
    according to LoD information of **y**. And the following examples will
Y
yangyaming 已提交
1314
    explain how sequence_expand works:
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
                x.lod = [[0,       2, 3],
                         [0, 1,    3, 4]]
                x.data = [a, b, c, d]
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 2-level LoDTensor:
                out.lod = [[0,                2,    4],
                           [0,       3,       6, 7, 8]]
                out.data = [a, a, a, b, b, b, c, d]
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
                x.data = [a, b, c]
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1343
                y.lod = [[0, 2, 3, 6]]
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 1-level LoDTensor:
                out.lod = [[0,    2, 3,      6]]
                out.data = [a, a, b, c, c, c]
                out.dims = [6, 1]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
C
caoying03 已提交
1355 1356
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
1367
            out = layers.sequence_expand(x=x, y=y)
1368
    """
Y
yangyaming 已提交
1369
    helper = LayerHelper('sequence_expand', input=x, **locals())
1370 1371 1372
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
1373 1374
        type='sequence_expand', inputs={'X': x,
                                        'Y': y}, outputs={'Out': tmp})
1375
    return tmp
1376 1377


Y
yangyaming 已提交
1378 1379 1380 1381
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
1382
              param_attr=None,
C
caoying03 已提交
1383 1384
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
1385 1386 1387 1388
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

1389
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
1390

1391
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
1392

1393
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
1394

1395
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
1396 1397 1398

            h_t & = o_t tanh(c_t)

1399 1400 1401 1402 1403 1404
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
1405 1406 1407

        .. math::

1408
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
1409 1410 1411 1412 1413 1414 1415 1416

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
1417
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
1418 1419

    Args:
Y
yangyaming 已提交
1420 1421 1422 1423 1424 1425
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
1426
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
1427 1428
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
1429 1430
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
1431 1432
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
1433 1434

    Returns:
Y
yangyaming 已提交
1435
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
1436 1437 1438 1439

    Raises:
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**\
                not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev** \
1440 1441
                and **cell_t_prev** not be the same or the 2nd dimensions of \
                **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
1442 1443 1444 1445 1446 1447

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
1448
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
1449
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
1450
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
1467
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
1468 1469 1470 1471
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
1472 1473
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
1474 1475 1476
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
1477
    size = cell_t_prev.shape[1]
1478
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
1479 1480
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
1481
                param_attr=param_attr,
1482
                bias_attr=bias_attr)
Y
yangyaming 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
1495
    return h, c
G
guosheng 已提交
1496 1497


C
caoying03 已提交
1498
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1499
    """
Y
yangyaming 已提交
1500
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
1501 1502 1503

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1504 1505 1506 1507
        dim (int|None): The dimension along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
G
guosheng 已提交
1508
            the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1509 1510
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
1511
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1512 1513
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1514 1515 1516

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
1517

G
guosheng 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
1542 1543


C
caoying03 已提交
1544
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1545
    """
Y
yangyaming 已提交
1546
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
1547 1548 1549

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1550 1551 1552 1553
        dim (int|None): The dimension along which the mean is computed. If
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
G
guosheng 已提交
1554
            :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1555 1556
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
1557
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1558 1559
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1560 1561 1562

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
1563

G
guosheng 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
1588 1589


C
caoying03 已提交
1590
def reduce_max(input, dim=None, keep_dim=False, name=None):
1591
    """
Y
yangyaming 已提交
1592
    Computes the maximum of tensor elements over the given dimension.
1593 1594 1595

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1596 1597 1598 1599
        dim (int|None): The dimension along which the maximum is computed.
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
1600
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1601 1602
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
1603
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1604 1605
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1606 1607 1608

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
1609

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
1636
def reduce_min(input, dim=None, keep_dim=False, name=None):
1637
    """
Y
yangyaming 已提交
1638
    Computes the minimum of tensor elements over the given dimension.
1639 1640 1641

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1642 1643 1644 1645
        dim (int|None): The dimension along which the minimum is computed.
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
1646
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1647 1648
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
1649
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1650 1651
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1652 1653 1654

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
1655

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
1680 1681


C
caoying03 已提交
1682
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
1683
    """
C
caoying03 已提交
1684
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
1685 1686 1687

