nn.py 70.1 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Y
Yu Yang 已提交
14 15 16 17 18 19 20
"""
All layers just related to the neural network.
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yangyaming 已提交
22
from tensor import concat
Y
Yu Yang 已提交
23 24 25 26 27

__all__ = [
    'fc', 'embedding', 'dynamic_lstm', 'gru_unit', 'linear_chain_crf',
    'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy',
    'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d',
28
    'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand',
29
    'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min',
30
    'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
31 32
    'ctc_greedy_decoder', 'edit_distance_error', 'l2_normalize', 'matmul',
    'warpctc'
Y
Yu Yang 已提交
33 34 35 36 37 38 39 40 41
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
42
       name=None):
Y
Yu Yang 已提交
43
    """
44
    **Fully Connected Layer**
Y
Yu Yang 已提交
45

C
caoying03 已提交
46 47 48 49 50 51 52 53 54
    The fully connected layer can take multiple tensors as its inputs. It
    creates a variable (one for each input tensor) called weights for each input
    tensor, which represents a fully connected weight matrix from each input
    unit to each output unit. The fully connected layer multiplies each input
    tensor with its coresponding weight to produce an output Tensor. If
    multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a biases variable will be
    created and added to the output. Finally, if activation is not None,
    it will be applied to the output as well.
C
caoying03 已提交
55

C
caoying03 已提交
56
    This process can be formulated as follows:
57 58 59

    .. math::

C
caoying03 已提交
60
        Out = Act({\sum_{i=0}^{N-1}W_iX_i + b})
61 62 63

    In the above equation:

C
caoying03 已提交
64 65 66 67
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
C
caoying03 已提交
68 69
    * :math:`Act`: The activation funtion.
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
70 71

    Args:
C
caoying03 已提交
72 73 74 75 76 77 78 79 80 81
       input(Variable|list): The input tensor(s) to the fully connected layer.
       size(int): The number of output units in the fully connected layer.
       num_flatten_dims(int): The fc layer can accept an input tensor with more
                              than two dimensions. If this happens, the
                              multidimensional tensor will first be flattened
                              into a 2-dimensional matrix. The parameter
                              `num_flatten_dims` determines how the input tensor
                              is flattened: the first `num_flatten_dims`
                              dimensions will be flatten to form the first
                              dimension of the final matrix (height of the
E
emailweixu 已提交
82
                              matrix), and the rest `rank(X) - num_flatten_dims`
C
caoying03 已提交
83 84 85 86
                              dimensions are flattened to form the second
                              dimension of the final matrix (width of the matrix).
                              For example, suppose `X` is a 6-dimensional tensor
                              with a shape [2, 3, 4, 5, 6], and
E
emailweixu 已提交
87
                              `num_flatten_dims` = 3. Then, the flattened matrix
C
caoying03 已提交
88
                              will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
E
emailweixu 已提交
89
                              By default, `num_flatten_dims` is set to 1.
C
caoying03 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
       param_attr(ParamAttr|list): The parameter attribute for learnable
                                   parameters/weights of the fully connected
                                   layer.
       param_initializer(ParamAttr|list): The initializer used for the
                                          weight/parameter. If set None,
                                          XavierInitializer() will be used.
       bias_attr(ParamAttr|list): The parameter attribute for the bias parameter
                                  for this layer. If set None, no bias will be
                                  added to the output units.
       bias_initializer(ParamAttr|list): The initializer used for the bias.
                                        If set None, then ConstantInitializer()
                                        will be used.
       act(str): Activation to be applied to the output of the fully connected
                 layer.
       name(str): Name/alias of the fully connected layer.
Y
Yu Yang 已提交
105 106


107
    Returns:
C
caoying03 已提交
108
        Variable: The output tensor variable.
109 110

    Raises:
C
caoying03 已提交
111
        ValueError: If rank of the input tensor is less than 2.
112 113 114 115

    Examples:
        .. code-block:: python

C
caoying03 已提交
116
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
117
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
118
    """
C
caoying03 已提交
119

C
caoying03 已提交
120
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
C
caoying03 已提交
140 141
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
Y
Yu Yang 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


157
def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'):
Y
Yu Yang 已提交
158
    """
159 160 161 162 163 164 165
    **Embedding Layer**

    This layer is used to lookup a vector of IDs, provided by *input*, in a lookup table.
    The result of this lookup is the embedding of each ID in the *input*.

