test_split_op.py 24.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yancey 已提交
15
import unittest
16

Y
Yancey 已提交
17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16
19 20

import paddle
21
import paddle.fluid as fluid
22
from paddle.fluid import Program, core, program_guard
Y
Yancey 已提交
23 24 25 26


class TestSplitOp(OpTest):
    def setUp(self):
27 28
        self.python_api = paddle.split
        self.python_out_sig = ['out0', 'out1', 'out2']
T
fix ut  
typhoonzero 已提交
29
        self._set_op_type()
30
        self.prim_op_type = "prim"
31
        self.dtype = self.get_dtype()
Y
Yancey1989 已提交
32
        axis = 1
33
        if self.dtype == np.uint16:
34
            self.enable_cinn = False
35 36 37
            x = np.random.random((4, 5, 6)).astype(np.float32)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': convert_float_to_uint16(x)}
38 39 40 41 42 43
            self.outputs = {
                'Out': [
                    ('out%d' % i, convert_float_to_uint16(out[i]))
                    for i in range(len(out))
                ]
            }
44 45 46 47
        else:
            x = np.random.random((4, 5, 6)).astype(self.dtype)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': x}
48 49 50
            self.outputs = {
                'Out': [('out%d' % i, out[i]) for i in range(len(out))]
            }
Y
Yancey1989 已提交
51
        self.attrs = {'axis': axis, 'sections': [2, 1, 2]}
Y
Yancey 已提交
52

53
    def get_dtype(self):
54
        return "float64"
55

T
typhoonzero 已提交
56 57 58
    def _set_op_type(self):
        self.op_type = "split"

Y
Yancey 已提交
59 60 61
    def test_check_output(self):
        self.check_output()

Y
Yancey1989 已提交
62
    def test_check_grad(self):
63
        self.check_grad(['X'], ['out0', 'out1', 'out2'], check_prim=True)
Y
Yancey 已提交
64 65


66 67 68
# test with attr(num)
class TestSplitOp_2(OpTest):
    def setUp(self):
69 70
        self.python_api = paddle.split
        self.python_out_sig = ['out0', 'out1', 'out2']
71
        self._set_op_type()
72
        self.prim_op_type = "prim"
73 74 75 76 77 78
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
79
            'num': self.num,
80 81 82
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
83
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
84 85 86 87 88 89 90 91 92

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
93
        return "float64"
94 95 96 97 98 99 100 101

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
102
        self.check_grad(['X'], ['out0', 'out1', 'out2'], check_prim=True)
103 104 105 106 107


# attr(axis) is Tensor
class TestSplitOp_AxisTensor(OpTest):
    def setUp(self):
108 109
        self.python_api = paddle.split
        self.python_out_sig = ['out0', 'out1', 'out2']
110 111 112 113 114
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {
            'X': self.x,
115
            'AxisTensor': np.array([self.axis]).astype("int32"),
116 117 118 119
        }
        self.attrs = {'sections': self.sections, 'num': self.num}

        out = np.split(self.x, self.indices_or_sections, self.axis)
120
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
121 122 123 124 125 126 127 128 129

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
130
        return "float64"
131 132 133 134 135 136 137 138 139 140 141 142 143 144

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(sections) is list containing Tensor
class TestSplitOp_SectionsTensor(OpTest):
    def setUp(self):
145 146
        self.python_api = paddle.split
        self.python_out_sig = ['out0', 'out1', 'out2']
147 148 149 150 151 152 153
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}

        sections_tensor = []
        for index, ele in enumerate(self.sections):
154 155 156
            sections_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
157 158 159 160 161 162

        self.inputs['SectionsTensorList'] = sections_tensor

        self.attrs = {
            'axis': self.axis,
            'sections': self.sections_infer,
163
            'num': self.num,
164 165 166
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
167
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
168 169 170 171 172 173 174 175 176 177

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 1
        self.sections = [2, 1, 2]
        self.sections_infer = [-1, -1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
178
        return "float64"
179 180 181 182 183 184 185 186 187 188 189 190 191

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


class TestSplitOp_unk_section(OpTest):
    def setUp(self):
192 193
        self.python_api = paddle.split
        self.python_out_sig = ['out0', 'out1', 'out2']
194
        self._set_op_type()
195 196
        self.prim_op_type = "prim"
        self.enable_cinn = False
197 198 199 200 201 202
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
203
            'num': self.num,
204 205 206
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
207
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
208 209 210 211 212 213 214 215 216