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
1688 1689 1690 1691 1692
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
1693
            :attr:`dim` dimension orderly.
C
caoying03 已提交
1694
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
1695
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
1696 1697
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

    output = x / sqrt(max(sum(x**2), epsilon))

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
       x(Variable|list): The input tensor to l2_normalize layer.
       axis(int): Dimension along which to normalize the input.
       epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will
                       be used as the divisor if the l2 norm of `x` is less than
                       sqrt(epsilon).
       name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
          fc = fluid.layers.l2_normalize(x=data, axis=1)
    """

    if len(x.shape) == 1: axis = 0

    helper = LayerHelper("l2_normalize", **locals())

    square = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square})

    reduced_sum = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reduce_sum",
        inputs={"X": square},
        outputs={"Out": reduced_sum},
        attrs={
            "dim": 1 if axis is None else axis,
            "keep_dim": True,
            "reduce_all": False
        })

    # TODO(caoying) A lower bound value epsilon for the norm is needed to
    # imporve the numeric stability of reciprocal. This requires a maximum_op.
    rsquare = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare})

    # TODO(caoying) the current elementwise_mul operator does not support a
    # general broadcast rule which broadcasts input(Y) to have the same
    # dimension with Input(X) starting from a specified dimension. So this
1803
    # exanpsion is requred. Once a general broadcast rule is spported, this
C
caoying03 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
    # expanding canbe removed.
    rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype)
    expand_times = [1] * len(x.shape)
    expand_times[axis] = int(x.shape[axis])
    helper.append_op(
        type="expand",
        inputs={"X": rsquare},
        outputs={"Out": rsquare_expanded},
        attrs={"expand_times": expand_times})

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="elementwise_mul",
        inputs={"X": x,
                "Y": rsquare_expanded},
        outputs={"Out": out})
    return out
1821 1822


1823
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
1824
    """
C
chengduoZH 已提交
1825 1826 1827
    Applies matrix multiplication to two tensors. Currently, the input
    tensors' rank can be any, but when the rank of anyone inputs is
    bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
1828

C
chengduoZH 已提交
1829
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
1830
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
1831

1832 1833 1834 1835 1836
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
1837
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
1838

C
chengduoZH 已提交
1839
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
1840
      performs in the following way.
G
guosheng 已提交
1841

1842
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
1843
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
1844
        last two dimensions and a batched matrix multiply supporting broadcast
1845
        applies on the two tensors.
G
guosheng 已提交
1846

Y
ying 已提交
1847 1848
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
1849
    removed after matrix multiplication.
G
guosheng 已提交
1850 1851 1852

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
1853 1854 1855
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
1856
        name(str|None): A name for this layer(optional). If set None, the layer
1857
            will be named automatically.
G
guosheng 已提交
1858 1859

    Returns:
1860
        Variable: The product Tensor variable.
G
guosheng 已提交
1861

G
guosheng 已提交
1862 1863 1864
    Examples:
        .. code-block:: python

1865
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
1866 1867
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
            # x: [M], y: [N]
1879

1880
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
1881
    """
1882
    helper = LayerHelper('matmul', **locals())
C
chengduoZH 已提交
1883 1884 1885
    assert max(len(x.shape), len(y.shape)) <= 3 or len(x.shape) == len(
        y.
        shape), 'Inputs\' rank should be equal or their rank should be less 4.'
1886
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
G
guosheng 已提交
1887
    helper.append_op(
1888 1889 1890 1891 1892 1893 1894
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
1895 1896


W
wanghaoshuang 已提交
1897 1898 1899 1900 1901
def edit_distance(input,
                  label,
                  normalized=False,
                  ignored_tokens=None,
                  name=None):
1902
    """
W
wanghaoshuang 已提交
1903
    EditDistance operator computes the edit distances between a batch of hypothesis strings and their references. Edit distance, also called Levenshtein distance, measures how dissimilar two strings are by counting the minimum number of operations to transform one string into anthor. Here the operations include insertion, deletion, and substitution. For example, given hypothesis string A = "kitten" and reference B = "sitting", the edit distance is 3 for A will be transformed into B at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
1904

1905
       "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
1906

1907
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with the total number denoted by `batch_size`, and the separation is specified by the LoD information. And the `batch_size` reference strings are arranged in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
1908

1909
    Output(Out) contains the `batch_size` results and each stands for the edit stance for a pair of strings respectively. If Attr(normalized) is true, the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
1910