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
166 167

    Args:
168
       input(Variable): Input to the function
Y
yangyaming 已提交
169
       size(tuple|list|None): Shape of the look up table parameter
170 171 172
       is_sparse(bool): Boolean flag that specifying whether the input is sparse
       param_attr(ParamAttr): Parameters for this layer
       dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
173

174 175 176
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
177

178 179
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
180

C
chengduoZH 已提交
181
          dict_size = len(dataset.ids)
182
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
183
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
    return tmp


# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
209
                 dtype='float32'):
Y
Yu Yang 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


def gru_unit(input,
             hidden,
             size,
             weight=None,
             bias=None,
             activation='tanh',
252
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
253
    """
254
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
255

256 257
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
258

259
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
260

261
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
262

263
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
264 265

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
266 267 268
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
269 270
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

271 272
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
273 274 275
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
276 277 278 279 280 281 282 283 284

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
        weight (ParamAttr): The weight parameters for gru unit. Default: None
        bias (ParamAttr): The bias parameters for gru unit. Default: None
        activation (string): The activation type for cell (actNode). Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate). Default: 'sigmoid'
Y
Yu Yang 已提交
285

286 287 288 289 290 291
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
292

293
             # assuming we have x_t_data and prev_hidden of size=10
294
             x_t = fluid.layers.fc(input=x_t_data, size=30)
295 296
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
    if weight is None:
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)

    # create bias
Y
Yibing Liu 已提交
317

Y
Yu Yang 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    if bias is None:
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru_unit',
        inputs={'Input': input,
                'HiddenPrev': hidden,
                'Weight': weight},
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
            'activation': 0,
            'gate_activation': 1,
        })

    return updated_hidden, reset_hidden_pre, gate


345
def linear_chain_crf(input, label, param_attr=None):
Y
Yu Yang 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


371
def crf_decoding(input, param_attr, label=None):
Y
Yu Yang 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


def cos_sim(X, Y, **kwargs):
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
def dropout(x, dropout_prob, is_test=False, seed=0, **kwargs):
    helper = LayerHelper('dropout', **kwargs)
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
        attrs={'dropout_prob': dropout_prob,
               'is_test': is_test,
               'seed': seed})
    return out


Y
Yu Yang 已提交
419 420
def cross_entropy(input, label, **kwargs):
    """
Y
Yibing Liu 已提交
421 422 423 424 425 426
    **Cross Entropy Layer**

    This layer computes the cross entropy between `input` and `label`. It supports
    both standard cross-entropy and soft-label cross-entropy loss computation.

    1) One-hot cross-entropy:
Y
Yibing Liu 已提交
427
	`soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
428

Y
Yibing Liu 已提交
429
        .. math::
Y
yangyaming 已提交
430

Y
Yibing Liu 已提交
431 432 433
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
Y
Yibing Liu 已提交
434
	`soft_label = True`, `Label[i, j]` indicates the soft label of class j
Y
Yibing Liu 已提交
435 436 437 438 439 440
	for sample i:

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
441
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
442 443 444 445
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
	 As a special case of 2), when each row of 'label' has only one
Y
Yibing Liu 已提交
446 447
	 non-zero element which is equal to 1, soft-label cross-entropy degenerates
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
448

Y
Yibing Liu 已提交
449
    Args:
Y
yangyaming 已提交
450 451
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
            batch size and D is the number of classes. This input is a probability
Y
Yibing Liu 已提交
452 453
            computed by the previous operator, which is almost always the result
            of a softmax operator.
Y
yangyaming 已提交
454 455 456
        label (Variable|list): the ground truth which is a 2-D tensor. When
              `soft_label` is set to `False`, `label` is a tensor<int64> with shape
              [N x 1]. When `soft_label` is set to `True`, `label` is a
Y
Yibing Liu 已提交
457
              tensor<float/double> with shape [N x D].
Y
Yibing Liu 已提交
458
        soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate
Y
Yibing Liu 已提交
459
              the given labels as soft labels, default `False`.
Y
Yibing Liu 已提交
460 461 462 463 464

