test_split_op.py 24.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
Y
Yancey 已提交
16 17
import unittest
import numpy as np
18
from op_test import OpTest, convert_float_to_uint16
19
import paddle.fluid as fluid
20
from paddle.fluid import Program, core, program_guard
H
hong 已提交
21
from paddle.fluid.framework import _test_eager_guard
Y
Yancey 已提交
22 23 24 25


class TestSplitOp(OpTest):
    def setUp(self):
T
fix ut  
typhoonzero 已提交
26
        self._set_op_type()
27
        self.dtype = self.get_dtype()
Y
Yancey1989 已提交
28
        axis = 1
29 30 31 32
        if self.dtype == np.uint16:
            x = np.random.random((4, 5, 6)).astype(np.float32)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': convert_float_to_uint16(x)}
33 34 35 36 37 38
            self.outputs = {
                'Out': [
                    ('out%d' % i, convert_float_to_uint16(out[i]))
                    for i in range(len(out))
                ]
            }
39 40 41 42
        else:
            x = np.random.random((4, 5, 6)).astype(self.dtype)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': x}
43 44 45
            self.outputs = {
                'Out': [('out%d' % i, out[i]) for i in range(len(out))]
            }
Y
Yancey1989 已提交
46
        self.attrs = {'axis': axis, 'sections': [2, 1, 2]}
Y
Yancey 已提交
47

48
    def get_dtype(self):
49
        return "float64"
50

T
typhoonzero 已提交
51 52 53
    def _set_op_type(self):
        self.op_type = "split"

Y
Yancey 已提交
54 55 56
    def test_check_output(self):
        self.check_output()

Y
Yancey1989 已提交
57 58
    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])
Y
Yancey 已提交
59 60


61 62 63 64 65 66 67 68 69 70
# test with attr(num)
class TestSplitOp_2(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
71
            'num': self.num,
72 73 74
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
75
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
76 77 78 79 80 81 82 83 84

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
85
        return "float64"
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(axis) is Tensor
class TestSplitOp_AxisTensor(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {
            'X': self.x,
105
            'AxisTensor': np.array([self.axis]).astype("int32"),
106 107 108 109
        }
        self.attrs = {'sections': self.sections, 'num': self.num}

        out = np.split(self.x, self.indices_or_sections, self.axis)
110
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
111 112 113 114 115 116 117 118 119

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
120
        return "float64"
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(sections) is list containing Tensor
class TestSplitOp_SectionsTensor(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}

        sections_tensor = []
        for index, ele in enumerate(self.sections):
142 143 144
            sections_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
145 146 147 148 149 150

        self.inputs['SectionsTensorList'] = sections_tensor

        self.attrs = {
            'axis': self.axis,
            'sections': self.sections_infer,
151
            'num': self.num,
152 153 154
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
155
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
156 157 158 159 160 161 162 163 164 165

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 1
        self.sections = [2, 1, 2]
        self.sections_infer = [-1, -1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
166
        return "float64"
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


class TestSplitOp_unk_section(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
187
            'num': self.num,
188 189 190
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
191
        self.outputs = {'Out': [('out%d' % i, out[i]) for i in range(len(out))]}
192 193 194 195 196 197 198 199 200

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = [2, 1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
201
        return "float64"
202 203 204 205 206 207 208 209 210 211 212

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


T
typhoonzero 已提交
213 214 215 216 217
class TestSplitByrefOp(OpTest):
    def _set_op_type(self):
        self.op_type = "split_byref"


218
# ----------------Split Fp16----------------
219 220 221


def create_test_fp16(parent):
222 223 224
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
225 226 227 228 229 230 231 232 233 234 235 236 237 238
    class TestSplitFp16(parent):
        def get_dtype(self):
            return np.float16

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestSplitFp16.__name__ = cls_name
    globals()[cls_name] = TestSplitFp16


create_test_fp16(TestSplitOp)

239
# ----------------Split Bf16----------------
240 241 242


def create_test_bf16(parent):
243 244 245
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    class TestSplitBf16(parent):
        def get_dtype(self):
            return np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestSplitBf16.__name__ = cls_name
    globals()[cls_name] = TestSplitBf16


create_test_bf16(TestSplitOp)

264

265
class TestSplitAPI(unittest.TestCase):
266 267
    def test_api(self):
        input_1 = np.random.random([4, 5, 6]).astype("int32")
268 269 270
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
271 272 273 274
        x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1')
        x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2')

        out_0, out_1, out_2 = fluid.layers.split(
275 276
            input=x_1,
            num_or_sections=[positive_2_int64, positive_1_int32, -1],
277 278
            dim=positive_1_int64,
        )
279