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = [2, 1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
217
        return "float64"
218 219 220 221 222 223 224 225

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
226
        self.check_grad(['X'], ['out0', 'out1', 'out2'], check_prim=True)
227 228


T
typhoonzero 已提交
229 230 231 232 233
class TestSplitByrefOp(OpTest):
    def _set_op_type(self):
        self.op_type = "split_byref"


234
# ----------------Split Fp16----------------
235 236 237


def create_test_fp16(parent):
238 239 240
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
241 242 243 244 245 246 247 248 249 250 251 252 253 254
    class TestSplitFp16(parent):
        def get_dtype(self):
            return np.float16

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestSplitFp16.__name__ = cls_name
    globals()[cls_name] = TestSplitFp16


create_test_fp16(TestSplitOp)

255
# ----------------Split Bf16----------------
256 257 258


def create_test_bf16(parent):
259 260 261
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    class TestSplitBf16(parent):
        def get_dtype(self):
            return np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestSplitBf16.__name__ = cls_name
    globals()[cls_name] = TestSplitBf16


create_test_bf16(TestSplitOp)

280

281
class TestSplitAPI(unittest.TestCase):
282 283
    def test_api(self):
        input_1 = np.random.random([4, 5, 6]).astype("int32")
284 285 286
        positive_1_int32 = paddle.tensor.fill_constant([1], "int32", 1)
        positive_1_int64 = paddle.tensor.fill_constant([1], "int64", 1)
        positive_2_int64 = paddle.tensor.fill_constant([1], "int64", 2)
287 288 289
        x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1')
        x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2')

290 291
        out_0, out_1, out_2 = paddle.split(
            x=x_1,
292
            num_or_sections=[positive_2_int64, positive_1_int32, -1],
293
            axis=positive_1_int64,
294
        )
295

296 297
        out_3, out_4, out_5 = paddle.split(
            x=x_1, num_or_sections=[2, 1, 2], axis=positive_1_int32
298
        )
299
        paddle.split(x=x_2, num_or_sections=2, axis=2)
300 301

        exe = fluid.Executor(place=fluid.CPUPlace())
302 303 304 305 306
        [res_0, res_1, res_2, res_3, res_4, res_5] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_1, "x_2": input_1},
            fetch_list=[out_0, out_1, out_2, out_3, out_4, out_5],
        )
307 308 309 310 311 312 313 314 315 316

        out = np.split(input_1, [2, 3], 1)
        assert np.array_equal(res_0, out[0])
        assert np.array_equal(res_1, out[1])
        assert np.array_equal(res_2, out[2])
        assert np.array_equal(res_3, out[0])
        assert np.array_equal(res_4, out[1])
        assert np.array_equal(res_5, out[2])


317
class TestSplitOpError(unittest.TestCase):
318 319 320 321
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of axis in split_op should be int or Variable.
            def test_axis_type():
G
GGBond8488 已提交
322 323 324
                x6 = paddle.static.data(
                    shape=[-1, 4], dtype='float16', name='x3'
                )
325
                paddle.split(x=x6, num_or_sections=2, axis=3.2)
326 327 328

            self.assertRaises(TypeError, test_axis_type)

329 330
            # The type of axis in split_op should be int or Variable.
            def test_axis_variable_type():
G
GGBond8488 已提交
331 332 333 334 335 336
                x9 = paddle.static.data(
                    shape=[-1, 4], dtype='float16', name='x9'
                )
                x10 = paddle.static.data(
                    shape=[-1, 1], dtype='float16', name='x10'
                )
337
                paddle.split(x=x9, num_or_sections=2, axis=x10)
338 339 340

            self.assertRaises(TypeError, test_axis_variable_type)

341 342
            # The type of num_or_sections in split_op should be int, tuple or list.
            def test_num_or_sections_type():
G
GGBond8488 已提交
343 344 345
                x6 = paddle.static.data(
                    shape=[-1, 4], dtype='float16', name='x4'
                )
346
                paddle.split(x=x6, num_or_sections=2.1, axis=3)
347 348 349

            self.assertRaises(TypeError, test_num_or_sections_type)