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
Y
yangyaming 已提交
465
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal; 2) when \
Y
Yibing Liu 已提交
466 467
              `soft_label == True`, and the 2nd dimension of `input` and `label` are not \
               equal; 3) when `soft_label == False`, and the 2nd dimension of `label` is not 1.
Y
Yibing Liu 已提交
468 469 470 471 472 473

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487
    """
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
    """
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
    **Square error cost layer**

    This layer accepts input predictions and target label and returns the squared error cost.
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
       input(Variable): Input tensor, has predictions.
       label(Variable): Label tensor, has target labels.

    Returns:
        Variable: The tensor variable storing the element-wise squared error difference \
                  of input and label.

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
518 519 520 521 522 523 524 525 526 527 528
    """
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
529 530
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    return square_out


def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out = helper.create_tmp_variable(dtype="float32")
    if correct is None:
        correct = helper.create_tmp_variable(dtype="int64")
    if total is None:
        total = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="accuracy",
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
    return acc_out


def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
               excluded_chunk_types=None,
               **kwargs):
    """
Y
yangyaming 已提交
575
    This function computes and outputs the precision, recall and
576
    F1-score of chunk detection.
Y
Yu Yang 已提交
577 578 579 580 581 582 583
    """
    helper = LayerHelper("chunk_eval", **kwargs)

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
584 585 586
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
587 588 589 590 591 592 593 594

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
595 596 597 598
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
599 600 601
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
602 603
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
604
        })
605
    return precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks
Y
Yu Yang 已提交
606 607 608 609 610 611 612 613 614


def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
615
                  act=None):
Y
Yu Yang 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


def conv2d(input,
           num_filters,
           filter_size,
           stride=None,
           padding=None,
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
657
           use_cudnn=True,
C
chengduoZH 已提交
658
           act=None):
Y
Yu Yang 已提交
659
    """
C
chengduoZH 已提交
660 661 662 663 664 665 666 667
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels, H is the height
    of the feature, and W is the width of the feature.
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
C
refine  
chengduoZH 已提交
668
    If bias attribution and activation type are provided, bias is added to the output of the convolution,
C
chengduoZH 已提交
669 670 671
    and the corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:

C
refine  
chengduoZH 已提交
672

C
chengduoZH 已提交
673 674
    .. math::

C
refine  
chengduoZH 已提交
675
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
676

C
chengduoZH 已提交
677
    In the above equation:
C
chengduoZH 已提交
678 679 680

        * :math:`X`: Input value, a tensor with NCHW format.
        * :math:`W`: Filter value, a tensor with MCHW format.
C
chengduoZH 已提交
681
        * :math:`\\ast`: Convolution operation.
C
refine  
chengduoZH 已提交
682
        * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
C
chengduoZH 已提交
683
        * :math:`\\sigma`: Activation function.
C
chengduoZH 已提交
684 685 686 687
        * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

C
chengduoZH 已提交
688 689
        Input:
            Input shape: $(N, C_{in}, H_{in}, W_{in})$
C
refine  
chengduoZH 已提交
690

C
chengduoZH 已提交
691
            Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
refine  
chengduoZH 已提交
692

C
chengduoZH 已提交
693 694
        Output:
            Output shape: $(N, C_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
695
        Where
C
chengduoZH 已提交
696
    .. math::
C
chengduoZH 已提交
697

C
chengduoZH 已提交
698 699
        H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
        W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
700 701

    Args:
C
chengduoZH 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        groups(int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
721 722
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduoZH 已提交
723
        act(str): Activation type. Default: None
C
chengduoZH 已提交
724 725 726 727 728

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
729 730 731
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch.