280 281 282
        out_3, out_4, out_5 = fluid.layers.split(
            input=x_1, num_or_sections=[2, 1, 2], dim=positive_1_int32
        )
283 284 285
        fluid.layers.split(input=x_2, num_or_sections=2, dim=2)

        exe = fluid.Executor(place=fluid.CPUPlace())
286 287 288 289 290
        [res_0, res_1, res_2, res_3, res_4, res_5] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_1, "x_2": input_1},
            fetch_list=[out_0, out_1, out_2, out_3, out_4, out_5],
        )
291 292 293 294 295 296 297 298 299 300

        out = np.split(input_1, [2, 3], 1)
        assert np.array_equal(res_0, out[0])
        assert np.array_equal(res_1, out[1])
        assert np.array_equal(res_2, out[2])
        assert np.array_equal(res_3, out[0])
        assert np.array_equal(res_4, out[1])
        assert np.array_equal(res_5, out[2])


301
class TestSplitOpError(unittest.TestCase):
302 303 304 305 306 307 308 309 310
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of axis in split_op should be int or Variable.
            def test_axis_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x3')
                fluid.layers.split(input=x6, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type)

311 312 313 314 315 316 317 318
            # The type of axis in split_op should be int or Variable.
            def test_axis_variable_type():
                x9 = fluid.layers.data(shape=[4], dtype='float16', name='x9')
                x10 = fluid.layers.data(shape=[1], dtype='float16', name='x10')
                fluid.layers.split(input=x9, num_or_sections=2, dim=x10)

            self.assertRaises(TypeError, test_axis_variable_type)

319 320 321 322 323 324 325
            # The type of num_or_sections in split_op should be int, tuple or list.
            def test_num_or_sections_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x4')
                fluid.layers.split(input=x6, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type)

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
            def test_num_or_sections_type_tensor():
                x7 = fluid.layers.data(shape=[4], dtype='float16', name='x5')
                paddle.split(input=x7, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type_tensor)

            def test_axis_type_tensor():
                x8 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
                paddle.split(input=x8, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type_tensor)


class API_TestSplit(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
            data2 = fluid.layers.data('data2', shape=[1], dtype='int32')
344
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=data2)
345 346 347 348
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            input2 = np.array([2]).astype('int32')
349 350 351
            r0, r1, r2, = exe.run(
                feed={"data1": input1, "data2": input2}, fetch_list=[x0, x1, x2]
            )
352
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
353 354 355
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
            np.testing.assert_allclose(ex_x2, r2, rtol=1e-05)
356 357 358 359 360 361


class API_TestSplit2(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
362
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=2)
363 364 365
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
366 367 368 369 370
            (
                r0,
                r1,
                r2,
            ) = exe.run(feed={"data1": input1}, fetch_list=[x0, x1, x2])
371
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
372 373 374
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
            np.testing.assert_allclose(ex_x2, r2, rtol=1e-05)
375 376 377 378 379 380


class API_TestSplit3(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
381
            x0, x1 = paddle.split(data, num_or_sections=(3, 7), axis=1)
382 383 384 385
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
386
            ex_x0, ex_x1 = np.split(input1, (3,), axis=1)
387 388
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
389 390 391 392 393 394 395


class API_TestSplit4(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
            index = fluid.layers.data('index', shape=[1], dtype='int32')
396
            x0, x1 = paddle.split(data, num_or_sections=(3, index), axis=1)
397 398 399 400
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            input2 = np.array([7]).astype('int32')
401 402 403 404
            r0, r1 = exe.run(
                feed={"data": input1, "index": input2}, fetch_list=[x0, x1]
            )
            ex_x0, ex_x1 = np.split(input1, (3,), axis=1)
405 406
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
407 408


C
Charles-hit 已提交
409 410
class API_TestSplit5(unittest.TestCase):
    def test_out(self):
411 412 413
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
C
Charles-hit 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                input_1 = np.random.random([5, 4]).astype("int32")
                # input is a variable which shape is [5, 4]
                input = paddle.to_tensor(input_1)
                n = paddle.full([1], 5, dtype='int32')
                out = paddle.split(input, [n])
                exe = paddle.static.Executor(place=place)
                re = exe.run(fetch_list=[out])
                re = re[0]
                ex_out = np.split(input_1, [5])
                ex_out = ex_out[0]
                np.testing.assert_allclose(ex_out, re, rtol=1e-05)


429 430 431 432 433 434 435 436 437
class API_TestSplit6(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
            x0, x1 = paddle.split(data, num_or_sections=[1, 1], axis=0)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([2, 10]).astype('float64')
            r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
438
            ex_x0, ex_x1 = np.split(input1, (1,), axis=0)
439 440 441 442
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)