350
            def test_num_or_sections_type_tensor():
G
GGBond8488 已提交
351 352 353
                x7 = paddle.static.data(
                    shape=[-1, 4], dtype='float16', name='x5'
                )
354 355 356 357 358
                paddle.split(input=x7, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type_tensor)

            def test_axis_type_tensor():
G
GGBond8488 已提交
359 360 361
                x8 = paddle.static.data(
                    shape=[-1, 4], dtype='float16', name='x6'
                )
362 363 364 365
                paddle.split(input=x8, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type_tensor)

张春乔 已提交
366 367 368 369 370 371 372 373
        with paddle.fluid.dygraph.guard():

            def test_0_num_tensor():
                x = paddle.uniform([1, 1, 1], dtype='float32')
                paddle.split(x, num_or_sections=0)

            self.assertRaises(ValueError, test_0_num_tensor)

374 375 376 377

class API_TestSplit(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
G
GGBond8488 已提交
378 379 380 381 382 383
            data1 = paddle.static.data(
                'data1', shape=[-1, 4, 6, 6], dtype='float64'
            )
            data1.desc.set_need_check_feed(False)
            data2 = paddle.static.data('data2', shape=[-1, 1], dtype='int32')
            data2.desc.set_need_check_feed(False)
384
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=data2)
385 386 387 388
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            input2 = np.array([2]).astype('int32')
389 390 391
            r0, r1, r2, = exe.run(
                feed={"data1": input1, "data2": input2}, fetch_list=[x0, x1, x2]
            )
392
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
393 394 395
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
            np.testing.assert_allclose(ex_x2, r2, rtol=1e-05)
396 397 398 399 400


class API_TestSplit2(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
G
GGBond8488 已提交
401 402 403 404
            data1 = paddle.static.data(
                'data1', shape=[-1, 4, 6, 6], dtype='float64'
            )
            data1.desc.set_need_check_feed(False)
405
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=2)
406 407 408
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
409 410 411 412 413
            (
                r0,
                r1,
                r2,
            ) = exe.run(feed={"data1": input1}, fetch_list=[x0, x1, x2])
414
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
415 416 417
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
            np.testing.assert_allclose(ex_x2, r2, rtol=1e-05)
418 419 420 421 422


class API_TestSplit3(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
G
GGBond8488 已提交
423
            data = paddle.static.data('data', shape=[-1, 10], dtype='float64')
424
            x0, x1 = paddle.split(data, num_or_sections=(3, 7), axis=1)
425 426 427 428
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
429
            ex_x0, ex_x1 = np.split(input1, (3,), axis=1)
430 431
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
432 433 434 435 436


class API_TestSplit4(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
G
GGBond8488 已提交
437 438
            data = paddle.static.data('data', shape=[-1, 10], dtype='float64')
            index = paddle.static.data('index', shape=[1], dtype='int32')
439
            x0, x1 = paddle.split(data, num_or_sections=(3, index), axis=1)
440 441 442 443
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            input2 = np.array([7]).astype('int32')
444 445 446 447
            r0, r1 = exe.run(
                feed={"data": input1, "index": input2}, fetch_list=[x0, x1]
            )
            ex_x0, ex_x1 = np.split(input1, (3,), axis=1)
448 449
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
450 451


C
Charles-hit 已提交
452 453
class API_TestSplit5(unittest.TestCase):
    def test_out(self):
454 455 456
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
C
Charles-hit 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                input_1 = np.random.random([5, 4]).astype("int32")
                # input is a variable which shape is [5, 4]
                input = paddle.to_tensor(input_1)
                n = paddle.full([1], 5, dtype='int32')
                out = paddle.split(input, [n])
                exe = paddle.static.Executor(place=place)
                re = exe.run(fetch_list=[out])
                re = re[0]
                ex_out = np.split(input_1, [5])
                ex_out = ex_out[0]
                np.testing.assert_allclose(ex_out, re, rtol=1e-05)


472 473 474
class API_TestSplit6(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
G
GGBond8488 已提交
475
            data = paddle.static.data('data', shape=[-1, 10], dtype='float64')
476 477 478 479 480
            x0, x1 = paddle.split(data, num_or_sections=[1, 1], axis=0)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([2, 10]).astype('float64')
            r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
481
            ex_x0, ex_x1 = np.split(input1, (1,), axis=0)
482 483 484 485
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)