C
chengduoZH 已提交
732 733 734
    Examples:
        .. code-block:: python

C
refine  
chengduoZH 已提交
735
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
C
chengduoZH 已提交
736
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    """

    if stride is None:
        stride = [1, 1]
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
C
chengduoZH 已提交
758 759
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
777
        type='conv2d',
Y
Yu Yang 已提交
778 779 780 781 782
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
783 784 785 786 787 788
        attrs={
            'strides': stride,
            'paddings': padding,
            'groups': groups,
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
789 790 791 792 793 794 795 796

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


def sequence_pool(input, pool_type, **kwargs):
    """
Y
yangyaming 已提交
797 798 799
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
F
fengjiayi 已提交
825

L
Luo Tao 已提交
826 827
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
828
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
829 830 831 832 833 834 835 836
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
837

Y
yangyaming 已提交
838
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
839 840 841 842 843
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
Y
Yu Yang 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856
    """
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
857 858 859 860 861
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
862 863 864
    return pool_out


865
def sequence_first_step(input, **kwargs):
L
Luo Tao 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879
    """
    This funciton get the first step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
880

L
Luo Tao 已提交
881 882 883 884 885 886 887 888 889
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
890

Y
yangyaming 已提交
891
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
892 893 894
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
895 896 897 898
    return sequence_pool(input=input, pool_type="first")


def sequence_last_step(input, **kwargs):
L
Luo Tao 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912
    """
    This funciton get the last step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
913

L
Luo Tao 已提交
914 915 916 917 918 919 920 921 922
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
923

Y
yangyaming 已提交
924
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
925 926 927
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
928 929 930
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
931 932 933 934 935
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=None,
           pool_padding=None,
C
chengduoZH 已提交
936
           global_pooling=False,
C
chengduoZH 已提交
937
           use_cudnn=True,
C
caoying03 已提交
938
           name=None):
Y
Yu Yang 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
    if pool_padding is None:
        pool_padding = [0, 0]
    if pool_stride is None:
        pool_stride = [1, 1]
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]
C
chengduoZH 已提交
957 958
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
973 974
            "paddings": pool_padding,
            "use_cudnn": use_cudnn
Y
Yu Yang 已提交
975 976 977 978 979 980 981 982 983 984 985 986
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
987 988
               data_layout='NCHW',
               name=None):
Y
Yu Yang 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1015
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1016 1017

    mean = helper.create_global_variable(
Q
QI JUN 已提交
1018 1019 1020 1021
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1022 1023 1024
    helper.set_variable_initializer(var=mean, initializer=Constant(0.0))

    variance = helper.create_global_variable(
Q
QI JUN 已提交
1025 1026 1027 1028
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1029 1030 1031 1032 1033 1034 1035
    helper.set_variable_initializer(var=variance, initializer=Constant(1.0))

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1036 1037
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


C
caoying03 已提交
1064
def beam_search_decode(ids, scores, name=None):
Y
Yu Yang 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=None,
                     stride=None,
C
chengduoZH 已提交
1087
                     dilation=None,
C
chengduoZH 已提交
1088
                     param_attr=None,
C
chengduoZH 已提交
1089
                     use_cudnn=True,
C
caoying03 已提交
1090
                     name=None):
Y
Yu Yang 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    """
    The transpose of conv2d layer.

    This layer is also known as deconvolution layer.

    Args:
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.  None if use output size to
            calculate filter_size
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride.
C
chengduoZH 已提交
1113 1114 1115
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation.
Y
Yu Yang 已提交
1116
        param_attr: Parameter Attribute.
1117 1118
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
caoying03 已提交
1119 1120
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
Yu Yang 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

    Returns:
        Variable: Output image.
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

    op_attr = dict()

    if isinstance(padding, int):
        op_attr['paddings'] = [padding, padding]
    elif padding is not None:
        op_attr['paddings'] = padding

    if isinstance(stride, int):
C
chengduoZH 已提交
1138
        op_attr['strides'] = [stride, stride]
Y
Yu Yang 已提交
1139 1140 1141
    elif stride is not None:
        op_attr['strides'] = stride

C
chengduoZH 已提交
1142 1143 1144 1145 1146
    if isinstance(dilation, int):
        op_attr['dilations'] = [dilation, dilation]
    elif dilation is not None:
        op_attr['dilations'] = dilation