C
Charles-hit 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
class API_TestDygraphFluidSplit(unittest.TestCase):
    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
            with _test_eager_guard():
                # input is a variable which shape is [4, 6, 6]
                input = paddle.to_tensor(input_1)
                input.stop_gradient = False
                x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
                eager_x0_out = x0.numpy()
                eager_x1_out = x1.numpy()
                eager_x2_out = x2.numpy()
                loss = x0.sum()
                loss.backward()
                manul_grad = np.zeros_like(input_1)
                manul_grad[:, :2, :] = 1
466 467 468
                np.testing.assert_allclose(
                    input.gradient(), manul_grad, rtol=1e-05
                )
C
Charles-hit 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
                np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)

        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = fluid.layers.split(input, [2, 2, 2], dim=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
            with _test_eager_guard():
                # input is a variable which shape is [4, 6, 6]
                input = paddle.to_tensor(input_1)
                input.stop_gradient = False
                x0, x1, x2 = fluid.layers.split(input, [2, 2, 2], dim=1)
                eager_x0_out = x0.numpy()
                eager_x1_out = x1.numpy()
                eager_x2_out = x2.numpy()
                loss = x0.sum()
                loss.backward()
                manul_grad = np.zeros_like(input_1)
                manul_grad[:, :2, :] = 1
499 500 501
                np.testing.assert_allclose(
                    input.gradient(), manul_grad, rtol=1e-05
                )
C
Charles-hit 已提交
502 503 504 505 506 507 508 509 510
                np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)

        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)


511
class API_TestDygraphSplit(unittest.TestCase):
512 513 514 515
    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
516
            input = paddle.to_tensor(input_1)
517 518 519 520 521
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
H
hong 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534

            with _test_eager_guard():
                # input is a variable which shape is [4, 6, 6]
                input = paddle.to_tensor(input_1)
                input.stop_gradient = False
                x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
                eager_x0_out = x0.numpy()
                eager_x1_out = x1.numpy()
                eager_x2_out = x2.numpy()
                loss = x0.sum()
                loss.backward()
                manul_grad = np.zeros_like(input_1)
                manul_grad[:, :2, :] = 1
535 536 537
                np.testing.assert_allclose(
                    input.gradient(), manul_grad, rtol=1e-05
                )
538 539 540
                np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)
H
hong 已提交
541

542 543 544
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
545 546 547 548 549

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("bool")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
550
            input = paddle.to_tensor(input_1)
551 552 553 554 555
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
556 557 558
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
559

C
Charles-hit 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    def test_out3(self):
        with fluid.dygraph.guard():
            np.random.seed(2021)
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            out_dy = paddle.split(input, [6], axis=1)
            out_dy = out_dy[0]
            out_dy_np = out_dy.numpy()
            ex_out = np.split(input_1, [6], axis=1)
            ex_out = ex_out[0]
            with _test_eager_guard():
                input = paddle.to_tensor(input_1)
                out_eager = paddle.split(input, [6], axis=1)
                out_eager = out_eager[0]
                out_eager_np = out_dy.numpy()
                np.testing.assert_allclose(ex_out, out_eager_np, rtol=1e-05)
        np.testing.assert_allclose(ex_out, out_dy_np, rtol=1e-05)

579 580 581 582
    def test_out_tensor_input(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
583
            input = paddle.to_tensor(input_1)
584
            num1 = paddle.full(shape=[1], fill_value=2, dtype='int32')
585 586 587
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[num1, 2, 2], axis=1
            )
588 589 590 591
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
592 593 594
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
595 596

    def test_axis_tensor_input(self):
597 598 599
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
600
            input = paddle.to_tensor(input_1)
601
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
602 603 604
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[2, 2, 2], axis=num1
            )
605 606 607 608
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
609 610 611
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
612

613 614 615 616 617 618 619 620
    def func_negative_one_section(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
            x0 = paddle.split(input, num_or_sections=[-1], axis=num1)
            x0_out = x0[0].numpy()
621
        np.testing.assert_array_equal(x0_out, input.numpy())
622 623 624 625 626 627

    def test_negative_one_section(self):
        with _test_eager_guard():
            self.func_negative_one_section()
        self.func_negative_one_section()

628

629 630 631 632 633 634 635 636 637 638
class API_TestEmptySplit(unittest.TestCase):
    def test_axis_input_empty_section(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([8, 6, 6]).astype("float32")
            # input is a variable which shape is [8, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = paddle.split(input, num_or_sections=[5, 0, 3])
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
639 640 641 642 643 644 645
            ex_x0, ex_x1, ex_x2 = np.split(
                input_1,
                [
                    5,
                    5,
                ],
            )
646 647 648
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
649 650


Y
Yancey 已提交
651
if __name__ == '__main__':
652
    paddle.enable_static()
Y
Yancey 已提交
653
    unittest.main()