C
Charles-hit 已提交
486 487 488 489 490 491
class API_TestDygraphFluidSplit(unittest.TestCase):
    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
492
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
C
Charles-hit 已提交
493 494 495 496
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
497 498 499
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            input.stop_gradient = False
500
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
501 502 503 504 505 506 507 508 509 510 511
            eager_x0_out = x0.numpy()
            eager_x1_out = x1.numpy()
            eager_x2_out = x2.numpy()
            loss = x0.sum()
            loss.backward()
            manul_grad = np.zeros_like(input_1)
            manul_grad[:, :2, :] = 1
            np.testing.assert_allclose(input.gradient(), manul_grad, rtol=1e-05)
            np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
            np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)
C
Charles-hit 已提交
512 513 514 515 516 517 518 519 520 521

        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
522
            x0, x1, x2 = paddle.split(input, [2, 2, 2], axis=1)
C
Charles-hit 已提交
523 524 525 526
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
527 528 529
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            input.stop_gradient = False
530
            x0, x1, x2 = paddle.split(input, [2, 2, 2], axis=1)
531 532 533 534 535 536 537 538 539 540 541
            eager_x0_out = x0.numpy()
            eager_x1_out = x1.numpy()
            eager_x2_out = x2.numpy()
            loss = x0.sum()
            loss.backward()
            manul_grad = np.zeros_like(input_1)
            manul_grad[:, :2, :] = 1
            np.testing.assert_allclose(input.gradient(), manul_grad, rtol=1e-05)
            np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
            np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)
C
Charles-hit 已提交
542 543 544 545 546 547

        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)


548
class API_TestDygraphSplit(unittest.TestCase):
549 550 551 552
    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
553
            input = paddle.to_tensor(input_1)
554 555 556 557 558
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
H
hong 已提交
559

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            input.stop_gradient = False
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            eager_x0_out = x0.numpy()
            eager_x1_out = x1.numpy()
            eager_x2_out = x2.numpy()
            loss = x0.sum()
            loss.backward()
            manul_grad = np.zeros_like(input_1)
            manul_grad[:, :2, :] = 1
            np.testing.assert_allclose(input.gradient(), manul_grad, rtol=1e-05)
            np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
            np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)
H
hong 已提交
575

576 577 578
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
579 580 581 582 583

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("bool")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
584
            input = paddle.to_tensor(input_1)
585 586 587 588 589
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
590 591 592
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
593

C
Charles-hit 已提交
594 595 596 597 598 599 600 601 602 603 604
    def test_out3(self):
        with fluid.dygraph.guard():
            np.random.seed(2021)
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            out_dy = paddle.split(input, [6], axis=1)
            out_dy = out_dy[0]
            out_dy_np = out_dy.numpy()
            ex_out = np.split(input_1, [6], axis=1)
            ex_out = ex_out[0]
605 606 607 608 609
            input = paddle.to_tensor(input_1)
            out_eager = paddle.split(input, [6], axis=1)
            out_eager = out_eager[0]
            out_eager_np = out_dy.numpy()
            np.testing.assert_allclose(ex_out, out_eager_np, rtol=1e-05)
C
Charles-hit 已提交
610 611
        np.testing.assert_allclose(ex_out, out_dy_np, rtol=1e-05)

612 613 614 615
    def test_out_tensor_input(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
616
            input = paddle.to_tensor(input_1)
617
            num1 = paddle.full(shape=[1], fill_value=2, dtype='int32')
618 619 620
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[num1, 2, 2], axis=1
            )
621 622 623 624
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
625 626 627
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
628 629

    def test_axis_tensor_input(self):
630 631 632
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
633
            input = paddle.to_tensor(input_1)
634
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
635 636 637
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[2, 2, 2], axis=num1
            )
638 639 640 641
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
642 643 644
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
645

646
    def test_negative_one_section(self):
647 648 649 650 651 652 653
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
            x0 = paddle.split(input, num_or_sections=[-1], axis=num1)
            x0_out = x0[0].numpy()
654
        np.testing.assert_array_equal(x0_out, input.numpy())
655

656

657 658 659 660 661 662 663 664 665 666
class API_TestEmptySplit(unittest.TestCase):
    def test_axis_input_empty_section(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([8, 6, 6]).astype("float32")
            # input is a variable which shape is [8, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = paddle.split(input, num_or_sections=[5, 0, 3])
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
667 668 669 670 671 672 673
            ex_x0, ex_x1, ex_x2 = np.split(
                input_1,
                [
                    5,
                    5,
                ],
            )
674 675 676
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
677 678


Y
Yancey 已提交
679
if __name__ == '__main__':
680
    paddle.enable_static()
Y
Yancey 已提交
681
    unittest.main()