C
chengduoZH 已提交
1147 1148 1149 1150
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
    op_attr['use_cudnn'] = use_cudnn

Y
Yu Yang 已提交
1151 1152 1153 1154 1155 1156 1157 1158
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        padding = op_attr.get('paddings', [0, 0])
        stride = op_attr.get('strides', [1, 1])
C
chengduoZH 已提交
1159
        dilation = op_attr.get('dilations', [1, 1])
Y
Yu Yang 已提交
1160 1161 1162

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1163 1164 1165 1166 1167

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1168
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1169

Y
Yu Yang 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    elif isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
        attrs=op_attr)

    return out
Y
yangyaming 已提交
1186 1187


C
caoying03 已提交
1188
def sequence_expand(x, y, name=None):
1189 1190
    """Sequence Expand Layer. This layer will expand the input variable **x**
    according to LoD information of **y**. And the following examples will
Y
yangyaming 已提交
1191
    explain how sequence_expand works:
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
                x.lod = [[0,       2, 3],
                         [0, 1,    3, 4]]
                x.data = [a, b, c, d]
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 2-level LoDTensor:
                out.lod = [[0,                2,    4],
                           [0,       3,       6, 7, 8]]
                out.data = [a, a, a, b, b, b, c, d]
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
                x.data = [a, b, c]
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1220
                y.lod = [[0, 2, 3, 6]]
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 1-level LoDTensor:
                out.lod = [[0,    2, 3,      6]]
                out.data = [a, a, b, c, c, c]
                out.dims = [6, 1]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
C
caoying03 已提交
1232 1233
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
1244
            out = layers.sequence_expand(x=x, y=y)
1245
    """
Y
yangyaming 已提交
1246
    helper = LayerHelper('sequence_expand', input=x, **locals())
1247 1248 1249
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
1250 1251
        type='sequence_expand', inputs={'X': x,
                                        'Y': y}, outputs={'Out': tmp})
1252
    return tmp
1253 1254


Y
yangyaming 已提交
1255 1256 1257 1258
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
1259
              param_attr=None,
C
caoying03 已提交
1260 1261
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
1262 1263 1264 1265
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

1266
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
1267

1268
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
1269

1270
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
1271

1272
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
1273 1274 1275

            h_t & = o_t tanh(c_t)

1276 1277 1278 1279 1280 1281
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
1282 1283 1284

        .. math::

1285
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
1286 1287 1288 1289 1290 1291 1292 1293

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
1294
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
1295 1296

    Args:
Y
yangyaming 已提交
1297 1298 1299 1300 1301 1302
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
1303
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
1304 1305
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
1306 1307
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
1308 1309
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
1310 1311

    Returns:
Y
yangyaming 已提交
1312
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
1313 1314 1315 1316

    Raises:
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**\
                not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev** \
1317 1318
                and **cell_t_prev** not be the same or the 2nd dimensions of \
                **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
1319 1320 1321 1322 1323 1324

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
1325
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
1326
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
1327
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
1344
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
1345 1346 1347 1348
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
1349 1350
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
1351 1352 1353
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
1354
    size = cell_t_prev.shape[1]
1355
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
1356 1357
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
1358
                param_attr=param_attr,
1359
                bias_attr=bias_attr)
Y
yangyaming 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
1372
    return h, c
G
guosheng 已提交
1373 1374


C
caoying03 已提交
1375
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1376
    """
Y
yangyaming 已提交
1377
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
1378 1379 1380

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1381 1382 1383 1384
        dim (int|None): The dimension along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
G
guosheng 已提交
1385
            the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1386 1387
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
1388
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1389 1390
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1391 1392 1393

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
1394

G
guosheng 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
1419 1420


C
caoying03 已提交
1421
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1422
    """
Y
yangyaming 已提交
1423
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
1424 1425 1426

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1427 1428 1429 1430
        dim (int|None): The dimension along which the mean is computed. If
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
G
guosheng 已提交
1431
            :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1432 1433
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
1434
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1435 1436
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1437 1438 1439