1911 1912 1913 1914 1915
    Args:

        input(Variable): The indices for hypothesis strings.

        label(Variable): The indices for reference strings.
W
wanghaoshuang 已提交
1916 1917

        normalized(bool): Indicated whether to normalize the edit distance by the length of reference string.
1918

W
wanghaoshuang 已提交
1919
        ignored_tokens(list of int): Tokens that should be removed before calculating edit distance.
1920

W
wanghaoshuang 已提交
1921
    Returns:
W
wanghaoshuang 已提交
1922
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
1923 1924 1925 1926 1927

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
1928 1929
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

1930
            cost = fluid.layers.edit_distance(input=x,label=y)
1931
    """
1932
    helper = LayerHelper("edit_distance", **locals())
1933

1934
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
1935
    if ignored_tokens is not None and len(ignored_tokens) > 0:
1936 1937 1938 1939 1940 1941 1942
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
1943
            attrs={"tokens": ignored_tokens})
1944 1945 1946 1947 1948 1949
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erase_label]},
W
wanghaoshuang 已提交
1950
            attrs={"tokens": ignored_tokens})
1951 1952
        label = erased_label

1953 1954
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
1955
    sequence_num = helper.create_tmp_variable(dtype="int64")
1956 1957 1958 1959
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
1960 1961
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
1962 1963
        attrs={"normalized": normalized})

1964
    return edit_distance_out, sequence_num
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
    1. Get the indexes of max value for each row in input. a.k.a. numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two blanks and delete all blanks.

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

        input(Variable): (LoDTensor<float>), the probabilities of variable-length sequences, which is a 2-D Tensor with LoD information. It's shape is [Lp, num_classes + 1], where Lp is the sum of all input sequences' length and num_classes is the true number of classes. (not including the blank label).

        blank(int): the blank label index of Connectionist Temporal Classification (CTC) loss, which is in thehalf-opened interval [0, num_classes + 1).

    Returns:
        Variable: CTC greedy decode result.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
2012

2013
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
2014
    """
2015
    helper = LayerHelper("ctc_greedy_decoder", **locals())
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
    # top 1 op
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": 1})

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
2031
        outputs={"Output": [ctc_out]},
2032 2033
        attrs={"merge_repeated": True,
               "blank": blank})
2034
    return ctc_out
2035 2036


W
wanghaoshuang 已提交
2037 2038
def warpctc(input, label, blank=0, norm_by_times=False, **kwargs):
    """
2039 2040
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
2041
    to compute Connectionist Temporal Classification (CTC) loss.
2042 2043
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
    input tensor.

    Args:
       input(Variable): (LodTensor, default: LoDTensor<float>),
         the unscaled probabilities of variable-length sequences,
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
       label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
         of variable-length sequence, which is a 2-D Tensor with LoD
         information. It is of the shape [Lg, 1], where Lg is th sum of
         all labels' length.
2057
       blank: (int, default: 0), the blank label index of Connectionist
W
wanghaoshuang 已提交
2058 2059
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
2060
       norm_by_times: (bool, default: false), whether to normalize
W
wanghaoshuang 已提交
2061
       the gradients by the number of time-step, which is also the
2062 2063
       sequence's length. There is no need to normalize the gradients
       if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
2064 2065

    Returns:
2066 2067
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

    Examples:
        .. code-block:: python
            y = layers.data(name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(name='y_predict', shape=[11, 1], dtype='float32')
            cost = layers.warpctc(input=y_predict, label=y)

    """
    helper = LayerHelper('warpctc', **kwargs)
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
       input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
                with shape being [N, M] where M for dimension.
       new_dim (int): New dimension which the input LoDTensor is reshaped to.

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
2142 2143


Y
fix ci.  
ying 已提交
2144
def transpose(x, perm, name=None):
Y
ying 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
       input (Variable): (Tensor), A Tensor.
       perm (list): A permutation of the dimensions of `input`.

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
2164
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
2165 2166
    """

Y
fix ci.  
ying 已提交
2167
    if len(perm) != len(x.shape):
Y
ying 已提交
2168 2169 2170 2171 2172
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
2173
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
2174 2175
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
2176
        inputs={'X': [x]},
Y
ying 已提交
2177 2178 2179
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out