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
1440

G
guosheng 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
1465 1466


C
caoying03 已提交
1467
def reduce_max(input, dim=None, keep_dim=False, name=None):
1468
    """
Y
yangyaming 已提交
1469
    Computes the maximum of tensor elements over the given dimension.
1470 1471 1472

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1473 1474 1475 1476
        dim (int|None): The dimension along which the maximum is computed.
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
1477
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1478 1479
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
1480
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1481 1482
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1483 1484 1485

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
1486

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
1513
def reduce_min(input, dim=None, keep_dim=False, name=None):
1514
    """
Y
yangyaming 已提交
1515
    Computes the minimum of tensor elements over the given dimension.
1516 1517 1518

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1519 1520 1521 1522
        dim (int|None): The dimension along which the minimum is computed.
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
1523
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1524 1525
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
1526
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1527 1528
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1529 1530 1531

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
1557 1558


C
caoying03 已提交
1559
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
1560
    """
C
caoying03 已提交
1561
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
1562 1563 1564

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
1565 1566 1567 1568 1569
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
1570
            :attr:`dim` dimension orderly.
1571
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
1572
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
1573 1574
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
1617 1618


C
caoying03 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

    output = x / sqrt(max(sum(x**2), epsilon))

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
       x(Variable|list): The input tensor to l2_normalize layer.
       axis(int): Dimension along which to normalize the input.
       epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will
                       be used as the divisor if the l2 norm of `x` is less than
                       sqrt(epsilon).
       name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
          fc = fluid.layers.l2_normalize(x=data, axis=1)
    """

    if len(x.shape) == 1: axis = 0

    helper = LayerHelper("l2_normalize", **locals())

    square = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square})

    reduced_sum = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reduce_sum",
        inputs={"X": square},
        outputs={"Out": reduced_sum},
        attrs={
            "dim": 1 if axis is None else axis,
            "keep_dim": True,
            "reduce_all": False
        })

    # TODO(caoying) A lower bound value epsilon for the norm is needed to
    # imporve the numeric stability of reciprocal. This requires a maximum_op.
    rsquare = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare})

    # TODO(caoying) the current elementwise_mul operator does not support a
    # general broadcast rule which broadcasts input(Y) to have the same
    # dimension with Input(X) starting from a specified dimension. So this
1680
    # exanpsion is requred. Once a general broadcast rule is spported, this
C
caoying03 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
    # expanding canbe removed.
    rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype)
    expand_times = [1] * len(x.shape)
    expand_times[axis] = int(x.shape[axis])
    helper.append_op(
        type="expand",
        inputs={"X": rsquare},
        outputs={"Out": rsquare_expanded},
        attrs={"expand_times": expand_times})

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="elementwise_mul",
        inputs={"X": x,
                "Y": rsquare_expanded},
        outputs={"Out": out})
    return out
1698 1699


1700
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
1701
    """
1702
    Applies matrix multipication to two tensors. Currently only rank 1 to rank
1703
    3 input tensors are supported.
G
guosheng 已提交
1704

1705
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
1706
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
1707

1708 1709 1710 1711 1712
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
1713
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
1714

1715
    - After transpose, the two tensors are 2-D or 3-D and matrix multipication
1716
      performs in the following way.
G
guosheng 已提交
1717

1718
      - If both are 2-D, they are multiplied like conventional matrices.
1719 1720
      - If either is 3-D, it is treated as a stack of matrices residing in the
        last two dimensions and a batched matrix multiply supporting broadcast
1721
        applies on the two tensors.
G
guosheng 已提交
1722

1723 1724
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
1725
    removed after matrix multipication.
G
guosheng 已提交
1726 1727 1728

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
1729 1730 1731
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
1732
        name(str|None): A name for this layer(optional). If set None, the layer
1733
            will be named automatically.
G
guosheng 已提交
1734 1735

    Returns:
1736
        Variable: The product Tensor variable.
G
guosheng 已提交
1737

G
guosheng 已提交
1738 1739 1740
    Examples:
        .. code-block:: python

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
            # Examples to clarify shapes of the inputs and output
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
            # x: [M], y: [N]
1753

1754
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
1755
    """
1756 1757 1758 1759 1760
    helper = LayerHelper('matmul', **locals())
    assert max(
        len(x.shape), len(y.shape)
    ) <= 3, 'Currently only rank 1 to rank 3 input tensors are supported.'
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
G
guosheng 已提交
1761
    helper.append_op(
1762 1763 1764 1765 1766 1767 1768
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
1769 1770


1771
def edit_distance_error(input, label, normalized=False, name=None):
1772
    """
1773
    EditDistance operator computes the edit distances between a batch of hypothesis strings and their references.Edit distance, also called Levenshtein distance, measures how dissimilar two strings are by counting the minimum number of operations to transform one string into anthor. Here the operations include insertion, deletion, and substitution. For example, given hypothesis string A = "kitten" and reference B = "sitting", the edit distance is 3 for A will be transformed into B at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
1774

1775
       "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
1776

1777
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with the total number denoted by `batch_size`, and the separation is specified by the LoD information. And the `batch_size` reference strings are arranged in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
1778

1779
    Output(Out) contains the `batch_size` results and each stands for the edit stance for a pair of strings respectively. If Attr(normalized) is true, the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
1780

1781 1782 1783 1784 1785
    Args:

        input(Variable): The indices for hypothesis strings.

        label(Variable): The indices for reference strings.
W
wanghaoshuang 已提交
1786 1787

        normalized(bool): Indicated whether to normalize the edit distance by the length of reference string.
1788

W
wanghaoshuang 已提交
1789 1790 1791 1792 1793 1794 1795
    Returns:
        Variable: sequence-to-sequence edit distance loss in shape [batch_size, 1].

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

            cost = fluid.layers.edit_distance_error(input=x,label=y)
    """
    helper = LayerHelper("edit_distance_error", **locals())

    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
        outputs={"Out": [edit_distance_out]},
        attrs={"normalized": normalized})

    return edit_distance_out


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
    1. Get the indexes of max value for each row in input. a.k.a. numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two blanks and delete all blanks.

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

        input(Variable): (LoDTensor<float>), the probabilities of variable-length sequences, which is a 2-D Tensor with LoD information. It's shape is [Lp, num_classes + 1], where Lp is the sum of all input sequences' length and num_classes is the true number of classes. (not including the blank label).

        blank(int): the blank label index of Connectionist Temporal Classification (CTC) loss, which is in thehalf-opened interval [0, num_classes + 1).

    Returns:
        Variable: CTC greedy decode result.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
1859

1860
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
1861
    """
1862
    helper = LayerHelper("ctc_greedy_decoder", **locals())
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
    # top 1 op
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": 1})

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
1878
        outputs={"Output": [ctc_out]},
1879 1880
        attrs={"merge_repeated": True,
               "blank": blank})
1881
    return ctc_out
1882 1883


W
wanghaoshuang 已提交
1884 1885
def warpctc(input, label, blank=0, norm_by_times=False, **kwargs):
    """
1886 1887
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
1888
    to compute Connectionist Temporal Classification (CTC) loss.
1889 1890
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
    input tensor.

    Args:
       input(Variable): (LodTensor, default: LoDTensor<float>),
         the unscaled probabilities of variable-length sequences,
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
       label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
         of variable-length sequence, which is a 2-D Tensor with LoD
         information. It is of the shape [Lg, 1], where Lg is th sum of
         all labels' length.
1904
       blank: (int, default: 0), the blank label index of Connectionist
W
wanghaoshuang 已提交
1905 1906
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
1907 1908 1909 1910
       norm_by_times: (bool, default: false), whether to normalize
       the gradients by the number of time-step,which is also the
       sequence's length. There is no need to normalize the gradients
       if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
1911 1912

    Returns:
1913 1914
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

    Examples:
        .. code-block:: python
            y = layers.data(name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(name='y_predict', shape=[11, 1], dtype='float32')
            cost = layers.warpctc(input=y_predict, label=y)

    """
    helper = LayerHelper('warpctc', **kwargs)
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out